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Abstract

Binding sites in proteins can be either specifically functional binding sites (active sites) that bind 

specific substrates with high affinity or regulatory binding sites (allosteric sites), that modulate the 

activity of functional binding sites through effector molecules. Owing to their significance in 

determining protein function, the identification of protein functional and regulatory binding sites is 

widely acknowledged as an important biological problem. In this work, we present a novel binding 

site prediction method, AR-Pred (Active and Regulatory site Prediction), which supplements 

protein geometry, evolutionary and physicochemical features with information about protein 

dynamics to predict putative active and allosteric site residues. Since the intrinsic dynamics of 

globular proteins plays an essential role in controlling binding events, we find it to be an important 

feature for the identification of protein binding sites. We train and validate our predictive models 

on multiple balanced training and validation sets with random forest machine learning and obtain 

an ensemble of discrete models for each prediction type. Our models for active site prediction 

yield a median AUC of 91% and MCC of 0.68, whereas the less well-defined allosteric sites are 

predicted at a lower level with a median AUC of 80% and MCC of 0.48. When tested on an 

independent set of proteins, our models for active site prediction show comparable performance to 

two existing methods and gains compared to two others, while the allosteric site models show 

gains when tested against three existing prediction methods. AR-Pred is available as a free 

downloadable package at https://github.com/sambitmishra0628/AR-PRED_source.
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Introduction

Many globular proteins are enzymes that catalyze chemical reactions on bound substrates 

with the whole protein facilitating the reaction by lowering energy barriers1. The catalytic 

efficiency can be regulated by environmental factors such as temperature and pH and, 

importantly, often also by the binding of effectors or allosteric modulators. Such interactions 

with other molecules are a key regulatory aspect of proteins in general, and this type of 

regulation relates closely to their functions. Consequently, the identification of possible 

binding sites is of vital importance. It is a useful step in the process of annotating proteins 

for function and is a widely acknowledged problem.

Proteins exhibit a broad spectrum of ligand and macromolecule binding sites2. 

Metalloproteins have metal ion cofactor binding sites, molecular chaperones like GROEL 

can bind to other proteins, DNA binding sites are found in helicases and topoisomerases, 

while proteases bind to targeted peptides. Specifically, ligand binding sites in most enzymes 

can be broadly classified into two categories: a functional binding site or active site where 

the substrate binds in order to undergo chemical modification,3 and a regulatory binding site 

or allosteric site where, binding of an effector molecule can regulate and control the activity 

of the protein. 4 The active site may be classified into the substrate binding site comprising 

all residues that interact with the substrate and a more limited catalytic site, comprising only 

those residues directly taking part in the chemical reaction. In this study, we use the term 

active site to refer inclusively to include both sub-categories.

A protein’s active site is comprised of a group of residues, often in a deep pocket and even 

sometimes at an interface between subunits, and in some cases the site is accessible through 

a network of channels.5 Proteins also frequently undergo transitions between different 

conformations that can control access to the active site. The structural architecture and the 

physicochemical nature of the residues in the active site are evolutionarily conserved or 

changed across different species, to retain the specific function of the protein or to modify it. 

Active sites constitute the functional binding sites of enzymes and play a key role in defining 

an enzyme’s function. Deletion of residues at or near the active site can result in total loss of 

function. While an enzyme’s active site defines directly its biological activity, allosteric or 

regulatory sites control such activity remotely. Residues constituting such sites are 

commonly localized at cavities on a protein surface and are typically more accessible to 

ligands than are the residues in active sites. Protein allostery is a fundamental biological 

mechanism through which binding of a ligand molecule at a site remote to the functional site 

in an enzyme results in changes to the shape or dynamics of the functional site, either 

activating or inactivating the enzyme’s activity.6 Such allosteric processes facilitate 

communication between distant sites in proteins. Allostery is key for signal transduction: the 

receptors on the surface of cells use it to transmit signals from the exterior to the interior of 

the cell.7 Abnormalities in allosteric regulation have also been linked to several human 

diseases such as cancer and Alzheimer’s.8 Allosteric drugs represent a major effort in 

pharmaceuticals contrasting with to drugs/inhibitors targeted to active sites.9, 10 Because 

allosteric residues are subject to lower evolutionary pressure compared to orthosteric 

residues, they are often not conserved across all phyla and have the advantage of being 

highly specific. Hence, allosteric drugs targeting a pathogen have a lower risk of interfering 
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with host proteins. They also have the potential to activate as well as inhibit the target 

protein and can be used together with drugs that target active site residues.

Several computational methods already exist for the prediction of ligand binding sites in 

proteins. These computational approaches are either template-based, utilizing homologous 

structures with known binding sites or geometry-based, using structural geometry to detect 

binding site pockets. Also, some methods are energy-based and rank putative ligand binding 

sites by their computed interaction energies with hypothetical ligands.11 Specific methods 

also exist for the prediction of functional sites (active sites). The Fuzzy Oil Drop model by 

Brylinski and co-workers12 evaluates irregularities in the hydrophobicity distribution of 

residues in a protein and assigns functional importance to regions having high irregularities. 

Ondrechen et al. developed a computational method that calculates theoretical microscopic 

titration curves (THEMATICS) and showed that residues exhibiting anomalies in their 

predicted titration curves occur at active sites.13, 14 A more sophisticated method POOL was 

later developed that uses electrostatic and geometric properties derived from protein 

structures in addition to sequence conservation and features from THEMATICS to assign 

likelihood estimates for residues as part of the active site15, 16. Capra et al. developed 

ConCavity which combines evolutionary sequence conservation with geometric features 

obtained from pocket finding algorithms to predict active site residues.17 Another method 

that predicts active site pockets is AADS that uses geometric information on cavities in 

addition to physico-chemical properties of residues.18 Some methods have implemented 

genetic algorithms, which use structural information as well as sequence and network based 

properties in combination with machine learning to identify active site residues.19, 20 More 

recently, protein dynamics was also used as a predictor for active sites. Glantz-Gashai and 

co-workers revealed that normal modes can expose active sites, and they used changes in 

solvent accessibilities to predict active site residues.21

Numerous initiatives have also been taken to identify allosteric sites. The ASD database 

includes a diverse set of proteins with known allosteric residues. The identifications of 

allosteric sites for the proteins in this database are based on experimental methods which 

include disulfide trapping, high-throughput screening and fragment-based screening.22 

There have also been different approaches that use sequence and structural information to 

make predictions of allosteric sites in proteins. Lockless and Ranganathan used statistical 

coupling analysis (SCA) to identify networks of coevolving residues for protein families and 

later, used these to identify potential allosteric sites and pathways.23 Allosite is a structure-

based machine learning predictor that uses the physicochemical properties of pockets 

predicted by FPocket as descriptors to train a support vector machine (SVM) model and 

make predictions of allosteric pockets.24 AlloPred uses normal mode perturbations on 

different pockets in a protein to identify the pockets whose perturbation induces maximum 

flexibility changes for the catalytic residues.25 A similar method that uses normal modes to 

simulate the effect of ligand binding on protein flexibility is used in the protein allosteric 

and regulatory sites (PARS) server.26 This server tags those pockets in a protein as allosteric 

that induce maximum flexibility changes in the protein upon ligand binding. SPACER is 

another prediction tool that combines normal modes with dynamics and uses ‘binding 

leverage’ to locate potential sites in proteins where ligand binding can trigger a population 

shift affecting the conformational state of the protein.27

Mishra et al. Page 3

Proteins. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The dynamic nature of proteins is a critical element that can control function by transient 

reorganization of enzyme active sites28 and their regulatory behavior by a shift in 

conformational dynamics upon effector binding.7 In addition, protein dynamics is thought to 

play a pivotal role in the evolution of novel function29. Collectively these studies suggest 

that supplementing information on protein dynamics with structural and evolutionary 

features within a machine learning scheme can lead to improved predictions of ligand 

binding residues, both for active site and allosteric residues, which is the underlying premise 

for the present work. To test this hypothesis, we use the dataset compiled by Greener and 

Sternberg25 used for AlloPred, since it includes information about both allosteric and active 

site residues and develop predictive models for both active and allosteric sites. In our 

models, we include features that describe the dynamic behavior of residues in a protein 

molecule by using elastic network models.30, 31 Previous studies showed that these simple 

models can efficiently capture the functional dynamics of proteins32, 33 and that the global 

dynamics derived with ENMs shows strong overlap with the motions from atomistic 

molecular dynamic simulations.34, 35 Some of these dynamical features include mean-square 

fluctuations of residues and the resilience of residues to external perturbations given by 

dynamic flexibility index.36 For prediction of allosteric residues, we specifically consider 

the shortest dynamically correlated path between a given residue and the active site residues 

and the effect of perturbing the active site residues on a given residue. In addition, we also 

model a protein structure as a network where each node is a residue and the edge between a 

pair of nodes is weighted by the extent of dynamic correlation between them, following 

which we calculate network centrality features for each residue. We supplement dynamical 

features with structure-based features such as solvent accessibilities, amino acid 

physicochemical properties like hydrophobicity and evolutionary conservation.

Our results suggest that while residue conservation is a more important predictor for active 

site residues, features describing protein geometry and the extent of dynamic correlation 

with active site are the key identifiers for allosteric site residues. Our study also reports that 

properties defining the chemical nature of residues, such as hydrophobicity, are more 

important for the identification of active site residues than allosteric sites, demonstrating the 

importance of chemical specificity for residues at active sites. Allosteric residues, however, 

are a consequence of a protein’s geometry and intrinsic dynamics; their location is driven by 

the extent of dynamic control over the active site. We compare against four existing methods 

with the test set of proteins and find that our predictions of active sites having comparable 

performance to POOL and ConCavity and outperforming two - Fuzzy Oil Drop and AADS. 

Our models for allostery however, outperform all three methods compared - AlloPred, 

AlloSitePro and Spacer. Our study thus, verifies the importance of incorporating residue-

level dynamical information into predictive models for ligand binding sites.

Methods

Dataset

In accord with our aim to develop predictive models for both allosteric and active site 

residues, we use the dataset of protein structures compiled by Greener and Sternberg25 for 

AlloPred that contains information on both allosteric and active site residues. The authors 
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obtained information about allosteric residues from ASBench and used the Catalytic Site 

Atlas and UniProt in addition to ASBench to identify active site residues. The training and 

testing datasets provided there include a total of 119 proteins.

Dataset processing

We split the multimeric proteins in our dataset into their individual chains. This results in a 

total of 173 separate protein chains. We then retain those chains identified as both allosteric 

and catalytic residues, leaving 165 protein chains (from the 105 proteins). For the same set, 

we calculate all the features as described in the next section. For some structures, we 

encountered errors during feature calculations. For example, calculations for evolutionary 

conservation gave errors in the presence of non-standard amino acids and in some cases, 

solvent accessibility and secondary structure calculations couldn’t be performed for all 

residues for some proteins. We discard these structures and our final dataset contains 144 

protein monomers.

Features

For each protein, we calculate features at the residue-level; we represent each residue as a 

vector of different features. Based on how they were calculated and what aspect of a protein 

they represent, these features can be broadly grouped into four categories: a. features based 

on amino acid physicochemical properties, b. features describing the rate of residue 

evolution, c. features from protein structure geometry, and d. features describing protein 

dynamics. Table 1 provides a list of features considered under each category and below is 

given a brief description of the features used.

Residue type—We classify residues based on their hydrophobicity and charge into three 

classes similar to the approach taken by Petrova et al.37

Class 1: His, Arg, Lys, Glu and Asp (charged residues)

Class 2: Gln, Thr, Ser, Asn, Cys, Tyr and Trp (polar residues)

Class 3: Gly, Phe, Leu, Met, Ala, Ile, Pro and Val (hydrophobic residues)

Residue identity—We label each of the 20 amino acids (A, R, N, D, C, E, Q, G, H, I, L, 

K, M, F, P, S, T, W, Y and V) separately.

Solvent accessibility—We perform calculations for solvent accessibility using Naccess38 

with default parameters. For each residue, Naccess reports a total of 10 absolute and relative 

accessibility values, all of which are included in our feature set. (Details are in Supporting 

Information.)

Secondary structure—We use the DSSP program39 to assign the secondary structures in 

a consistent way. DSSP assigns a single letter code (H, S, G, T, E, B, I, -) to each residue 

corresponding to the secondary structure type.
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Mean square fluctuations—We use the Anisotropic Network Model (ANM), a type of 

Elastic Network Model (ENM) to calculate the residue-level fluctuations.30 We model each 

protein as a coarse-grained elastic network by representing its N residues by their respective 

Cα atoms and connecting all pairs of residues with harmonic springs. The potential energy 

of this system under equilibrium is given as

V = 1
2 ΔRTHΔR (1)

Here, ΔR is the vector of changes in positions for all residues, ΔRT is its transpose and H is 

the 3N by 3N-dimensional Hessian matrix obtained from the second derivatives of the 

potential function. We vary the strength of the springs γ between residue pairs i and jby the 

inverse of their separation distance (dij), given by the following equation40.

γ = 1
di j

2
(2)

Upon diagonalization, the Hessian matrix yields 3N-6 normal modes (V) and eigenvalues 

(λ) corresponding to the non-rigid body fluctuation dynamics of the protein. We calculate 

the mean-square fluctuations (MSF) of residues in a protein using these 3N-6 eigenvalues 

and eigenvectors with the following equation

< ΔRi
2 > = ∑ j = 1

3N − 6 1
λ j

∑i = 3k − 2
3k V ji

2 , k ∈ [1, N] (3)

Hydropathy index—We use the Kyte-Doolittle hydropathy scale41 to represent residue 

hydrophobicities.

Dynamic flexibility index (DFI)—From linear response theory, the response vector to an 

external perturbation in a protein structure such as binding of a ligand can be obtained from

ΔR3N × 1 = H3N × 3N
−1 F3N × 1 (4)

Here, ΔR is a 3N dimensional response vector giving the positional displacement of each 

atom in X, Y and Z, F is a 3N dimensional force vector and H‒1 is the 3N by 3N-

dimensional pseudoinverse of the Hessian matrix calculated using the 3N-6 non-rigid body 

eigenvectors as follows

H−1 = ∑i = 1
3N − 6 λi

−1V iV i
T (5)
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A response matrix A can then be created using response vectors as follows.

A =

ΔR1 ΔR2 ΔR3 ⋯ ΔRN )1

ΔR1 ΔR2 ΔR3 ΔRN )2
⋮ ⋱ ⋮

ΔR1 ⋯ ΔRN )N

(6)

Each row in such a matrix is the average response of all residues upon perturbing a given 

residue i. The metric dynamic flexibility index (DFI) for a residue j is then calculated as

DFI j =
S j

∑ j = 1
N S j

, where S j = ∑i = 1
N Ai j (7)

Dynamic flexibility index36, 42 estimates the resilience of a given residue position to 

perturbations at all positions within the 3-D structure of the protein. Sites with low DFI, 

such as hinges, are more resilient to perturbations and are hence, dynamically more stable 

than sites having high values of DFI. DFI also measures the significance of each position’s 

contribution to the global functional dynamics of the protein. We perform calculations of 

DFI for each protein and obtain the indices for each residue using the method described by 

Gerek et al. 36

Active site perturbation response (only for allosteric predictors)—The active site 

perturbation response is a measure of the effect of perturbations on the functional binding 

site (active site) on other residues. Residues which show higher fluctuation responses upon 

perturbation of the active site are often associated with allosteric signal transmission. We 

calculate the active site perturbation response as described by Kumar et al42 For the 

calculation of this feature, identifying the active site residues is essential.

Residue conservation scores—For each protein, we extract the sequence from the 

PDB file and then search for homologous sequences using BLAST43 (with default 

parameters) against the non-redundant protein sequence database with an e-value cutoff of 

0.01, percentage identity in the range of ≥ 35% and ≤ 95% and query coverage of 80%. To 

filter out duplicates, we use CD-Hit44 and cluster the initial set of homologs at 95% 

sequence identity and then select only the representative sequences from each cluster. We 

perform a multiple sequence alignment (MSA) with Clustal Omega45 with default 

parameters on a randomly selected set of 150 representative homologs for each protein. 

Using Rate4Site46 with its default parameters for the evolutionary model (JTT) and rate 

inference method (Bayesian), we then calculate the conservation scores for each protein 

from its respective MSA file. Rate4Site reports the extent of conservation at a position as a 

z-score, with a lower score indicating stronger conservation.
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Network centralities—We render each protein structure as a coarse-grained network 

whose nodes are residue represented by their Cα atoms. The edges are weighted or 

unweighted depending on the type of network. For each network, we calculate the node 

betweenness, closeness, degree, eigen and page rank centralities. In the following text, we 

summarize the networks and their properties used in this study. Further details of how the 

centrality was calculated are given in the Supporting Information.

i. Network based on distance cutoff. A protein is modeled as a coarse-grained 

system by representing individual residues by their Cα atoms and by adding 

edges between residue pairs which are within a distance cutoff of 13Å. The 

choice for this distance cutoff is based on a preliminary analysis in which we 

explore cutoffs of 10–15 Å and observe, for the same subset of features, the 

predictive performances to be all similar (Fig. S3). We thus proceed by arbitrarily 

considering 13Å as the cutoff.

ii. Distance weighted network. The edge between a residue pair is weighted by 

spatial proximity – in this case the distance between the Cα atoms. Such a 

network can be regarded as an interaction strength network – edges between 

spatially close residues are given higher weights than edges between distant 

residues.

iii. Network weighted by the correlation of inter-residue dynamics. The edges are 

weighted by the extent of dynamic correlation between the residue pairs.

iv. Network weighted by the interaction energy. The edges between residue Cα 

atoms are weighted by their interaction strengths obtained by using the 

Betancourt and Thirumalai (BT) contact potential47. We convert energies in the 

BT potential matrix into positive scores by calculating their Boltzmann factors. 

Thus, more favorable interacting pairs (lower interaction energies) have larger 

weights.

Pocket residues—We use Fpocket48 to predict cavities or pockets from atom positions in 

protein structures and identify the residues that are located in pockets. Fpocket uses alpha 

spheres and Voronoi tessellations to identify pockets in a protein. It considers a residue to be 

part of a pocket if any of the residue atoms are at a distance equal to the radius of an alpha 

sphere in the pocket.

Shortest path to catalytic residues (only for allosteric predictors)—Upon 

binding of effectors, allosteric residues transmit signals to functional binding sites through 

allosteric signaling pathways – chains of residues connecting between the regulatory and the 

active site. For identification of residues involved in effector binding, one of the features that 

we also consider is the shortest dynamically correlated path between a given residue and the 

active site. Our underlying hypothesis is that potential effector binding residues will have 

shorter paths that are more dynamically correlated than other residues.

By considering a protein as a system of Cα atoms with residues connected by Hookean 

springs with stiffness varying inversely with the square of the distance (Eq. 2), we obtain the 
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dynamic correlation cij between residues (Eq. 6) and transform it into a dissimilarity matrix 

D (Eq. 7).

ci j =
trace Hi j

−1

trace Hii
−1 trace H j j

−1 (8)

Di j = 1 − ci j (9)

The protein is modeled as a network with each residue pair within 13 Å being connected by 

an edge whose weight is the distance-transformed correlation in dynamics obtained with Eq. 

9. With such a network formulation, we use Dijkstra’s algorithm49 to calculate the shortest 

path between a given residue and any of the active site residues. In addition, we also 

consider the median shortest path from a given residue to all active site residues. It should be 

noted that for the calculation of this feature, prior knowledge of active site residues is 

required.

Training, validation and test datasets

Figure 1 illustrates the overall workflow of AR-Pred and highlights the number of positive 

and negative labels in the training, validation and test data. Tables S1 and S2 report the 

proteins considered in the datasets for allosteric and active site models, respectively. Details 

regarding the datasets are provided in the Supporting Information.

Machine learning models

We use the TreeBagger module (https://www.mathworks.com/help/stats/treebagger.html) in 

Matlab, an implementation of the random forest algorithm, to develop separate predictive 

models for allosteric and active site residues. For each type, we first train the algorithm with 

each of the 10 balanced training sets and then verify performance on the corresponding 

validation set. Thus, we have 10 models each trained using a different dataset. Our random 

forest implementation uses 100 trees and a minimum of 2 leaves at each node. To optimize 

the performance of each model we also include misclassification costs (penalty for false 

negatives and false positives) in our model with a cost matrix. Using a brute force approach, 

we verify the classification performance using different cost combinations for false positives 

and false negatives in the range of 0.1 to 1 in steps of 0.1 and select the combination that 

maximizes the Matthews correlation coefficient (MCC) for a given model. Including such 

costs in each model improves slightly the performance as shown in Fig. S4 and S5.

Feature selection

We exclude all features found to have feature importance below 0.3. The notations used for 

the features and their descriptions are provided in Table 2.
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Model performance evaluation

We evaluate the performance of our models by using the standard metrics in Table 3.

Prediction on test dataset

We weight the probability score assigned to each residue for a given model by its MCC for 

its corresponding validation set and then obtain a cumulative weighted score for each residue 

in a protein from the ensemble of 10 models with the following equation

Scoreweighted
i = ∑N = 1

10 MCCNSN
i (10)

Here, MCCN is the MCC of the Nth model and SN
i  is the score of the ith residue assigned by 

the Nth model. We use this formulation of weighted scores on the models trained for 

allostery and on those trained for active site detection to identify the most probable allosteric 

and active site residues, respectively.

Results and Discussion

We use a previously compiled dataset that was used by Greener and Sternberg for the 

allosteric prediction tool, AlloPred25. The compiled dataset has information on both 

allosteric and active site residues and thus provides the basis for a scheme to predict both 

allosteric and active site residues. In our approach, we compile a diverse set of features 

based on amino acid physicochemical properties, evolutionary conservation, protein 

structural geometry and supplement them with features that relate to the dynamical nature of 

the proteins. Since dynamics is critical for maintaining the functional and regulatory roles in 

proteins, we are presuming that including such information will improve the detection of 

residues important for regulation or substrate modification.

Our goal is to develop prediction models for active and allosteric site residues using a 

common subset of features. We are calling our method AR-Pred. To this end, we first 

calculate the features described in Methods for all proteins in the dataset and exclude 

proteins for which any of the features could not be calculated. For multimeric proteins in our 

dataset, feature calculations were performed on each subunit after splitting the multimer into 

its separate subunits, resulting in a feature vector of size M (M is the number of features) for 

each residue. A single protein having N residues can thus be described by an N by M matrix 

of features. Next, we divide the dataset of protein structures into distinct training, validation 

and test sets based on the distribution of the number of active site and allosteric residues 

(Fig. S1 and Fig. S2). For each prediction class (active site and allosteric), we create 10 

balanced training and validation sets. We train a random forest classification model on each 

training set and verify its performance on the respective validation set. Consequently, we 

have 10 models trained and validated for each prediction class. We use this ensemble of 10 

models to make predictions for the test sets. Details concerning the creation of training, 

validation and test datasets are provided in Supporting Information.
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The prediction models for active sites and allostery collectively constitute AR-Pred. First, 

we compare the performances for AR-Pred’s active site and allosteric prediction models for 

their respective validation sets. Second, we focus on the features which were important 

determinants of the models’ performance. Third, we predict allosteric and active site 

residues on the test data, verify the extent of randomness in AR-Pred’s predictions and 

compare our predictions with other methods. Fourth, we inspect the predictions made by the 

allosteric models on one of the test proteins to identify false positives. Finally, we consider 

one protein common to the test data sets of active sites and allostery to verify the 

localization of predicted active and allosteric site residues and show a connection between 

the intrinsic dynamics of these sites.

Performance of validation sets

Figures 2 and 3 show the resulting metrics for the average performance of the 10 models on 

the validation data set for the active sites and the allosteric sites, respectively. It is seen that 

the average performance of the models for active sites is better than for allosteric sites. The 

performance for each of the 10 models for active and allosteric sites is given in Fig. S6 and 

S7, respectively. It is interesting to note a greater inter-model variation in sensitivity and 

specificity for allosteric sites than for active sites. The models for allostery also exhibit 

higher variance for false positive rate (FPR) than the models for active sites. Both indicate 

that predicting active sites is more reliable than predicting allosteric residues. The receiver 

operating characteristic (ROC) curves for active site and allosteric models in Fig. 4A and 

Fig. 4B, respectively clearly show the better performance for active sites than for allosteric 

sites, with the area under the curve (AUC) for active sites being substantially higher than for 

allosteric sites.

At first this suggests that the predictive nature of our models for allosteric sites is less 

significant and is more random than the models for active site, however one must consider 

that active sites are substantially better known and have been investigated more exhaustively 

in comparison with allosteric sites. Active sites have long been exploited as popular drug 

targets by pharmaceutical industries and thus, their identification is supported by a plethora 

of experimental evidence. There have been relatively fewer studies on allostery which may 

indicate that many allosteric sites in proteins remain unknown, explaining the variance 

between allosteric site models.

Feature importance

The feature importance for the two classes of predictions is shown in Figs. 5 and 6. For both 

the models of active site and allosteric site predictions, residue conservation score is the 

most important feature. However, it is significantly more important for active site than for 

allosteric site detection, as indicated by the remarkably large difference between the 

importance of conservation in comparison with the other features. We also notice that the 

residue node betweenness centralities obtained by representing proteins as unweighted 

networks and adding edges between residues within 13 Å are rated as the second most 

important feature for both allosteric and active site residues. More importantly we observe 

features related to the residue-level dynamics ranked within the top 10 important features for 

both prediction types. It is seen that for both predictors, the resilience of residues to external 
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perturbations described by the dynamic flexibility index (DFI) is also listed in the top 10 

most important features. However, the extent of residue mobility described by mean-square 

fluctuations (MSF) is a more important factor for allosteric sites than for active sites. 

Besides, features describing the extent of coupling with the active sites such as the shortest 

dynamically correlated path to the active sites and the dynamic response upon perturbing the 

active sites are also important determinants for allostery, as might be expected. These results 

also suggest that solvent accessibility is more important for determining active site residues 

than for allosteric residues, indicating a strong preference of residues in active sites for their 

extent of solvent accessibility. Also, features relating to the physicochemical properties of 

amino acids such as amino acid hydrophobicity and secondary structures are important 

predictors for the active site residues and occur in Fig. 5 but are not present in Fig. 6 and do 

not seem to contribute significantly towards allosteric site detection.

Predictions on test datasets

Active site prediction—We have mapped out the predictions for active site residues from 

AR-Pred and compare them with the known active sites for 6 proteins in the test dataset. We 

rank residues by their weighted probability scores and for each protein we show only the top 

15 residues. In Fig. 7, the predicted true positives are shown as red spheres, with remaining 

known active site residues orange, and the excess predicted ones in green. It is seen from this 

figure that in the predicted pool of residues, at least 2 residues are true positives in all 6 

cases, while in two cases (A and D) there are 3 true positives and 4 true positives in E. For 4 

of the cases, the top 15 predicted residues are localized in the vicinity of the known active 

sites (Fig. 7 A, B, E and F) while, in two cases (Fig. 7 C and D) the predicted residues are 

more scattered.

To test whether the predictions are random, we perform two tests. First, for all proteins in 

the test data, we consider the shortest distance between the heavy atoms of the top 15 

predicted residues and any of the known active site residues and plot their distribution. 

Second, we perform 50 iterations of random residue selection by picking 15 residues 

randomly from each protein. For each iteration, we compare the distribution of the shortest 

distances between the heavy atoms of the randomly sampled residues and any of the known 

active site residues with the distribution of distances for the top 15 predicted active sites in 

each protein. Such an analysis should tell us how closely clustered the predicted active site 

residues are around the known active site residues and the extent of randomness in the 

locations of the predicted active site residues. Results are shown in Figs. S8 and S9, 

respectively. In Fig. S9, we observe the highest peak near 2.5Å and the distribution has a 

negative gradient at 5Å suggesting that the predicted residues are nearer the known ones. 

Fig. S9 suggests that the predictions are not random since the peaks are much sharper for the 

predicted residues (red) and at shorter distances than for the random ones (blue). It is also 

worth noting that there is a second smaller peak for the predicted residues, around 20Å, 

suggesting a bimodal distribution of the shortest distances and possible alternative functional 

binding sites for a given protein.

Allosteric site predictions—In Fig. 8, we have mapped the predicted allosteric residues 

by AR-Pred onto the structures of 6 proteins (showing cyan colored spheres for known 

Mishra et al. Page 12

Proteins. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



allosteric residues, green for predicted and red for predicted true positives). It is seen that in 

five out of the 6 cases (Fig. 8 A, C, D, E and F) the predicted residues are tightly clustered 

around the known ones. We also observe a higher number of true positives for the allosteric 

predictions: a maximum of 11 residues are true positives out of the top 15 (Fig. 8F). One of 

the six proteins (Fig. 8B) shows nearly a complete mismatch between the predicted and 

known allosteric residues. The protein is DAH7PS from Thermotoga maritima (PDB 3PG9) 

which is involved in the shikimate pathway, essential for the synthesis of aromatic amino 

acids. We further verify the significance of the predicted residues for this protein and 

investigate whether they might constitute potential allosteric pathways. DAH7PS has two 

domains - an N-terminal regulatory domain and a C-terminal catalytic domain (Fig. S10) 

and catalyzes the condensation between the substrates phosphoenolpyruvate (PEP) and D-

erythrose 4-phosphate (E4P) to form 3-deoxy-D-arabino-heptulosonate 7-phosphate 

(DAH7P). It is known to be regulated by tyrosine which binds to the regulatory domain and 

reduces affinity for both substrates.50 Upon binding, tyrosine induces a displacement in the 

position of the β2-α2 loop in the catalytic domain (colored in violet in Fig. S10). In Fig. S11 

(A, B, C, D, E and F), we have mapped the predictions for the top 5, 10, 15, 20, 30 and 40 

allosteric residues. It is worth noting that one of the top 5 predicted residues (Fig. S11A) is 

located on the β2-α2 loop of the catalytic domain. We observe that with an increasing 

number of predicted residues, more residues are predicted on the linker connecting the 

regulatory and catalytic domains and on the β2-α2 loop. Also, in the top 40 predicted 

residues (Fig. S11F), 3 residues are located on the regulatory domain of which, 2 are true 

positives. Figure S11F also appears to describe two putative allosteric pathways (red and 

blue arrows) between the opposite ends of the protein from the regulatory domain a to the 

β2-α2 loop of the catalytic domain. It is seen that the two pathways are on either side of the 

active site (shown as orange spheres). Interestingly, some of the predicted residues are in 

vicinity of the active site residues. Since a protein’s dynamic nature introduces the 

possibility of multiple allosteric pathways, these residues may be part of such pathways to 

control activity or even the dynamics of the active site.

To verify the extent of randomness in our predictions for allosteric residues, we perform an 

analysis similar to that above for the predicted active site residues: a) we probe the 

distribution of the shortest Euclidean distances between the heavy atoms of the predicted 

residues and any of the true allosteric residues, and b) we compare the distributions of the 

shortest distances for the predicted residues against a pool of randomly selected residues. In 

Fig. S12, we plot the distribution of the shortest distances for the top 15 predicted residues 

for all proteins in the allosteric test data and it shows that there is a single maximum with the 

peak close to 6 Å. This suggests that a major fraction of the predicted residues is tightly 

clustered around the experimentally verified residues. However, as shown for DAH7PS some 

predicted residues constitute allosteric pathways that have differing characteristics that may 

also be important. Such residues can be located away from the effector binding site and can 

skew the distribution plot. Fig. S13 compares the distributions of the shortest distances for 

the top 15 predicted allosteric residues in all proteins for 15 randomly chosen residues. The 

comparison is carried out for 50 iterations. It is clearly seen that in all iterations, the 

predicted residues are associated with sharper peaks at shorter distances than in the 

randomly chosen cases, further confirming that these predictions are not random.
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Comparisons with existing methods

Active site predictions—We compare AR-Pred’s predictions for active sites with the 

results from four other methods: Concavity,17 AADS,18 POOL,15 and FOD.12 For each 

method, we rank the predictions by their scores and, in Fig. 9, plot the percentage of true 

positives predicted (ordinate) for a certain percentage of the ranked predictions (abscissa), 

referred to here as percentage threshold. Our aim is to systematically compare the 

percentage of predicted true positives below a percentage threshold for each of these 

methods against our results. Three out of the four methods (Concavity, POOL and FOD) 

assign scores to residues in a protein based on their propensity for being active site residues. 

However, AADS predicts active site pockets, where each pocket contains multiple residues. 

To make comparisons with such pocket-based methods, we rank residues based on the rank 

of their pocket. Thus, all residues in a given pocket are assigned the same rank. Then, we 

filter residues which appear in multiple pockets by considering them only as part of the 

higher ranked pocket and consider the pool of residues in every threshold percent to identify 

the number of predicted true positives.

Results are shown for each individual protein in the test dataset in Fig. 9, comparing the 

prediction performance of AR-Pred (red curve) with the above-mentioned methods. When 

considering the percentage of true positives in the top 10 percent of the predicted residues, 

AR-Pred outperforms FOD in 11 out of the 19 cases and AADS in 14 out of 19 cases and we 

observe a similar performance for 5 and 3 proteins, respectively. At the same threshold, we 

perform better than Concavity in 5 cases and show similar performance in 6 cases. In the 

case of POOL, we have results only for 18 out of the 19 cases (4JAF gave errors). We see 

similar performance for POOL as for Concavity, with 6 cases of improved performance and 

5 cases of similar performance. When considering a threshold of the top 30 percent of the 

predicted residues, our method performs better than Concavity and POOL in 4 and 6 cases, 

respectively and we observe similar performances in 7 and 8 cases, respectively. Upon 

comparing with FOD and AADS, at 30 percent threshold, we perform better in 9 and 12 

cases and observe similar performance in 8 and 3 cases, respectively. Table 4 shows the 

percentage of proteins from the test data for which our method predicts the same or higher 

numbers of true positives than the four other methods at various threshold percentages. AR-

Pred shows at least similar or better performance compared to Concavity, AADS, POOL and 

FOD for a median 57.9%, 79.0%, 66.7% and 84.2% of the test proteins, respectively for the 

thresholds of 10–50 percent of the predictions. These results clearly indicate that including 

protein-dynamics information together with the physiochemical, structural and evolutionary 

features, leads to the improved detection of active site residues.

Allosteric site predictions—We compare the predictive power of our method with three 

existing methods: AlloPred,25 AlloSitePro,51 and SPACER.27 AlloPred is the source of the 

dataset we have used to develop our prediction models. AlloSitePro is an upgraded 

implementation of AlloSite.24 SPACER uses binding leverage, the ability of a binding site to 

couple with the intrinsic motions of a protein to identify potential allosteric sites and makes 

predictions at the residue-level; whereas, both AlloPred and AlloSitePro predict pockets. To 

perform comparisons, we follow the same procedure as above for the active site prediction 

models. Results are shown in Fig. 10. With a threshold of 10 percent of the predicted 
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residues, we observe gains in true positives against AlloPred, AlloSite and SPACER for 8, 9 

and 9 proteins and similar performances for 4, 5 and 4 proteins, respectively. In 7 cases, our 

method performs better than all the three other methods, at the 10 % threshold. Table 5 

shows the percentage of proteins in the test data for which our method shows better or 

comparable true positive rates for different threshold percentages. When compared to 

AlloPred, AlloSitePro and SPACER, our method gives comparable or better predictions for a 

median of 80, 93.3 and 86. 7 percent of the test files, respectively. These results confirm our 

underlying premise – that including dynamics information with other features leads to 

improvements in the prediction of allosteric residues.

Inspection of false positives in allosteric predictions

The protein aspartate transcarbamoylase (ATCase) from Sulfolobus acidocaldarius ATCase 

plays a vital role in the pyrimidine biosynthesis pathway, catalyzing the carbamoylation of 

the α-amino group of L-aspartate by carbamoyl phosphate and forming N-carbamoyl-L-

aspartate and orthophosphate. It is a heteromeric structure comprised of two chains, catalytic 

and regulatory.52 While the catalytic chain comprises aspartate and carbamoyl phosphate 

binding domains, the allosteric chain has the allosteric domain which binds to regulators and 

zinc binding domains, which makes contact with the catalytic subunits. We consider the 

regulatory chain of the enzyme (PDB 2BE9, chain F) and the predictions made for the 

allosteric residues. In Fig. 11 we show the top 15 (Fig. 11A) and top 30 (Fig. 11B) allosteric 

residues predicted for this protein. Previously, Vos et. al.53 compared the crystal structures 

for the CTP (allosteric regulator) bound and unbound structures for the Sulfolobus 
acidocaldarius ATCase and observed changes to the conformation of the bound form relative 

to the unbound form. Based on these observations, the authors proposed two allosteric 

pathways that transmit the effector binding signal to the catalytic subunits. We have shown 

the direction of these pathways with arrows in Fig. 11B. The H1’ and H2’ helices (shown in 

pink) show conformational deformations upon effector binding and hence, are considered 

critical for the allosteric signal transmission. For the top 15 predicted allosteric residues 

(Fig. 11A), we have 4 true positives (red spheres) while, 6 predicted residues lie on the H1’ 

and H2’ helices. Upon considering the top 30 predicted allosteric residues, we observe an 

increase in the number of residues on the two helices. It is interesting to note that the 

predicted residues align closely to the two proposed pathways and one of the residues in the 

pathways (Fig. 11B) is near the catalytic subunit. Such residues may be regarded as “sink” 

or “terminal” residues in an allosteric pathway in which the “source” is the effector binding 

site.

Overlaps between allosteric and active site residue predictions

One of the proteins common to our allosteric and active site test structures is AKT1, a 

human serine/threonine AGC protein kinase (PDB 3O96) associated with the PI3K/AKT 

and other signaling pathways. AKT1 contains an N-terminal PH domain, inter-domain 

linker, a kinase domain and a C-terminal domain often referred to as the C-terminal 

hydrophobic motif (Fig. 12A). The PH domain binds phosphatidylinositide and directs the 

translocation of the protein from cytosol to the plasma membrane. The kinase domain 

contains the catalytic site responsible for phosphorylation and binds ATP.54 We use this 

protein structure to visualize the agreement between the predicted and known allosteric and 
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active site residues. By dividing the proteins into cohesive units that move as rigid bodies,55 

we also learn about the localization of the predicted residues with respect to these structural 

domains. First, we divide the protein into dynamic cohesive units, also referred to as 

dynamic communities. To do this, we reduce the protein using a coarse-grained Cα 

representation and calculate the inverse Hessian for the elastic potential of the system using 

the first 20 low frequency normal modes with Eq. 5. Next, we calculate the correlation 

between residue-dynamics and express the inter-residue correlation matrix as a dissimilarity 

matrix using equations 8 and 9, respectively. Then, we identify dynamical structural blocks 

using the method described by Danon,56 dividing the protein into four distinct dynamic 

communities.

Figures 12B and 12C compare the known active and allosteric site residues (B) with the top 

15 predictions made by our models (C). From the computed dynamic communities, it is seen 

that the kinase domain is similarly divided into two communities - red and yellow (Fig. 12 B 

and C). The rigid unit in the C-terminus of the kinase domain (in red at the bottom) shows 

dynamic coordination with the PH domain at the top, together forming one community. 4 

out of the top 15 predicted allosteric residues coincide with the known ones, while we see an 

overlap of 2 residues at the active site. A strikingly common feature shared between the 

predicted and true allosteric residues is their location on the same dynamic communities, 

suggesting that both the predicted and known sites are highly correlated in their dynamics. It 

is even more interesting to notice that some of the predicted active site residues are reported 

to be allosteric. On closer observation, we find some of these residues are neighbors to 

residues that form the active site. This could make their feature profile very similar to that of 

the active site residues, making it hard for our models to distinguish between them. This 

suggests that a residue’s functional classification is strongly influenced by its neighboring 

residues. Terminal or sink residues in an allosteric pathway, which are proximate to the 

active site, may not strictly be only allosteric but could also be involved in the active site. 

Their physicochemical, structural and dynamical properties may strongly correlate with 

active sites, even presenting them as potential functional binding sites. Based on these 

criteria, a strict classification of residues as allosteric or active site may not always be 

feasible owing to the influence of neighboring residues. This raises a few intriguing 

questions: could sharing a similar feature profile with active site residues introduce a 

constraint on a residue’s evolution? It is also interesting to consider whether some of these 

residues might eventually evolve and be transformed into active site residues.

Our model predicts four residues (shown in gray spheres) as both allosteric and active site 

residues (Fig 12C and 13A). Two of these residues are located on the boundary of a pair of 

dynamic communities. We hypothesize that these residues are examples of cases where, a 

strict classification scheme is not applicable. These residues may be classified into either 

category. Previous studies have shown that active sites of the proteasome can allosterically 

regulate each other’s activity.57 Other studies have indicated the presence of intrasteric 

control58 directed at active sites, in which a short peptide, mimicking the substrate in the 

vicinity of the active site, binds and regulates the activity of the active site.59 Such studies 

suggest that active sites could self-regulate their activity which, in a sense, is clearly related 

to allostery. The residues which our model predicts to be both functional and regulatory sites 

could then possibly be identified as self-regulating residues. Owing to their location at the 
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boundaries between dynamic communities, they could also play a key role of allosteric 

signal transmission between the communities. We further confirm the functional importance 

of these residues by showing their evolutionary conservation in Fig 13B, which confirms 

that these residues have strong conservation. More importantly, three of these residues, 

Arg76, Asp325 and Glu314 have not been reported earlier as either active site or allosteric 

residues. Our method is thus, capable of predicting novel putative binding sites which, in 

principle, should be functionally significant owing to their strong conservation patterns.

Conclusions

We have developed discrete machine learning models using the random forest approach to 

predict allosteric and active site residues. Our prediction models for allostery and active site 

detection use a common subset of features, which broadly include amino acid 

physicochemical properties, protein structure geometry, residue conservation and intrinsic 

dynamics of the protein structure. Instead of making predictions from a single model, we 

have used an ensemble approach to make predictions. In such an approach, we make 

multiple models for each prediction class, each model is trained and validated on a separate 

training-validation set and then predictions are made using each model. Residue-level scores 

assigned by each model are weighted by the model’s MCC and from this we calculate a 

weighted-ensemble score for each residue that relates to its probability of being an allosteric 

or active site residue. When compared to existing methods, our implementation makes 

predictions at the residue level by assigning them weighted probability scores. Such an 

implementation is useful, especially in the field of protein engineering by providing 

candidate residues whose mutations could possibly alter a protein’s activity.

When assessed on the test dataset, our models for active site detection show comparable 

performance to two existing methods and gains against two others. Our models for allostery 

however, show superior performance over three of the existing methods. It is worth noting 

that including information on the residue dynamics in addition to other properties appears to 

be the origin of this significant gain in performance. However, our test datasets for allostery 

and active site prediction have only a small number of proteins, 15 and 19 respectively, but 

there are two points in support of the present approach. First, since our models make 

predictions at the residue-level, having a larger set of residues in the test dataset is a more 

important consideration than the number of proteins. A number of existing methods identify 

pockets and then, rank them based on their propensity of being active or allosteric binding 

pockets.18, 25, 26, 60–62 Because proteins have fewer pockets than residues, these methods 

have been tested on datasets having diverse numbers of proteins. On the contrary, our 

models consider the total number of residues in the allosteric and active site test data sets 

where we have 167 allosteric, 6607 non-allosteric, 180 active site and 4344 non-active site 

residues. Second, since our aim is to develop separate models for the predictions of active 

and allosteric site residues, our required dataset needs to have labels for both allosteric and 

active site residues, and the number of such annotations is limited.

Our study shows for an example that there can be considerable overlap between the feature 

profiles of active and allosteric site residues and hence, our models predict certain allosteric 

residues to be active site residues and vice-versa. Residues that are terminal along an 
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allosteric pathway often lie in close spatial proximity to the active site. Hence, their 

physicochemical, structural and dynamical characteristics can closely resemble those of the 

active site residues. Besides, previous studies have also suggested that active sites may be 

allosterically coupled with one another. Based on these observations, a rigid classification of 

residues into allosteric and functional classes would, in some cases, be inappropriate.
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Figure 1. 
AR-Pred Workflow with the observed protocol followed. The training and test data were 

created from a benchmark set of 144 protein monomers. Ten random forest models were 

created for each prediction class (active and allosteric site), each trained and validated on a 

separate balanced dataset. All ten models from each class are used to make predictions on 

the test set. Predictions made by each model are weighted with the model’s Matthew’s 

Correlation Coefficient.
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Figure 2. 
Metrics for the performance of active site models. Median metrics calculated across the ten 

models for active site prediction. The metrics were calculated on the validation set 

corresponding to each model.
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Figure 3. 
Metrics for the performance of allosteric site models. Median metrics calculated for the ten 

models for allosteric site prediction. Calculations were performed as for the metrics of the 

active site models.

Mishra et al. Page 24

Proteins. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Receiver Operating Characteristics (ROC) Area Under Curve (AUC). AUCs for active site 

models (A) vs allosteric models (B). Clearly the active site predictions are significantly 

better than the allosteric site predictions, possibly because the prior assignments of allosteric 

sites are more uncertain.
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Figure 5. 
Assignments of importance of various input factors for the active site models. The median 

feature importance calculated across the 10 models for active site prediction are shown. The 

features are ordered by their importance.
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Figure 6. 
Assignments of importance of the various input factors for the allosteric site models. The 

median feature importance calculated across the 10 models for the allosteric site predictions 

are shown. The features are ordered by their importance.
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Figure 7. 
Predictions on active sites for six proteins. Top 15 predicted residues for active sites are 

shown. The reported active sites are colored orange, the predicted true positives as red and 

the putative active sites predicted are shown as green spheres. The proteins for which these 

predictions are shown: A. Protein tyrosine phosphatase 1B (PDB 1T49, chain A), B. L-

Asparaginase I (PDB 2HIM, chain A), C. Uracil phosphoribosyltransferase (PDB 1JLR, 

chain A), D. Deoxycytidylate deaminase (PDB 2HVW, chain A), E. UMP Kinase (PDB 

2V4Y, chain A), F. AKT 1 (PDB 3O96, chain A).
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Figure 8. 
Visualization of the allosteric site predictions on six proteins. The top 15 residues predicted 

for allosteric sits are shown for the 6 proteins in the corresponding test dataset. Previously 

reported allosteric sites are shown in cyan, the predicted true positives in red and the putative 

predicted sites as green spheres. The proteins considered are: A. Phosphoenolpyruvate 

carboxylase (PDB 1FIY, chain A), B. DAH7P synthase (PDB 3PG9, chain F), C. AKT 1 

(PDB 3O96, chain A), D. Aspartate transcarbamoylase (PDB 2BE9, chain B), E. MALT1 

(4I1R, chain A), F. FadR (1H9G, chain A).
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Figure 9. 
Comparison of the AR-Pred’s predicted active sites with predictions from other methods for 

19 proteins. Prediction comparisons are made between the AR-Pred’s active site predictions 

and four other methods (Concavity, AADS, POOL and FOD) for each protein in the test 

data. On the X-axis we have the percentage of predictions considered as a threshold and plot 

the percentage of true positives predicted under a certain threshold by each method.
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Figure 10. 
Comparison of the AR-Pred’s allosteric site predictions with other methods for 15 proteins. 

We compare the prediction performance for our allosteric predictions (AR-Pred) against 

those from three other methods (AlloSite, AlloPred and SPACER) for each protein in the test 

data. The abscissa and ordinates have same descriptions as in Fig. 9.
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Figure 11. 
Potential allosteric pathways for aspartate transcarbamoylase (PDB 2BE9). Predictions made 

with AR-Pred’s allosteric model for the top 15 allosteric residues (A) and top 30 allosteric 

residues (B) are shown. The two helices previously proposed to play a key role in 

transmitting allosteric signal from the effector binding site to the catalytic site are colored in 

pink. The zinc binding site is shown in orange. The reported allosteric residues are colored 

in cyan, the predicted true positives in red and the putative allosteric residues predicted by 

AR-Pred are shown as green spheres. The two proposed pathways are described in (B) by 

the two arrows.
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Figure 12. 
AKT 1 (PDB 3O96) domains, communities and predictions. (A) The three major domains of 

AKT 1 are shown. The kinase domain is split into its respective N and C-terminus domains 

and these four parts are shown in different colors. Experimentally reported (B) and top 15 

AR-Pred predicted (C) allosteric and active site residues are shown. The protein backbone is 

colored based on its division into the computed four dynamic communities. Regions in the 

same color show highly correlated motions, indicating these are the rigid elements in the 

protein’s dynamics. The allosteric residues are in cyan, the active site residues in orange. In 

the predictions made by AR-Pred, residues which were predicted both as allosteric and 

active sites are shown in gray.
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Figure 13. 
Overlap between allosteric and active site residue predictions. (A) Four residues predicted 

by AR-Pred to be both allosteric and active site are shown in gray and labelled. The coloring 

scheme is same as in Fig. 12. (B) The protein is colored by its evolutionary conservation, 

with the color scale varying from blue to red – least conserved to most conserved.
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Table 1.

Summary of features in each of the 4 categories

Feature Category Feature Name

Amino acid physico-
chemical nature

1. Residue type (based on side chain charge and polarity)
2. Residue identity (20 standard amino acids)
3. Kyte-Doolittle hydropathy index

Protein Geometry

1. Solvent accessibility
2. Secondary structure
3. Pocket residues
4. Node centralities calculated using unweighted amino-acid contact map (cutoff distance 13Å)
5. Node centralities calculated using weighted amino-acid contact map (edges weighted by distance between residue 
Cα-atoms)
6. Node centralities calculated by transforming the 3-dimensional protein structure into a 2-dimensional amino-acid 
potential matrix (using the Betancourt-Thirumalai contact potentials)

Amino acid evolution Conservation scores

Protein dynamics

1. Mean-squared fluctuations
2. Dynamic Flexibility Index
3. Active site perturbation response (only for allosteric residue prediction)
4. Shortest dynamically-correlated path to active site residues (only for allosteric residue prediction)
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Table 2.

Notations for selected features and their descriptions

Feature Notation Feature Description

AA IDENTITY Identity of each amino acid (from the 20 amino acid types)

AA TYPE Amino acid type based on hydrophobicity, polarity and charge

ACTIVESITE PERTURBATION 
RESPONSE

Response of a given residue upon perturbing residues in the active site

ASA (ABS/REL) POLAR Absolute or relative solvent accessibility for all oxygen and nitrogen atoms in a residue side 
chain

ASA (ABS/REL) NONPOLAR Absolute or relative solvent accessibility for all non-oxygen and nitrogen atoms in a residue 
side chain

ASA (ABS/REL) ALLATOM Absolute or relative solvent accessibility for all atoms in a residue

ASA (ABS/REL) SIDECHAIN Absolute or relative solvent accessibility for all side-chain atoms in a residue

ASA (ABS/REL) MAINCHAIN Absolute or relative solvent accessibility for all main-chain atoms in a residue

BETWEENNESS D13 Residue betweenness centrality for unweighted network (dist cutoff 13Å)

BETWEENNESS CORR NET DIST 
TRANSFORMED

Residue betweenness centrality for network having edges weighted by distance-transformed 
dynamic correlations

BETWEENNESS BT POT Residue betweenness centrality for network having edges weighted by the Betancourt-
Thirumalai (BT) potential

CONSERVATION SCORE Extent of conservation for a residue

CLOSENESS_D13 Residue closeness centrality for unweighted network (dist cutoff 13Å)

CLOSENESS INT STNGT MAT Residue closeness centrality for network with edges weighted by inverse distance between 
residues

CLOSENESS CORR NET DIST 
TRANSFORMED

Residue closeness centrality for network having edges weighted by distance-transformed 
dynamic correlations

CLOSENESS BT POT Residue closeness centrality for network having edges weighted by the Betancourt- Thirumalai 
(BT) potential

DFI Dynamic flexibility index

DEGREE D13 Residue degree centrality for unweighted network (dist cutoff 13Å)

DEGREE INT STNGT MAT Residue degree centrality for network with edges weighted by inverse distance between residues

DEGREE CORR NET DIST 
TRANSFORMED

Residue degree centrality for network having edges weighted by distance-transformed dynamic 
correlations

DEGREE BT POT Residue degree centrality for network having edges weighted by the Betancourt-Thirumalai 
(BT) potential

EIGEN D13 Residue eigen centrality for unweighted network (dist cutoff 13Å)

EIGEN INT STNGT MAT Residue eigen centrality for network with edges weighted by inverse distance between residues

EIGEN CORR NET DIST 
TRANSFORMED

Residue eigen centrality for network having edges weighted by distance-transformed dynamic 
correlations

EIGEN BT PT Residue eigen centrality for network having edges weighted by the Betancourt-Thirumalai (BT) 
potential

ISPOCKETRESIDUE Binary feature indicating whether a residue is part of a pocket or not

KD HYDROPHOBICITY Residue hydrophobicity based on the Kyte-Doolittle hydrophobicity scale

MSF Residue mean square fluctuation

MEDIAN SHORTEST PATH TO 
ACTIVESITE RES Median value of all shortest paths from a given residue to any of the active site residues

PAGERANK D13 Residue page rank centrality for unweighted network (dcutoff 13Å)

Proteins. Author manuscript; available in PMC 2020 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mishra et al. Page 37

Feature Notation Feature Description

PAGERANK INTSTNGTMAT Residue page rank centrality for network with edges weighted by inverse distance between 
residues

PAGERANK CORR NET DIST 
TRANSFORMED

Residue page rank centrality for network having edges weighted by distance-transformed 
dynamic correlations

PAGERANK BT POT Residue page rank centrality for network having edges weighted by the Betancourt-Thirumalai 
(BT) potential

SEC STRUCT Secondary structure notation for a residue

SHORTEST PATH TO ACTIVESITE RES Shortest dynamically correlated path from a given residue to any of the active site residues
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Table 3.

Metrics used to evaluate the performance of machine learned models

Metric Name/Notation Description

Area under curve (AUC) The area under curve for the receiver operating characteristics curve for different values of true positive 
rates and false positive rates.

Sensitivity TP
TP + FN

Specificity TN
TN + FP

Precision TP
TP + FP

False negative rate (FNR) FN
FN + TP

False positive rate (FPR) FP
FP + TN

Accuracy TP + TN
TP + TN + FP + FN

F1 score 2TP
2TP + FP + FN

Matthews correlation coefficient TP ∗ TN − FP ∗ FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

TP: True positive, FP: False positive, TN: True negative, FN: False negative

Proteins. Author manuscript; available in PMC 2020 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mishra et al. Page 39

Table 4.
AR-Pred performance compared with other active site prediction methods.

The percentage of proteins for which AR-Pred predicts the same or a larger number of true positive active site 

residues relative to the other methods is tabulated. The calculations are reported for different percent 

thresholds that consider the top 10, 20, 30, 40 and 50 percent of predictions.

Threshold Percent╲Method Concavity AADS POOL FOD

10 57.9 89.5 61.1 84.2

20 36.8 73.7 72.2 89.5

30 57.9 79.0 77.8 89.5

40 63.2 79.0 61.1 63.2

50 68.4 84.2 66.7 79.0

Median 57.9 79.0 66.7 84.2
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Table 5.
AR-Pred performance compared with other allosteric site prediction methods.

The percentage of proteins for which AR-Pred predicts the same or a larger number of true positive allosteric 

site residues relative to the other methods is tabulated. The calculations are performed at different percentile 

thresholds for the top 10, 20, 30, 40 and 50 percent of the predictions.

Threshold Percent╲Method AlloPred AlloSitePro SPACER

10 80.0 93.3 86.7

20 80.0 93.3 86.7

30 73.3 93.3 86.7

40 86.7 93.3 80.0

50 86.7 93.3 66.7

Median 80.0 93.3 86.7
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