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Abstract

Alcohol consumption is often characterized by heavy episodic, or binge drinking, which has been 

on the rise. The aim of this study was to examine the neural dynamics of inhibitory control in 

demographically matched groups of young, healthy adults (N=61) who reported engaging in binge 

(BD) or light drinking patterns (LD). Electroencephalography signal was recorded during a fast-

paced visual Go/NoGo paradigm probing the ability to inhibit prepotent responses. No group 

differences were found in task performance. BDs showed attenuated event-related theta (4–7 Hz) 

on inhibition trials compared to LDs, which correlated with binge episodes and alcohol 

consumption but not with measures of mood or disposition including impulsivity. A greater overall 

decrease of early beta power (15–25 Hz) in BDs may indicate deficient preparatory “inhibitory 

brake” before deliberate responding. The results are consistent with deficits in the inhibitory 

control circuitry and are suggestive of allostatic neuroadaptive changes associated with binge 

drinking.
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Introduction

Binge drinking is defined as alcohol consumption elevating the blood alcohol concentration 

(BAC) levels to at least 0.08 g/dL, which usually occurs when four/five drinks are consumed 
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by women or men, respectively, within two hours (National Institute on Alcohol Abuse and 

Alcoholism, 2017). However, many individuals exceed this level of intake and consume 

alcohol at much higher levels (Naimi et al., 2010; Terry-McElrath and Patrick, 2016). Binge 

pattern of excessive drinking is associated with a range of negative consequences and incurs 

high costs to society (Bouchery et al., 2011; Sacks et al., 2015). It represents a major public 

health concern given rising prevalence rates (Hingson et al., 2017), and the evidence that 

harmful consequences increase with hazardous drinking levels (Haber et al., 2016).

It has been proposed that binge drinking may be a precursor to alcohol use disorder (AUD) 

as alcohol consumption transitions from impulsivity to compulsivity (Kimbrough et al., 

2017; Koob, 2013; Koob and Le Moal, 2008a). Indeed, increased alcohol consumption is 

associated with impaired self-control which could contribute to excessive drinking and may 

predict future heavy drinking and alcohol dependence (Nigg et al., 2006; Paz et al., 2018). 

Behavioral disinhibition is considered to be an important dimension in the development of 

AUD (Goldstein and Volkow, 2011; Koob and Volkow, 2010; Kwako et al., 2016; Volkow et 

al., 2002) and prefrontally-mediated deficits of inhibitory control and other executive 

functions have been found in individuals with AUD (Le Berre et al., 2017; Oscar-Berman 

and Marinkovic, 2004, 2007; Sullivan and Pfefferbaum, 2005). Furthermore, neuroimaging 

evidence indicates that acute alcohol intoxication primarily affects the prefrontal 

neurofunctional system subserving top-down cognitive control (Anderson et al., 2011; 

Kovacevic et al., 2012; Marinkovic et al., 2012a; Marinkovic et al., 2013; Rosen et al., 

2016), including impairments of response inhibition (Gan et al., 2014; Kareken et al., 2013; 

Marinkovic et al., 2000; Nikolaou et al., 2013; Schuckit et al., 2012).

Inhibitory control relies on the ability to suppress inappropriate or unwanted actions (Aron 

et al., 2014; Chikazoe et al., 2007), but it also critically engages other cognitive functions 

including attentional control and working memory (Erika-Florence et al., 2014; Hampshire, 

2015). It has been studied extensively with tasks that demand stopping or withholding 

dominant responses, such as a Go/NoGo task (Aron et al., 2014; Simmonds et al., 2008). 

This paradigm instructs participants to rapidly respond to target or “Go” stimuli (response 

activation), and to withhold responding to occasional “NoGo” stimuli (response inhibition) 

(Garavan et al., 1999). Functional magnetic resonance imaging (fMRI) studies have 

indicated that successful performance on the Go/NoGo task primarily recruits prefrontal 

regions, including the ventral and lateral prefrontal cortices, the anterior cingulate cortex 

(ACC), the presupplementary motor area (preSMA), and the basal ganglia among others 

(Aron et al., 2014; Criaud and Boulinguez, 2013; Hampshire et al., 2010; Levy and Wagner, 

2011; Simmonds et al., 2008; Swick et al., 2011; Wiecki and Frank, 2013). Although fMRI 

is an excellent spatial mapping tool, its temporal resolution is low due to constraints 

imposed by neurovascular coupling (Buxton, 2002). In contrast, scalp 

electroencephalography (EEG) measures neural activity directly and can provide highly 

precise insight into the task-evoked neural activity in real time but its spatial resolution is 

limited due to biophysical properties of the signal (Nunez and Srinivasan, 2006).

Because of its oscillatory nature, the EEG signal can be analyzed within the relevant 

frequency bands during task engagement (Amzica and Lopes da Silva, 2011; Basar et al., 

2001; Engel and Fries, 2010; Lundqvist et al., 2018; Pfurtscheller and Lopes da Silva, 1999). 

Holcomb et al. Page 2

Biol Psychol. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Event-related theta oscillations (4 – 7 Hz) are sensitive to cognitive effort elicited by tasks 

probing cognitive control and performance monitoring (Brier et al., 2010; Cavanagh and 

Frank, 2014; Hanslmayr et al., 2008; Kovacevic et al., 2012; Rosen et al., 2016). Studies 

using source-localization of the magnetoencephalography (MEG) and EEG signal have 

shown that the ACC and preSMA in the medial prefrontal cortex are major generators of 

event-related theta oscillations during such tasks (Hanslmayr et al., 2008; Kovacevic et al., 

2012; Marinkovic et al., 2019; Marinkovic et al., 2012b). These observations have been 

confirmed with intracranial EEG recordings which have revealed that the ACC is a principal 

generator of the fronto-midline theta observed on the scalp (Cohen et al., 2008; Wang et al., 

2005). Additional sources have been reported in the lateral prefrontal cortex (Beaton et al., 

2018; Correas et al., 2018; Kovacevic et al., 2012; Marinkovic et al., 2019; Raghavachari et 

al., 2001; Rosen et al., 2016).

Studies manipulating acute alcohol intoxication have shown that event-related theta 

oscillations are attenuated by a moderate alcohol dose especially under high-conflict 

conditions during decision making (Beaton et al., 2018; Kovacevic et al., 2012; Marinkovic 

et al., 2019; Marinkovic et al., 2012b; Rosen et al., 2016). Based on their association with 

AUD in genetic linkage studies, theta oscillations have been suggested as an endophenotype 

indicating a predisposition to develop alcoholism or inhibitory-related disorders 

(Rangaswamy et al., 2007; Salvatore et al., 2015). However, the supporting evidence of theta 

involvement in inhibitory control in binge drinkers or individuals with AUD is scarce. Most 

of the extant studies have used an equiprobable (50:50) Go/NoGo design which biases 

responding strategy towards target detection at the expense of inhibitory control (Wessel, 

2018). Since the Go (target) stimuli are much more salient for task performance, they evoke 

greater prefrontal theta when measured with MEG, which is attenuated in BDs (Correas et 

al., 2018). EEG studies with equiprobable Go/NoGo tasks in young BDs have reported 

reduced theta power in BDs to both target and nontarget stimuli (Lopez-Caneda et al., 2017). 

Similarly, in two EEG studies using this design, abstaining individuals with chronic AUD, 

and offspring of individuals with AUD who were deemed to be at high risk for developing 

alcoholism, showed lower event-related theta power than control participants (Kamarajan et 

al., 2006; Kamarajan et al., 2004; Pandey et al., 2016). However, studies using theta to 

examine inhibitory control in binge drinkers or in individuals with AUD with an asymmetric 

Go/NoGo design are lacking. To address this gap in the literature, the present study 

employed a fast-pace task variant with a 80:20 Go/NoGo ratio which establishes Go 

response dominance and engages inhibitory control on NoGo trials (Wessel, 2018). This has 

allowed us to test the hypothesis that binge drinking is associated with impaired inhibitory 

control and to examine whether this is reflected in attenuated task-dependent theta 

oscillations.

Furthermore, because this task requires countermanding of a prepotent tendency to respond, 

we examined task-dependent beta oscillations (15–25 Hz) which provide temporally precise 

insight into anticipatory motor engagement, response preparation, inhibition, and execution. 

Beta oscillations are considered to be the preferred frequency of the sensorimotor system 

and can serve as an index of the functional engagement of the underlying cortico-subcortical 

circuitry (Baker, 2007; Jenkinson and Brown, 2011; Khanna and Carmena, 2017; Kilavik et 

al., 2013). They are particularly sensitive to the neural activity related to movement 
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activation and inhibition (Engel and Fries, 2010; Jenkinson and Brown, 2011) and are 

affected by alcohol intoxication (Marinkovic et al., 2000), but they have not been examined 

in the context of binge drinking. Unlike event-related theta power which increases in 

response to a salient stimulus, beta power is high at baseline and it decreases during 

anticipatory, actual, or even imagined engagement of the motor system. Following a 

potential brief beta increase that may be inhibitory in nature (Pogosyan et al., 2009; Swann 

et al., 2009), beta decrease (also termed “desynchronization”) is the principal characteristic 

of event-related beta power. It is easily observed during movement preparation as it 

presumably indicates readiness to execute a motor response (Baker, 2007; Engel and Fries, 

2010; Jenkinson and Brown, 2011; Kilavik et al., 2013). The beta decrease is most dominant 

over the sensorimotor cortices which are the primary generators of the observed beta 

changes (Beaton et al., 2018). After a command to execute or inhibit a movement has been 

issued but before the actual response, beta power rebounds and increases above baseline 

levels (Cheyne et al., 2006; Kilavik et al., 2013). The beta rebound has shorter latency on 

NoGo trials on which there is no actual response, which can be interpreted as an active 

inhibition process (Khanna and Carmena, 2017; Solis-Escalante et al., 2012). These features 

make event-related beta oscillations well suited for tracking response preparation and 

execution stages, as well as post-movement adjustments of the motor system in real time 

(Beaton et al., 2018; Jenkinson and Brown, 2011). As the Go/NoGo task probes inhibitory 

control with potential relevance to self-control dysregulation which is implicated in 

addiction (Baler and Volkow, 2006; Leeman et al., 2012), investigating beta oscillatory 

activity in binge drinkers is of particular interest.

The aim of the current study was to examine the neural dynamics of inhibitory control in 

young adults with and without histories of binge drinking. Using a visual Go/NoGo task, the 

present study focused on task-dependent event-related changes in theta (4 – 7 Hz) and beta 

(15 – 25 Hz) oscillations in order examine the neural indices of cognitive and motor aspects 

of inhibitory control respectively in young adults engaging in binge drinking. We 

hypothesized that individuals with a history of binge drinking would exhibit impaired 

inhibitory control manifested in suboptimal task performance, decreased event-related theta 

power on NoGo trials, and alterations in the pattern of beta activity during response 

preparation.

Methods

Participants

Sixty-one healthy, non-smoking, right-handed individuals (M ± SD = 23.41 ± 3.4 years of 

age, 31 females) participated in this study. They were recruited from the local community 

through approved ads and postings and were queried about their alcohol and drug use and 

health history in a brief telephone screen interview. None of the participants reported drug or 

tobacco use at least one month prior to the study. They had no history of brain injury, or 

other neuropsychiatric or medical problems, and none were taking medications at the time of 

the study. In the present study, a binge episode was defined as consuming six/five or more 

drinks for men/women within a two hour time span. This criterion was adopted based on 

empirical evidence indicating that this level of drinking is more likely to result in BAC 
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reaching or exceeding 0.08% (Lange and Voas, 2001). Based on screening information, 29 

individuals were classified as binge drinkers (BD) if they reported three or more binge 

episodes in the past six months with at least one episode in the last month. On average, BDs 

reported 14.09 ± 13.6 binge episodes in the past six months (Table 1), with median = 10, 

mode = 20, range = 3 to 72. The high end of the range was reported by a participant who 

weighed the most in the entire cohort. The next highest number of reported binge episodes 

in the past six months was 30. The remaining 32 participants were Low Drinkers (LD), who 

reported no more than one binge episode in the past six months, .09 ± .3 on average. The 

two groups were matched on age, sex, education, ethnicity/race, and family history of 

alcoholism. The study’s procedures were approved by the Institutional Review Board and 

written informed consent was obtained from each participant prior to the experiment. 

Participants were monetarily compensated for their participation. The data of four additional 

participants in the theta analysis and three from the beta analysis were discarded due to poor 

data quality.

Procedure

Participants completed a battery of questionnaires which included handedness (Oldfield, 

1971) and medical history. They were asked about their alcohol drinking habits, including 

the frequency, quantity, and the pattern of alcohol consumption (modified from Cahalan et 

al., 1969), the magnitude of response to alcohol (Self-Rating of the Effects of Alcohol, SRE, 

Schuckit et al., 1997), the severity of their alcoholism-related symptoms (Short Michigan 

Alcoholism Screening Test, SMAST, Selzer et al., 1975), their motives for engaging in 

alcohol use (Drinking Motive Questionnaire, DMQ, Kuntsche and Kuntsche, 2009), and the 

consequences of their drinking (Young Adult Alcohol Consequences Questionnaire, 

YAACQ, Read et al., 2006). They provided a detailed report on their daily drinking during 

the past month (Timeline Followback, TLFB, Sobell and Sobell, 1996). Their disinhibition 

and impulsivity traits were assessed by an abbreviated Impulsiveness Scale (Abbreviated 

Impulsiveness Scale, ABIS, Coutlee et al., 2014). Participants also completed questionnaires 

to measure their personality (Eysenck Personality Questionnaire, EPQ, Eysenck and 

Eysenck, 1975), depression (Patient Health Questionnaire-9, PHQ, Kroenke and Spitzer, 

2002), and anxiety (Generalized Anxiety Disorder, GAD, Spitzer et al., 2006). In addition, 

they completed the NIH Toolbox Cognitive Battery (Gershon et al., 2013) which included 

tests probing working memory, cognitive flexibility, processing speed, and episodic memory 

(Table 1). Participants were screened for drug use with a 12-panel urine multidrug test 

(Discover, American Screening Corporation) at the beginning of the recording session. They 

all tested negative and proceeded with the recording.

Experimental paradigm

Participants took part in a visual Go/NoGo task which probes the ability to inhibit prepotent 

responses. They were presented with a pseudorandomized series of ‘X’ and ‘Y’ letters and 

were instructed to press a button with their right index finger as quickly and as accurately as 

possible every time ‘X’ and ‘Y’ stimuli alternated (Go, 80% of trials) and to withhold 

responding when the stimuli repeated (NoGo, 20% of trials) (Garavan et al., 1999). The task 

comprised a total of 685 stimuli presented for 230 ms with a stimulus onset asynchrony 

(SOA) of 1400 ± 200 ms. A random jitter was added to each trial in 50 ms increments to 
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mitigate timing predictability. Stimuli were presented individually in white font on a black 

background with the Presentation software package (Version 18.1; www.neurobs.com) 

within a visual angle spanning .93° (horizontal) and 0.99° (vertical). At all other times a 

fixation dot was presented in the middle of the screen.

Data acquisition and analysis

EEG signal was recorded with a 64-channel Brain Vision system (Brain Products GmbH, 

Germany) and was sampled continuously at 500 Hz. The signal was referenced online to the 

nose, and a bipolarly referred vertical electro-oculogram (EOG) was recorded to monitor 

eyeblinks and eye movements. Electrode impedance was kept below 5 kΩ.

Data Preprocessing—EEG data were analyzed using MATLAB (Mathworks, Natick, 

MA) routines that incorporated publicly available algorithms including FieldTrip 

(Oostenveld et al., 2011), and EEGLAB (Delorme and Makeig, 2004). Continuous data were 

band-pass filtered at 0.1 – 100 Hz, and were segmented into epochs extending from −300 to 

800 ms relative to each stimulus onset. A 300 ms pad was added to the beginning and end of 

the epoch to account for edge artifacts resulting from the Morlet wavelet convolution 

(Oostenveld et al., 2011). Noisy channels were removed by visual inspection and trials with 

large artifacts were removed with a threshold-based rejection. The default threshold started 

at 100μV focusing on the posterior electrodes, but was adjusted for each participant as 

needed with the goal of rejecting large artifacts while keeping most trials with eyeblinks. 

This helped to optimize an independent component analysis (ICA) method (Delorme and 

Makeig, 2004) which was then used to detect and remove the eyeblink and heartbeat 

artifacts. Data were analyzed in the time-frequency domain by computing complex power 

spectrum of each trial with Morlet wavelets within the theta (4–7 Hz) and beta (15–25 Hz) 

bands (Beaton et al., 2018; Kovacevic et al., 2012). The wavelet results were additionally 

inspected for artifacts and the padding was removed. The analysis was conducted in a 

manner blind to group membership. Average event-related power is presented as percent 

signal change from the baseline (−300 to 0 ms). Analysis of the raw power in the baseline 

indicated that the two groups did not differ in either theta or beta bands, assuring that the 

observed group differences were indeed due to event-related changes in power.

Data analysis—Data were analyzed for each channel which were then grouped into 

frontal (Fz, F1, F2, F3, F4), central (Cz, C1, C2, C3, C4) and parietal (Pz, P1, P2, P3, P4) 

clusters and averaged within each cluster to analyze group and condition effects on theta 

power (see Fig 2). For beta, only the central (Cz, C1, C2, C3, C4) electrode region was used 

(see Fig 3) to capture activity of the sensorimotor cortices which are the primary generators 

of event-related changes in beta oscillations (Baker, 2007; Beaton et al., 2018). Only trials 

on which responses were correctly executed (Go) and withheld (NoGo) were included in the 

analysis. By incorporating Go and NoGo trials in a 4:1 ratio, this task creates a prepotency 

to respond. As a consequence, effortful response inhibition is needed to overcome it and 

withhold responses on NoGo trials. This response dominance also leads to occasional 

premature button pressing. All responses made between −250 ms before and 200 ms after 

the stimulus onset were counted as premature and were excluded from the analysis.
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Statistical analysis—Group differences in demographics were tested with χ2, and those 

in drinking habits, personality aspects, and cognitive functions were analyzed with a non-

parametric Mann-Whitney U test to account for possible violations of distribution normality 

(Table 1). Data were analyzed with a mixed-design ANCOVA with Group as the between-

subjects factor, Task Condition as the repeated measures factor, and impulsivity 

(Abbreviated Impulsiveness Scale, ABIS, Coutlee et al., 2014) as a covariate. Group 

differences between the frontal, central, and parietal clusters were additionally examined for 

theta. No effects of sex were observed in the initial analyses for either the behavioral or 

electrophysiological data so this factor was subsequently removed from the analysis. 

Associations between the principal EEG measures, representative drinking variables, and 

several dispositional indices were examined with a non-parametric Spearman’s Rho (rs) 

index that was calculated across the whole sample. The following EEG measures were 

included in the correlational analysis: theta NoGo, theta Go, and early beta averaged across 

both task conditions. Drinking variables comprised the number of binge episodes, maximum 

number of drinks in 24 hrs, average daily alcohol intake, and number of drinking days per 

week, all assessed over the past 6 months. Mood and personality variables included anxiety, 

depression, and impulsivity. A false discovery rate approach (.20) (Hochberg and Benjamini, 

1990) was used to correct for multiple correlations.

Results

Behavioral measures

Performance—As shown in Fig 1, participants responded more accurately to Go trials 

(98.3% ± 3.6) than to NoGo trials (79.1% ± 12.2) resulting in a main effect of condition, 

F(1, 59) = 136.61, p < .001. No group differences were observed for response accuracy on 

either Go, F(1, 59) = .39, p = .54, or NoGo trials, F(1, 59) = .06, p = .81. The LD (447.1ms 

± 88.2) and BD (441.5ms ± 77.9) groups responded with comparable speed, F(1, 59) = .07, 

p = .79.

Drinking habits, personality characteristics, and cognitive functions—Table 1. 

lists demographic characteristics and group differences in drinking habits, experiences and 

motivational dimensions, personality traits, dispositional mood measures, and cognitive 

functions. BDs reported more binge episodes in the previous six months than LDs, higher 

levels of alcohol consumption overall, they started drinking at an earlier age than LDs and 

experienced more negative consequences of drinking including blackouts. They expressed 

higher levels of social, coping, and enhancement drinking motives. BDs reported higher 

sensation seeking, and marginally higher levels of impulsivity, anxiety, and depression than 

LDs. However, the two groups did not differ on personality traits nor on cognitive tests.

Electrophysiological measures

Event-related theta power—Event-related theta power peaked at ~350 ms after stimulus 

onset so the effects of Group and Condition were analyzed within a time interval of 300 to 

400 ms (Fig 2) to capture peak event-related changes while controlling for impulsivity. 

Overall, there was a main effect of Condition, as NoGo trials elicited greater event-related 

theta power than Go trials, F(1, 56) = 7.9, p = .007. A Group x Condition interaction, F(1, 
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56) = 5.7, p = .02 was due to theta attenuation for NoGo trials in the BD group, F(1, 56) = 

8.27, p = .006, with group differences on Go trials not reaching significance, F(1, 56) = 1.70, 

p = .19. Region-specific analysis indicated that, compared to LDs, BDs had reduced theta 

power on NoGo trials at the frontal, F(1, 56) = 5.2, p = .03, central, F(1, 56) = 9.75, p =.003, 

and parietal, F(1, 56) = 5.8, p = .02, electrode regions. In contrast, group differences on Go 

trials did not reach significance for any electrode cluster including the frontal, F(1, 56) = .41, 

p = .52, central, F(1, 56) = 3.18, p =.08, and parietal, F(1, 56) = 1.87, p = .18 regions. Lower 

theta during response inhibition was associated with higher levels of drinking, as NoGo theta 

power correlated negatively with the number of reported binge episodes, rs = −.29, p = .03, 

daily alcohol intake, rs = −.26, p = .04, and the average number of weekly drinking days, rs = 

−.25, p = .05. The maximum number of drinks consumed in 24 hrs in the previous six 

months correlated with theta power on NoGo, rs = −.29, p = .04, and Go trials, rs = −.29, p 
= .04. None of the dispositional variables were related to theta, all coefficients < .07, all p-

values > .6.

Event-related beta power—Event-related beta power is also expressed as percent signal 

change from baseline (Fig 3). It starts decreasing prior to stimulus onset in anticipation of 

making motor movement over the sensorimotor cortices. An early, transient increase in beta 

power during preparatory stage is visible in LDs, followed by an overall beta decrease with a 

nadir at ~300 ms and a rebound of beta power subsequent to issuing a motor command. A 

main effect of Group was observed within 50–125 ms time window, as BDs had greater beta 

desynchronization than LDs, F(1, 56) = 8.08, p = .006 (Fig 3). Following the early transient 

increase in beta power, the LD group maintained an overall higher level of beta power. This 

was reflected in a main effect of Group as measured at the beta nadir (250–350ms), F(1, 56) 

= 5.06, p = .028 which, however, correlated with the early time interval, rs = .51, p < .001. 

As expected, beta power rebounded earlier on inhibitory NoGo trials, which was confirmed 

by a main effect of Condition (500–600ms), F(1, 56) = 10.33, p = .002. No group differences 

were observed during the beta rebound, F(1, 56) = 0.67, p = .42.

Discussion

The present study examined the neural dynamics of inhibitory control in young adults as a 

function of their drinking patterns. In the absence of differences in task performance, BD 

and LD groups differed on the neural indices of the engagement of cognitive control and the 

circuitry subserving response preparation. Event-related theta oscillations (4 – 7 Hz) were 

attenuated in BDs compared to LDs on trials requiring response inhibition as shown by the 

Group x Condition interaction, which may indicate less efficient long-range top-down 

integration engaged by the salient response suppression requirement. Decreased theta power 

on NoGo trials was associated with increased levels of binge and high-intensity drinking, 

and alcohol consumptions levels but not dispositional or mood measures. An early, transient 

increase of event-related beta power (15 – 25 Hz) was observed in LDs which is consistent 

with a brief “braking pause” during response preparation which may underlie deliberate 

decision to response or withhold responding and which immediately precedes issuance of 

the motor execution or inhibition commands. In contrast, BDs showed only a beta decrease 

which may be indicative of a deficient engagement of response inhibition mechanisms. Even 
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though the correlations between the early beta power and drinking variables did not survive 

correction for multiple correlations, the lower levels of inhibition during the motor 

preparatory stage may be suggestive of allostatic neuroadaptive changes in neural 

transmission as a result of heavy episodic drinking patterns. Group differences in both theta 

and beta frequency bands were significant after controlling for self-reported impulsivity.

A Go/NoGo task with 80% Go trials, such as the one used in the current study, probes 

inhibitory control by creating a prepotency to respond (Aron et al., 2014; Garavan et al., 

1999; Wessel, 2018), as participants are required to withhold responding on a minority of 

trials. Because theta oscillations are associated with engagement of top-down cognitive 

control functions (Cavanagh and Frank, 2014; Kovacevic et al., 2012; Marinkovic et al., 

2019; Rosen et al., 2016; Yamanaka and Yamamoto, 2010), they are well suited to examine 

the cognitive processes associated with behavioral control. In the current study, NoGo trials 

elicited much greater event-related theta power than Go trials, as would be expected based 

on their salience and inhibitory demands, in addition to their low presentation frequency, and 

task relevance. A significant Group x Condition interaction indicated that BDs exhibited 

attenuated theta activity selectively on NoGo trials (Fig 2), suggesting that binge drinking 

may be primarily associated with impaired processes that underlie inhibitory control. This 

novel finding is broadly consistent with previous reports of the selective vulnerability of the 

top-down circuitry underlying inhibitory control to alcohol intoxication (Anderson et al., 

2011; Gan et al., 2014; Kareken et al., 2013; Kovacevic et al., 2012; Marinkovic et al., 2019; 

Marinkovic et al., 2012a; Marinkovic et al., 2013; Nikolaou et al., 2013; Rosen et al., 2016; 

Schuckit et al., 2012). Though less directly pertinent to inhibitory control per se, lower theta 

has been reported in studies employing equiprobable Go/NoGo tasks in large groups of 

individuals with AUD (Kamarajan et al., 2004; Pandey et al., 2016) and in young adult binge 

drinkers (Correas et al., 2018; Lopez-Caneda et al., 2017).

Functional imaging studies have reported decreased activity on NoGo or Stop-signal trials in 

BDs which correlated with measures of alcohol intake (Ahmadi et al., 2013; Hu et al., 2016) 

and impulsivity (Ahmadi et al., 2013). It has been proposed that protracted heavy alcohol 

intake is accompanied by incremental degradation of cognitive and motivational functions 

and that the resulting disinhibition, as reflected in impaired self-control, plays a major role 

in addiction (Crews et al., 2016; Field et al., 2008; Goldstein and Volkow, 2002, 2011; Koob 

and Volkow, 2010; Kwako et al., 2016; Volkow et al., 2002). Systematic reviews have 

confirmed deficient activity in the inhibitory control network across a range of addictions 

(Luijten et al., 2014). This is broadly consistent with our findings of negative correlations 

between NoGo theta power and a range of drinking variables including the number of self-

reported binge episodes and weekly drinking levels.

Previous studies have shown that impulsivity and other externalizing traits can predict future 

alcohol use (Finn, 2000; Littlefield et al., 2014; Regier et al., 1990; Verdejo-Garcia et al., 

2008). Indeed, dysregulation of impulse control concerns the inability to resist engaging in 

the activity that one declares to be unwanted or even harmful. The inability to maintain 

inhibitory control over drinking has been considered by some researchers to be fundamental 

to drug abuse (Field et al., 2010; Fillmore, 2003; Finn, 2000; Jentsch and Taylor, 1999; Sher 

and Trull, 1994). Evidence suggests that the vulnerability to alcoholism shares a common 
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genetic component with externalizing traits which may predispose individuals to a spectrum 

disorders including AUD (Begleiter and Porjesz, 1999; Dick et al., 2004; Heinz et al., 2011; 

Pihl et al., 1993; Schuckit et al., 2004). The current findings suggest that impulsivity as 

measured with ABIS (Coutlee et al., 2014) did not drive the observed group effects on event-

related theta power on inhibitory (NoGo) trials which prevail when controlling for self-

reported impulsivity, leading us to believe that these two systems have separate mediators. 

However, group differences indicating greater readiness to respond on the part of BDs 

emerged from the analysis of beta oscillations.

In an effort to investigate the neural characteristics of the ability to suppress a prepotent 

tendency to respond, we have analyzed event-related beta oscillations which are sensitive to 

motor preparation. Beta oscillations are thought to reflect functional interactions between 

the neocortex and the basal ganglia as beta power typically decreases in a lateralized and 

anticipatory manner during movement preparation and execution (Baker, 2007; Jenkinson 

and Brown, 2011; Kilavik et al., 2013) with a maximal nadir over the sensorimotor cortex 

(Beaton et al., 2018; Litvak et al., 2011). In the current study, LDs had an early, transient 

increase in the overall beta power at ~100 ms in contrast to BDs who showed only beta 

desynchronization. Beta increase is associated with motor inhibition (Khanna and Carmena, 

2017; Pogosyan et al., 2009; Swann et al., 2009) so this brief rise is suggestive of a 

momentary, transient “inhibitory pause” prior to issuing the final motor command to execute 

the response. It has been well established that motor inhibition is subserved by the indirect 

pathway comprising cortical excitation of the striatum which inhibits the subthalamic-

pallidal output to the thalamus and the cortex resulting in motor hypoactivity (Haynes and 

Haber, 2013; Lanciego et al., 2012; Zavala et al., 2015). Short latency of this transient beta 

increase is consistent with engagement of the cortico-subthalamic hyperdirect pathway 

which underlies rapid response suppression (Frank, 2006; Nambu et al., 2002; Wessel and 

Aron, 2017). This finding suggests that in LDs, the motor response sequence incorporates a 

brief inhibitory stage that may facilitate a deliberate decision to respond or to withhold 

responding possibly via lateral competition of alternative activations (Tunstall et al., 2002). 

In contrast, BDs did not exhibit this early beta increase which is consistent with their greater 

readiness to respond. Given that BDs regularly imbibe alcohol at higher levels and have 

more high-intensity drinking episodes than BDs, it is possible that the observed 

dysregulation of the early motor preparation phase reflects neural hyperexcitability. Indeed, 

we have reported findings on other neural indices indicating decreased inhibitory signaling 

during wakeful rest in binge drinkers (Affan et al., 2018). These observations are consistent 

with allostatic neuroadaptive changes (Clapp et al., 2008; Koob and Le Moal, 2005, 2008b) 

whereby hazardous drinking results in downregulation of inhibitory and upregulation of 

excitatory signaling (Finn and Crabbe, 1997; Most et al., 2014; Roberto and Varodayan, 

2017; Vengeliene et al., 2008). With the majority of intrinsic and efferent fibers being 

GABAergic (Lanciego et al., 2012), the basal ganglia are particularly vulnerable to the 

effects of binge-like drinking which has been reported in animal models (Cuzon Carlson et 

al., 2011; Wilcox et al., 2014) and human postmortem studies (Laukkanen et al., 2013).

In the current study the BD and LD groups did not differ in task performance despite clear 

group differences in both event-related theta and beta bands. This finding is consistent with 

many other EEG studies reporting group differences on neural measures in the absence of 
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behavioral deficits (Crego et al., 2012; Crego et al., 2009; Crego et al., 2010; Lopez-Caneda 

et al., 2013; Lopez-Caneda et al., 2012; Lopez-Caneda et al., 2017; Maurage et al., 2009; 

Petit et al., 2012). This divergence between the behavioral and direct measures of neural 

activity is indicative of greater EEG sensitivity to neural deficits associated with the 

intermittent pattern of high-level drinking. Because binge drinking has been conceptualized 

as a transitional stage in a cyclic process potentially leading towards compulsive intake 

(Kimbrough et al., 2017; Koob, 2013; Koob and Le Moal, 2008a), EEG measures could 

potentially serve as biomarkers signifying transition to dependence.

Despite the notable novel findings of this study, there are also limitations that should be 

mentioned. The study employed a relatively small sample size which precluded a well-

powered investigation of possible sex differences in inhibitory control. Though novel and 

unique, the findings of an early beta decrease in BDs that potentially signify deficient 

response inhibition should be replicated in a larger cohort of binge drinkers, as well as 

individuals with AUD.

In conclusion, the present study used EEG and a visual Go/NoGo task to examine the neural 

dynamics of inhibitory control in BDs in an effort to address existing gaps in the literature. 

Compared to LDs, BDs showed reduced event-related theta power on NoGo trials, 

suggesting that binge drinking is associated with deficits in the top-down circuitry 

subserving inhibitory control. A unique and novel finding was an early reduction in event-

related beta power in BDs, which may indicate a deficient preparatory “inhibitory brake” in 

these individuals which may be suggestive of allostatic neuroadaptive changes associated 

with binge drinking. The present study has contributed novel insights into the alterations of 

cognitive and motor aspects of inhibitory control in binge drinkers in the absence of 

performance deficits. Because binge drinking has been proposed as a transitional phase 

leading to chronic alcoholism, the present findings may inform future studies on heavy 

alcohol use. The alterations in brain signals could potentially serve as diagnostic indicators 

of a transition to dependence. When paired with alcohol-related cues, Go/NoGo paradigms 

can enhance neurofeedback-based preventive strategies focusing on inhibitory control for 

those at risk of developing alcoholism.
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Highlights

• Binge (BDs) and light drinkers (LDs) do not differ in Go/NoGo performance

• No group differences on cognition, personality; higher sensation seeking in 

BDs

• Inhibitory NoGo trials evoke much greater event-related theta power than Go 

trials

• Theta power is lower to NoGo trials in BDs and it correlates with drinking

• Early beta decrease in BDs may indicate greater response readiness
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Figure 1. 
Accuracy and reaction times (means ± standard errors) are shown for the low drinking (LD) 

and binge drinking (BD) groups and for the Go and NoGo conditions.
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Figure 2. 
Frontal, central, and parietal electrode clusters and group average time courses for event-

related theta power averaged within each cluster. Overall, event-related theta power was 

greater on NoGo trials, it peaked at ~350 ms, and it was most prominent in the central 

region. BD participants had reduced NoGo theta power in all three regions compared to 

LDs. *p < .05, **p < .01
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Figure 3. 
Event-related beta power time course averaged over the central electrode cluster. LD 

participants show an early, transient increase in beta power (50 – 125 ms). * p < .05, ** p < .

01. Average Go reaction time is marked by arrow.
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Table 1.

Participant characteristics. For each group, means ± standard deviations are included for each variable. Group 

comparisons are expressed as Mann-Whitney U-values or χ2 (marked with 1).

BD (n = 29) LD (n = 32) Statistical Value p

Age 23.41 ± 3.5 23.41 ± 3.4 460 .954

% Female 51.7% 50% .0151 .903

White/Non-Hispanic 65.5% 71.9% .0671 .796

Family history of alcoholism 55% 44% .4031 .526

Undergraduate GPA 3.13 ± .5 3.44 ± .4 277 < .05

Education years 15.79 ± 2 16 ± 2 416 .483

In the past six months

 Binge episodes 14.09 ± 13.6 .09 ± .3 0 < .001

 Blackouts 4.66 ± 3.7 .03 ± .2 2.5 < .001

 Drinking days/week 3.21 ± 1.3 1.66 ± .8 135.5 < .001

 Drinks per occasion 5.52 ± 1.5 1.81 ± .9 18.5 < .001

 Drinks consumed per week 17.72 ± 8.6 3.27 ± 2.3 27.5 < .001

 Age of first drink 17.25 ± 2.2 18.45 ± 2.1 163.5 < .001

 Max. number of drinks in 24 hrs 12.09 ± 5.7 4.73 ± 2.2 32 < .001

No. times felt drunk past month 5.74 ± 4.8 2.00 ± 1.7 157 < .001

Consequences of alcohol (YAACQ) 11.07 ± 5.3 2 ± 1.9 41 < .001

Alcoholism-related symptoms (SMAST) 3.36 ± 3.3 .56 ± .9 202 < .001

Drinking motives (DMQ) 1.99 ± .4 1.64 ± .3 192 < .001

Anxiety (GAD) 4.61 ± 5.4 2.38 ± 3.2 326.5 .065

Depression (PHQ) 4.86 ± 5 2.13 ± 2 322.5 .059

Impulsivity (ABIS) 2.06 ± .5 1.83 ± .3 319 .055

Sensation Seeking (BSSS) 3.75 ± .7 3.39 ± .7 309.5 < .05

EPQ

 Neuroticism 3.86 ± 3.52 3.44 ± 3.34 411.5 .585

 Psychoticism 2.54 ± 2.12 2.28 ± 1.63 428 .763

 Extraversion 9.43 ± 2.43 8.22 ± 3.5 371 .248

NIH Toolbox

 Working Memory 0.76 ± 0.10 0.74 ± 0.11 400.5 .353

 Dimensional Shift 0.87 ± 0.14 0.92 ± 0.05 349 .097

 Processing Speed 0.58 ± 0.07 0.6 ± 0.09 382 .236

 Episodic Memory 0.78 ± 0.17 0.8 ± 0.15 395 .550
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