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Astrocytes are direct cellular targets of lithium
treatment: novel roles for lysyl oxidase and
peroxisome-proliferator activated receptor-γ as
astroglial targets of lithium
Andrea D. Rivera 1 and Arthur M. Butt 1

Abstract
Astrocytes are multifunctional glial cells that play essential roles in supporting synaptic signalling and white matter-
associated connectivity. There is increasing evidence that astrocyte dysfunction is involved in several brain disorders,
including bipolar disorder (BD), depression and schizophrenia. The mood stabiliser lithium is a frontline treatment for
BD, but the mechanisms of action remain unclear. Here, we demonstrate that astrocytes are direct targets of lithium
and identify unique astroglial transcriptional networks that regulate specific molecular changes in astrocytes
associated with BD and schizophrenia, together with Alzheimer’s disease (AD). Using pharmacogenomic analyses, we
identified novel roles for the extracellular matrix (ECM) regulatory enzyme lysyl oxidase (LOX) and peroxisome
proliferator-activated receptor gamma (PPAR-γ) as profound regulators of astrocyte morphogenesis. This study
unravels new pathophysiological mechanisms in astrocytes that have potential as novel biomarkers and potential
therapeutic targets for regulating astroglial responses in diverse neurological disorders.

Introduction
Lithium has been in continuous use as a mood stabiliser

in the treatment of bipolar disorder (BD) and major
depression for decades, but its precise mode of action
remains unclear1. Pharmacological and genetic studies
have identified a number of key cellular signalling path-
ways that are effected by lithium, among the most pro-
minent being glycogen synthase kinase 3 (GSK3), cAMP
response element-binding protein (CREB) and inositol1.
In addition, transcriptomic methods are identifying
lithium-responsive genes that are beginning to provide
compelling links with neurobiological studies2. At a cel-
lular level, lithium is neuroprotective and, as the primary
neuroprotective cells of the CNS, there is increasing

interest in astrocytes being prominently involved in mood
disorders and potential targets of lithium3.
Astrocytes perform essential structural and homoeo-

static functions that maintain neuronal signalling and
integrity4. Disruption of astroglial functions has critical
consequences for cognitive function implicated in neu-
ropsychiatric disorders and dementia, including BD,
schizophrenia and Alzheimer’s disease (AD)5–8. The
morphological and physiological changes that astrocytes
undergo in response to pathology is generally termed
‘astrogliosis’ or ‘reactive astrogliosis’, most often char-
acterised by an upregulation of the astrocyte intermediate
filament glial fibrillary acidic protein (GFAP) and cellular
hypertrophy, which may or may not be associated with
cell proliferation4. However, reactive astrogliosis is not
uniform and varies in a context-specific manner, with two
extremes of the spectrum being reactive astrogliosis that
is either deliterious or beneficial for protection and
repair9,10. In BD, deficiencies in astroglial function are
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implicated in changes in synaptic signalling and these
changes may be modified by anti-bipolar drugs, including
lithium11. Notably, specifically targeting astrocytes in
rodents induces neuropathology and behavioural changes
characteristic of depression, schizophrenia and BD12.
Astrocyte changes have been detected by post-mortem
analysis of the astrocyte-specific protein GFAP in BD,
schizophrenia and AD13–15. In addition, mRNA levels of
GFAP have been shown to be increased in the peripheral
blood of BD subjects never treated with lithium, com-
pared to BD subjects treated continuously with lithium,
which had similar levels of GFAP as control subjects16.
Together, these studies raise the possibility that the effects
of lithium on astrocytes may be related to its beneficial
therapeutic effects.
As well as being the frontline treatment for BD, lithium

is also effective as an add-on medication in schizo-
phrenia17 and has beneficial effects on cognitive perfor-
mance in subjects with AD18. There is growing evidence
that lithium positively regulates astroglial pathology in
disease models of AD19, as well as Alexander disease20

and Fragile-X syndrome21. The majority of studies on
astrocytes focus on their role in maintaining synaptic
signalling in grey matter (GM). However, communication
between GM regions depends on white matter (WM),
comprised of bundles of myelinated axons that are
essential for the superfast connectivity of the human
brain, and WM disruption is implicated in all neu-
ropsychiatric diseases including BD22,23. Astrocytes are
essential for WM function and integrity24, and there is
clear evidence in prefrontal WM of disruption of astro-
cytes and axons in BD25. Moreover, lithium preferentially
accumulates in WM and counteracts disruption of WM in
BD23. This led us to propose that WM astrocytes may be
direct cellular and molecular targets of lithium. Here, we
have tested this directly in situ in the adult mouse optic
nerve, a model WM tract that contains only glial cells and
the axons they support24. The results demonstrate for the
first time that the ECM-regulatory enzyme lysyl oxidase
(LOX) is a novel astroglial target of lithium and a pro-
found regulator of astrocyte morphology and prolifera-
tion. Moreover, pharmacogenomic analysis identified
drugs that target peroxisome proliferator-activated
receptor gamma (PPAR-γ) regulate astrogliosis and have
therapeutic potential in diverse neurodegenerative and
neuropsychiatric disorders.

Materials and methods
Animals and tissue
Young adult mice aged 35–45 days were used

throughout, either transgenic mice in which the astrocyte
gene GFAP drives expression of the fluorescent reporter
enhanced green fluorescent protein (EGFP)26, or the
wildtype background mouse strain C57/BL10. All animals

were killed humanely in accordance with the Animals
Scientific Procedures Act (1984).

Mouse optic nerve culture
The ex vivo mouse optic nerve model was established in

our laboratory27 and was modified as follows. Optic
nerves were removed with the retina intact and placed
immediately in ice-chilled oxygenated artificial (a)CSF
composed of: NaCl 133mM, KCl 3 mM, CaCl2 1.5 mM,
NaH2PO4 1.2 mM, HEPES buffer 10 mM pH 7.3, 0.5%
penicillin and streptomycin (Invitrogen); n= 6 optic
nerves from 3 mice were used per experimental group for
confocal microscopy analysis, and n= 12 nerves from 6
mice were used for transcriptomic analysis, according to
power calculations to ensure sample sizes were adequate
to detect statistical differences. Nerves were carefully
cleaned of the arachnoid membrane and any attached
peripheral tissue, then washed in aCSF and placed on
semiporous culture membrane inserts (Millipore 0.4 µm),
with 1 ml of medium (consisting of 25% horse serum, 49%
OptiMEM, 25% Hanks’s balanced salt solution, 0.5%
25mM glucose, 0.5% penicillin and streptomycin; all
reagents from Invitrogen), and maintained ex vivo in
culture at 37 °C in 95%O2/5% CO2 for 3 days. Lithium
chloride (20 mM) was added directly to the culture
medium (agents from Sigma Aldrich), based on previously
published dose–response curves27; the outer integral layer
of the optic nerve (pia mater) has a highly restrictive
permeability and lithium was added as a stock solution
(20 mM) to provide a therapeutic concentration of
1–2mM in the nerve27. After 3 days, the optic nerve
tissue was prepared for confocal imaging or RNA
extraction. All experiments were conducted in triplicates
and no samples were excluded; due to the study design
animals were not selected blinded for group allocation,
but all outcome measurements were subsequently con-
ducted blind, and all samples were included.

Confocal microscopy and image analysis
Optic nerves were immersion fixed in 4% paraf-

ormalhdehyde (PFA) in phosphate-buffered saline (PBS)
for 1 h at RT and following washes in PBS were whole-
mounted on microscope slides in VectaShield (Vector-
Labs). Cells expressing the GFAP-EGFP reporter were
visualised at 488 nm using an argon laser and images
captured on a Zeiss LSM 710 metaconfocal microscope,
using a ×20 Plan-NEOFLUAR 20 objective with a
numerical aperture of 0.50. Images were captured main-
taining the acquisition parameters constant between
samples. Each nerve counted as a single ‘n’ value and the
total number of cells was counted midway along the
length of the optic nerve in a single field of view (FOV),
comprised a constant volume of 200 µm × 200 µm in the
x–y-plane and 25 µm in the z-plane, commencing 15 μm
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below the pial surface. For all comparisons, the sig-
nificance level was set to 5%; due to the explorative nature
of this study, no adjustment was made to the significance
level. Cell counts are expressed as mean number of cells
per FOV ± standard error of the mean (SEM). There were
six nerves from three mice in each experimental group
and statistical analysis was performed using GraphPad
Prism v3.02 for one-way analysis of variance (ANOVA)
followed by Bonferroni post hoc test unless otherwise
stated.

Microarray
As detailed previously27,28, maintaining strict RNAase-

free and sterile conditions throughout, RNA was extracted
and processed using a RNeasy Micro kit (Qiagen). RNA
concentration was determined using Nanodrop ND-1000
spectrophotometer and samples were then stored at
−80 °C until use. For microarray, RNA was converted to
double stranded cDNA and purified, using the Bioarray
Single RNA Amplification and Labelling kit and cDNA
purification kit (Enzo Life Science). Double stranded
cDNA was used to generate multiple copies of biotiny-
lated cRNA using the Bioarray Highyield RNA tran-
scription Labelling Kit (Enzo Life Sciences). Quality
control on the biotinylated cRNA produce included the
determination of the A260/280 ratio; all samples passed
quality control (ATLAS-Biolabs Co., Germany). For
microarray chip hybridisation, 10 µg of each biotinylated
cRNA sample was hybridised on an Affymetrix GeneChip
Mouse Genome 430 2.0 for 16 h at 45 °C, using the
Affymetrix GeneChip Fluidics Station and scanned using
an Affymetrix GeneChip Scanner 3000. Quality control
analysis and data analysis produced.CEL image and.CHP
image files for analysis using Affymetrix GeneChip
Operating Software. Agilent GeneSpring GX 12 software
was used to obtain datasets and perform statistical ana-
lyses; data normalisation was carried out using the MAS-5
algorithm and data baseline transformation to the mean
of all samples. Data are deposited in Gene Ontology
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) and
identified by the accession number: GSE132397.

Genomic analysis
Normalised datasets generated by microarray analysis

were analysed using ConsensusPathDB, Ingenuity IPA
(Qiagen) and String V10.5 29,30. Agilent GeneSpring GX
12 was used to assemble Affymetrix data and generate
hierarchical clustering data and gene lists, from which
astroglial genes were identified using multiple published
datasets31–33. Lithium-responsive astroglial genes asso-
ciated with BD were then determined using combined
datasets from BDgene and DISGENET (V5.0)34,35. Gene
Ontology (GO) sets were generated using Con-
sensusPathDB and String V10.5.

SPIED/CMAP analysis
As previously described36, SPIED (Searchable Platform-

Independent Expression Database) and CMAP (Con-
nectivity MAP) were used to identify small molecules that
are predicted to have the same gene signatures as the
lithium-responsive astrglial genes and BD-associated
genes identified by the genomic analysis described
above. In brief, the expression profiles of lithium-
responsive astroglial genes and those associated with BD
were uploaded onto the SPIED database (http://spied.org.
uk/cgi-bin/HGNC-SPIEDXXX.cgi) and interrogated
against the CMAP initiative (https://clue.io/cmap), a
database for over a thousand drug treatments, to identify
drugs with gene expression profiles that correlate posi-
tively with our databases37,38. In this way, small bioactive
molecules were identified that have the potential to mimic
the effects of lithium on astrocytes and correlate with BD-
associated genes; two of these drugs, Pioglitazone (1 mM)
and 3-O-Epicatechin (3 µM) were validated in organotypic
optic nerve cultures, as described above for lithium.

Results
Lithium induces astrocyte morphogenesis and
proliferation
Astrocytes are essential for WM function and integrity24,

and are a potential target for the beneficial effects of
lithium on WM in BD25. To examine the effects of lithium
on WM astrocytes directly, we used a mouse optic nerve
ex vivo preparation27, which was adapted so that the retina
and optic nerve are maintained intact and kept alive in
organotypic culture, in control medium or medium plus
lithium. Optic nerves from adult GFAP-EGFP transgenic
reporter mice were used26 to enable unequivocal identifi-
cation of astrocytes. High resolution confocal microscopic
examination of astrocyte three-dimensional morphology
in whole-mounts of the intact nerve demonstrated that
lithium has a striking effect on astrocytes, increasing their
numbers and dramatically altering their morphology in all
the preparations analysed (n= 6 per experimental group,
in triplicate) (Fig. 1). In untreated cultures, mouse optic
nerve astrocytes have a typical stellate morphology, with
processes extending in all directions from a centrally
located cell body (Fig. 1a). In marked contrast, lithium
induced a highly polarised morphology in astrocytes (Fig.
1b) and doubled their numbers compared to controls (Fig.
1c; p < 0.001 unpaired t-test). Astrocyte processes char-
acteristically bear fine collaterals and spines and have
discrete process territorial domains in control nerves (Fig.
1a)39. In lithium, astrocytes form clones of densely packed
cells that extend long smooth primary processes that
rarely branched to form an astroglial palisade (Fig. 1b),
typical of reactive astrogliosis40. The results demonstrate
that lithium induces astrocyte proliferation and
morphogenesis.
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Fig. 1 (See legend on next page.)
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LOX is a novel lithium-responsive astroglial gene
To elucidate the mechanism of action by which lithium

induces the profound changes in astrocytes, we performed
a microarray analysis to compare the gene expression
profiles of optic nerves treated with lithium compared to
controls and interrogated these against the gene sets for
astrocytes generated by Barres and colleagues31,41. Hier-
archical clustering demonstrated that entities were most
closely related within experimental groups (Fig. 1d). Over
4000 astrocyte genes were differentially expressed in
lithium-treated and control optic nerves (Fig. 1f) and
these data were analysed by volcano plot and filtered for
FC ≥ 2.0 and absolute value E ≥ 200 to identify the most
significant lithium-responsive astrocyte genes (Fig. 1e; p <
0.05, moderated t-test and Benjamini–Hoechberg FDR).
Unbiased IPA analysis was performed to identify the
major lithium-responsive astrocyte genes (Supplementary
Table 1). A key novel finding is that the most altered
astrocyte gene in lithium was LOX (lysyl oxidase), which
plays a critical role in remodelling of the extracellular
matrix (ECM) and cell growth42, but has not previously
been reported to have an important role in astrocyte
remodelling or to be a target of lithium. Notably, lithium
downregulated Gas1 (growth arrest-specific 1) and
Il13ra1 (Interleukin 13 receptor, alpha 1), which are
principle genes in reactive astrogliosis41, whilst lithium
upregulated Fstl1 (Follistatin-like 1), which inhibits bone
morphometric protein (BMP) signalling and reactive
astrogliosis mediated through STAT3 signalling20,43.
Overall, the most lithium-responsive astroglial genes are
associated with inhibition of reactive astrogliosis, whereas
the most upregulated lithium-responsive astroglial genes
are associated with astrocyte morphogenesis, proliferation
and cell-cell interactions (Supplementary Table 1), indi-
cating these effects on astrocytes are central to the posi-
tive therapeutic outcomes of lithium treatment.

Cell cycle and ECM remodelling are key lithium-responsive
astroglial networks
Transcriptomic analysis identified 1084 lithium-

responsive astroglial genes and network analysis was
performed on this dataset to identify the key astroglial
signalling pathways that are regulated by lithium, using
the ConsensusPathDB database29. Consistent with data
presented above, the top functional categories were
associated with the cell cycle, morphogenesis/develop-
ment and ECM reorganisation, reinforcing the impor-
tance of these pathways in the observed effects of lithium
on astrocytes (Fig. 1g). String V.10.5 Network Visualisa-
tion and Gene Ontology (GO) analysis was used to
determine the astroglial signalling-to-transcriptional
interactions that were induced by lithium (Fig. 1h). The
most prominent transcriptional node was associated with
the control of cell cycle, with Bub1b central to these
actions (Fig. 1hi). The second most prominent node was
associated with ECM remodelling, with LOX at its core
(Fig. 1hii), together with its up- and downstream targets,
Tgfb1 (transforming growth factor β1), Mmp9 (Metallo-
protease 9) and Eln (Elastin). Interestingly, Wnt signalling
was also identified as a lithium-responsive astroglial net-
work and has recently been implicated in BD, schizo-
phrenia and AD44,45. The results support LOX and ECM
remodelling as being central to the morphogenic and
proliferative effects of lithium on astrocytes.

LOX is a novel astroglial gene associated with
neuropsychiatric disorders
To better understand the therapeutic actions of lithium,

we interrogated our unique database of lithium-
responsive astroglial genes against the DISGENET(5.0)
database and the well-characterised datasets for BD
(BDGene; Fig. 2), as well as schizophrenia and AD (Fig. 3).
We identified 61 lithium-responsive astroglial genes in the

(see figure on previous page)
Fig. 1 Identification of regulatory mechanisms of lithium in controlling astrocyte morphogenesis and proliferation. The effects of lithium on
astrocytes were examined ex vivo in organotypic cultures of optic nerves from 5- to 6-week-old transgenic mice in which the astroglial gene glial
fibrillary acidic protein (GFAP) drives the expression of enhanced green fluorescent protein (EGFP), to identify astrocytes. Confocal images of whole
mounts of optic nerves maintained in culture for 3 days in control medium (a), or medium containing lithium (b). Compared to controls (a), lithium
induced the formation of highly polarised astrocytes that formed a dense palisade traversing the nerve (b), Scale bars= 50 μm. c Graph of cell counts
taken from a constant field of view (FOV, 200 µm x 200 µm) illustrating lithium doubled the number of astrocytes in the optic nerve; data are mean ±
SEM (n ≥ 6 nerves in each treatment group), **p < 0.01, ***p < 0.001, Student’s t test. Microarray analysis using Affymetrix GeneChip Mouse Genome
430 2.0 was performed on optic nerves from 5- to 6-week-old C57/BL10 mice maintained ex vivo in organotypic cultures for 3 days in control
medium or medium containing lithium. d Unsupervised hierarchical clustering of gene expression changes induced by lithium compared to controls,
where red and green indicate up- and downregulated genes, respectively. e Volcano plot analysis was used to identify statistically represented genes
with a false discovery rate (FDR) < 0.05 and an absolute fold change (FC) > 2.0. f Lithium responsive astroglial genes (4705 entities) were determined
by interrogating the optic nerve gene datasets against the gene sets for astrocytes31–33. g GO analysis of astroglial genes altered by lithium identified
cell cycle and extracellular matrix (ECM) as the major biological processes regulated by lithium. h Neighbourhood-based entity set analysis (NEST) of
cell cycle genes (hi) and ECM genes (hii) identified by String analysis of predicted protein–protein interactions (circled in red). NEST analysis of ECM
genes (hi, hii) identified lysyl oxidase (LOX), Elastin (Eln), Metalloprotienase 9 (Mmp9) and transforming growth factor beta 1 (Tgfb1) as major astroglial
targets of lithium (dark and light red nodes have significant enrichment levels (p < 0.0001), whilst thickness of connection lines represent the number
of shared genes across nodes, and colour shade represents the number of shared input genes)
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Fig. 2 (See legend on next page.)
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BDGene dataset34,35 (Fig. 2a), many of which are have
defined associations with BD (Fig. 2b), such as Wnt sig-
nalling (Fzd2), neurocan, MMP9 and IGF-I44,46–48. To
determine the potential therapeutic effects of lithium on
astrocytes in BD, the functional classification of this new
dataset was interrogated further using the Con-
sensusPathDB database29. The main GO terms were those
associated with receptor signalling and ECM organisation
(Fig. 2c). Neighbourhood-based entity set (NEST) analysis
of the lithium-responsive astroglial BD susceptibility
genes identified Tgfb1 as most strongly associated, toge-
ther with Elastin (Eln1), which is the direct ECM target of
LOX49,50. Furthermore, STRING analysis30 of the BD
susceptible genes revealed that LOX and elastin partici-
pate in a major network with Tgfb1 and Mmp9 to reg-
ulate the ECM (Fig. 2d). Since lithium is also a therapy in
schizophrenia and AD, we interrogated the lithium-
responsive astroglial gene database against DISGENET
(5.0) and the SZDB database (Fig. 3)34,51,52. We identified
179 entities associated with schizophrenia and147 entities
associated with AD, and GO analysis determined the key
biological astroglial pathways as regulation of cell pro-
liferation and differentiation (Fig. 3ai, bi). Notably, net-
work analysis placed Lox, Mmp9 and Tgfb1 at the core of
the astroglial networks associated with AD (Fig. 3aii) and
schizophrenia (Fig. 3bii). These findings identify LOX and
ECM remodelling as being key to the mechanism of
action of lithium on astrocytes and as putative surrogate
outcome markers in BD and other neuropsychiatric
disorders47,53.

SPIED/CMAP identifies novel drugs for regulating astroglial
function
Pharmacogenetics is an area of substantial growth in

seeking new treatments for neurodegenerative and neu-
ropsychiatric diseases1. We used this approach to identify
potential therapies that may target the lithium-responsive
astroglial pathways identified above. As previously
described36, SPIED/CMAP meta-analysis was performed
on ‘connectivity maps’ to identify small bioactive mole-
cules that could be employed to generate the same tran-
scriptional signature as lithium-responsive ‘astrocyte-
modifying’ drugs (Table 1a), and applied to BD (Table 1b),
Schizophrenia (Table 1c) and AD (Table 1d). Notably, the

top ‘astrocyte-’ and ‘BD-modifying’ drugs act via PPAR-γ,
namely piogliatazone (top ‘astrocyte-modifying’ drug,
Table 1a) and betulinic acid (top ‘BD-modifying’ drug,
Table 1b), both of which are used in the treatment of
type-II diabetes, and in the case of piogliatazone has
shown promising results for its anti-depressant activity in
clinical trials54,55. Moreover, the PPAR-γ ligand 15-
delta_prostaglandin_J2 was present as an astrocyte-, BD-
and schizophrenia-modifying agent (Table 1a–c), further
emphasising the potential importance of PPAR-γ in
reactive astrogliosis and as a therapeutic target in neu-
rodegenerative diseases56–58. The remaining drugs were
specific for each disorder, with the exception of the fla-
vonoids acacetin, (+/−)-catechin and quercetin, which
were identified as astrocyte-, BD- and AD-modifying
agents (Table 1a–d); significantly, flavonoids have mood
stabilising properties and are protective against cognitive
loss59,60. In addition, antipsychotics and cholinergics were
prominent in the top schizophrenia-and AD-modifying
drugs, suggesting astrocytes may be targets of these drugs
in these diseases.

Drugs identified by pharmacogenomics have profound
effects on astrocytes
Our analyses identified LOX and PPAR-γ as primary

astroglial targets of lithium that are relevant to BD and
schizophrenia, whilst flavonoids have potential
astrocyte-modifying effects that are relevant to BD and
AD (Table 1). We therefore compared the actions of the
LOX inhibitor β-aminopropionitrile (BAPN)61,62, the
PPAR-γ ligand pioglitazone63 and the flavonoid 3’-O-
Methylepicatechin64 on astrocytes in the optic nerve
maintained ex vivo for 3 days (Fig. 4). Compared to
controls (Fig. 4a), BAPN (Fig. 4b), pioglitazone (Fig. 4c)
and 3’-O-Methylepicatechin (Fig. 4d) had striking
morphogenic effects on astrocytes, inducing a highly
polarised morphology and significantly increasing
astrocyte cell numbers (Fig. 4e; ANOVA, followed by
post hoc Bonferroni’s tests, p values indicated on
graph). All three agents induced a dense palisade of
astrocytes, equivalent to the actions of lithium (see Fig.
1), and unreservedly validate the astrocyte-modifying
drugs with therapeutic potential identified by pharma-
cogenomics in Table 1.

(see figure on previous page)
Fig. 2 Lithium-responsive astroglial genes associated with bipolar disorder (BD). a Interrogation of lithium-responsive astroglial genes against
BD databases DISGENET(5.0) and BDGene34,35 identified 61 potential outcome markers that are present in both groups. b Unsupervised hierarchical
clustering illustrates the overriding effect of lithium to downregulate BD-associated astroglial genes. c GO analysis identifies receptor signalling and
ECM organisation as major astroglial biological processes regulated by lithium and associated with BD; Tgfb1 was found in all the GO terms apart
from the five indicated with asterisks. d NEST analysis of lithium-responsive astroglial genes associated with BD predicted a major interaction
between LOX and Elastin with TGFβ1 and MMP9 as the mechanism for astroglial ECM regulation and potential surrogate markers in BD (PPI
enrichment p= 9.55e−15 p < 0.001; coloured nodes represent top biological pathways: green= ECM organisation (p < 0.001), blue= G-protein
couple receptor signalling (GPCR) pathways (p < 0.001)
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Fig. 3 Identification of lithium-responsive genes associated with schizophrenia and Alzheimer’s disease. Lithium-responsive astroglial genes
were interrogated to identify novel associations within the disease specific databases for schizophrenia and Alzheimer’s disease. GO analysis
representing the biological pathways statistically altered in schizophrenia (a) and Alzheimer’s disease (b). Protein–protein prediction analysis and
NEST analysis identifies MMP9, LOX and TGFB1 at the core of the networks for schizophrenia (ai) and Alzherimer’s disease (bi). (PPI enrichment p <
1.0e−16)
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Discussion
Disruption of WM connectivity is a key feature of

neuropsychiatric diseases22,23, and lithium has been

shown to be beneficial for preserving WM in BD23. The
underlying causes of WM disruption in BD are unre-
solved, but astrocytes are essential for WM structural and
functional integrity24, and changes in astrocytes are
implicated in BD, as well as other neuropsychiatric dis-
orders and AD5–8,11. Here, using a combined neurobio-
logical and pharmacogenomic approach, we demonstrate
that lithium has striking effects on WM astrocytes and
discover LOX and PPAR-γ as novel targets of lithium that
profoundly regulate astrocyte proliferation and morphol-
ogy (Supplementary Fig. 1). This study places astrocytes at
the centre of the beneficial therapeutic effects of lithium
and identifies promising surrogate biomarkers and
potential disease-modifying drugs that target astrocytes in
BD and other neuropathologies.

Lithium induces a novel astrocyte phenotype
Lithium has a striking effect on astrocytes, inducing a

unique morphological and genomic phenotype that is
distinct from normal stellate astrocytes. The optic nerve is
a model CNS tissue for studying glial cells in situ, because
it can be isolated intact and does not contain neuronal
somata, hence the transcriptome is made up almost
entirely of glial cells65. Furthermore, white matter dis-
ruption is a key feature of neuropsychiatric diseases22,23,
and lithium has been shown to be beneficial for preserving
white matter integrity23. Astrocytes in lithium form a
dense palisade, comparable to radial astrocytes in the
developing CNS that are essential for supporting neuronal
growth, axon targeting, dendrite arborisation and synap-
togenesis66. Consistent with this, lithium upregulated
Pacrg (Parkin Co-Regulated Gene), which is normally
only abundant in radial glia67. Astrocytes in lithium are
reminiscent of interlaminar astrocytes in the human and
primate cortex that are increased in neuropsychiatric
disorders68. Our results are consistent with evidence that
astrocytes are modified by lithium treatment in neu-
ropsychiatric disorders13,14,16,25,69,70. Moreover, genomic
analyses demonstrate that lithium downregulates genes
associated with reactive astrogliosis, identifying Fstl1
(Follistatin-like 1) as one of the top lithium-responsive
astroglial genes, which acts via GSK3β-mediated BMP-
STAT3 signalling to regulate reactive astrogliosis43,71.
Reactive astrogliosis is used as an umbrella term for the
morphological, physiological and transcriptional changes
that astrocytes undergo in response to pathology4,10, ste-
reotypically defined pathologically by the upregulation of
GFAP, cellular hypertrophy, proliferation and glial scar
formation. However, astroglial pathological changes are
not uniform and are highly context-specific, ranging from
subtle responses that are beneficial for neuroprotection
and repair, to an extreme where reactive astrocytes are
deleterious and form the glial scar4,10. Our results
demonstrate that lithium induces an astrocyte

Table 1 Top-ranked small molecules identified from
SPIED/CMAP analysis of lithium-responsive astrocyte
genes that are predicted to be associated with (A)
astrocytes, (B) bipolar disorder (BD), (C) schizophrenia and
(D) Alzheimer’s diseases (AD)

Compound Correl Significance Actions

(A) ‘Astrocyte-modifying’ agents

Pioglitazone 0.47 4.83 PPAR-gamma

MG-262 0.33 4.66 Proteasome inhibitor

Semustine 0.35 4.44 Antineoplastic

15-delta Prostaglandin J2 0.3 4.31 PPAR-gamma

Econazole 0.39 4.23 Antifungal

Lomustine 0.33 4.19 Antineoplastic

Gossypol 0.34 4.13 Antineoplastic

Acacetin 0.41 4.04 Flavonoid

Parthenolide 0.32 4.03 Anti-inflammatory

Puromycin 0.31 3.98 Anti-neoplastic

(B) ‘BD-modifying’ agents

Betulin 0.99 4.59 PPAR-gamma

Esculetin 0.96 3.27 Antineoplastic

Rottlerin 0.82 2.82 Antineoplastic

Gliquidone 0.87 2.68 PPAR-gamma

(+/−)-Catechin 0.96 2.67 Flavonoid

Butoconazole 0.99 2.58 Antifungal

Tiaprofenic acid 0.85 2.52 Antiinflammatory

15-delta Prostaglandin J2 0.79 2.41 PPARg

Celecoxib 0.98 2.32 Anti-inflammatory

Isradipine 0.82 2.31 Calcium channel blocker

(C) ‘Schizophrenia-modifying’ agents

2,6-dimethylpiperidine 0.96 4.35 Anti-convulsant

Doxycycline 0.86 4.08 Antibiotic

Chlorprothixene 0.86 3.47 Antipsychotic

Sulpiride 0.79 3.39 Antipsychotic

W-13 0.6 3.33 Anti-calmodulin agent

Hycanthone 0.59 3.31 Anti-schistosomal

Lansoprazole 0.87 3.28 Proton pump inhibitor

Ethacrynic Acid 0.58 3.1 Loop diuretic

15-delta Prostaglandin J2 0.47 2.92 PPAR-gamma

Pregnenolone 0.62 2.91 Neuro-steroid

(D) ‘AD-modifying’ agents

Edrophonium Chloride 0.77 3.21 Cholinesterase inhibitor

Oxybutynin 0.62 3.19 Anti-cholinergic

Metampicillin 0.55 3.02 Penicillin antibiotic

Quercetin 0.8 2.87 Flavonoid

Gossypol 0.61 2.75 Dehydrogenase inhibitor

Cephaeline 0.42 2.71 Emetic

Megestrol 0.69 2.68 Appetite stimulant

Captopril 0.96 2.68 ACE Inhibitor

Sulfamonomethoxine 0.49 2.64 Anti-bacterial

Spiperone 0.55 2.6 Antipsychotic

Small molecules are ranked according to the largest numbers of ‘target’ or
‘perturbed’ genes. Agents in bold are common to multiple datasets, notably
flavonoids and drugs acting on PPAR-γ
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Fig. 4 Drugs identified by SPIED/CMAP analysis mimic the effects of lithium on astrocytes. Inhibition of LOX was identified as the top most
lithium-responsive gene (Supplementary Table 1) and SPIED/CMAP analysis of lithium-responsive astroglial genes associated with BD identified PPAR-
γ agonists and flavonoids as small bioactive molecules with a high degree of correlation with Lithium. To validate these findings, the effects of the
LOX inhibitor BAPN, the PPAR-γ agonist Pioglitazone and 3′-O-MethylEpicatechin were tested ex vivo in organotypic cultures of optic nerves from 5-
to 6-week-old GFAP-EGFP transgenic mice to identify astrocytes. a–d Confocal images of whole mounts of optic nerves maintained in culture for
3 days in control medium (a), or medium containing BAPN (b), Pioglitazone (c) or 3′-O-MethylEpicatechin (d) illustrate all three agents induced a
profound increase in astrocytes with highly polarised morphologies; scale bars= 100 μm in all panels. e Graph of cell counts taken from a constant
field of view (FOV, 200 µm × 200 µm); data are mean ± SEM (n ≥ 6 nerves in each treatment group), **p < 0.01, ***p < 0.001, one-way ANOVA followed
by Bonferroni post hoc test)
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morphological and genomic phenotype that is neuron-
supportive and differs from astrocytes associated with
glial scars, providing a potential mechanism by which
lithium positively affects therapeutic outcomes in BD and
other neuropathologies11,19,72.

LOX is a novel astroglial therapeutic target
Genomic analyses identified the enzyme LOX as the

most highly regulated lithium-responsive astroglial gene
and this was validated using the irreversible LOX inhibitor
BAPN, which mimicked the effects of lithium and
demonstrates for the first time that LOX is a major reg-
ulator of astrocyte morphology and proliferation. In the
CNS, LOX is expressed by both astrocytes and neurones
and increased LOX activity is associated with decreased
neurite outgrowth and plasticity73. Increased LOX is
associated with pathological progression of ALS, where it
is a potential biomarker74, and in AD LOX is implicated
in plaque formation and colocalises with astrocytes
associated with Aβ plaques75. In addition, there is evi-
dence that LOX is upregulated in reactive astrocytes and
that inhibition of LOX with BAPN improves recovery
from spinal cord injury76. Furthermore, drugs that target
LOX are already considered for cancer77. Ours is the first
study that identifies LOX as an astroglial target of lithium
and as a common factor and potential surrogate bio-
marker in BD, schizophrenia and AD.
LOX is a copper-dependent amine oxidase that is

crucially involved in ECM synthesis and processing by
catalysing the covalent cross-linking of collagens and
elastin fibres that are responsible for ECM stability42,78.
Our analyses placed LOX at the centre of ECM remo-
delling networks that are associated with BD, schizo-
phrenia and AD, involving Elastin, which is the direct
target of LOX, together with TGF-β1 and MMP9. The
ECM has a critical role in brain plasticity and is known to
be altered in BD and other neuropsychiatric dis-
orders53,79,80. Moreover, TGF-β1 and MMP9 have been
identified as potential biomarkers of BD disease pro-
gression and lithium responsiveness47,81,82. The interac-
tions of TGF-β1 and MMP9 with LOX are complex and
context specific, but TGF-β1 and MMP9 generally act to
stimulate LOX activity and ECM stabilisation via elastin-
collagen cross-linking42,78. Notably, TGF-β1 has arisen as
a potential biomarker and therapy in BD, depression and
AD82,83. Thus, TGF-β1 and LOX are critically linked to
astroglial neuropathological responses and agents that act
to inhibit LOX have considerable disease modifying
potential.

PPAR-γ is a major astroglial lithium-responsive pathway
associated with BD
Drugs that act on PPAR-γ were identified by SPIED/

CMAP analysis as potential astrocyte-modifying agents in

BD and schizophrenia. We verified this using piogliata-
zone, which had a profound effect on astrocytes,
equivalent to that observed for lithium and the LOX
inhibitor BAPN. The activation of selective PPAR iso-
types are implicated in reactive astrogliosis and represent
new potential therapeutic targets in traumatic brain
injuries and neurodegenerative diseases58. Moreover,
pioglitazone is used in the treatment of type-II diabetes
and has shown promising results for its anti-depressant
activity in clinical trials54,55,84,85. PPAR-γ is one of a
subfamily of nuclear receptors that form heterodimers
with retinoid X receptors (RXRs) to modulate the tran-
scription of its target genes, such as acyl-CoA oxidase.
Lithium increases PPAR-γ86 and PPAR-γ has been shown
to inhibit LOX87; these effects may involve GSK3β-Wnt
signalling, which is implicated in neuropsychiatric dis-
orders and was identified to interact with ECM remo-
delling in our network analysis. In addition, PPAR-γ
agonists decrease TGF-β1 signalling leading to decreased
fibrosis88, providing a further link with LOX and the
actions of lithium (Supplementary Fig. 1). Interestingly,
SPIED/CMAP analysis also identified flavonoids as
astrocyte-modifying agents with therapeutic potential in
BD and AD. We demonstrate for the first time that the
flavonoid epicatechin directly regulates astrogliosis and
morphogenesis. Epicatechin is flavonol rich in cocoa,
grapes and green tea with pleiotropic roles in neuronal
protection. This flavonol is of particular interested for its
ability to cross the blood–brain barrier when metabolised
to 3′-O-MethylEpicatechin and its protective effect has
been investigated in many neuropathologies, including
anxiety, mood disorder, as well as cognitive decline59,60.
Recent studies have shown that epicatechin can trans-
activate PPAR-γ in vitro64,89 and this could explain the
high correlation with Pioglitazone in our analysis. Our
results clearly demonstrate that drugs targeting LOX and
PPAR-γ mimic the effects of lithium on astrocytes and,
therefore, targeting these pathways in astrocytes has
considerable therapeutic potential in neuropsychiatric
disorders.

Summary and conclusions
In summary, our combined neurobiological and geno-

mic analyses demonstrate astrocytes are direct targets of
lithium treatment and idendtified novel lithium-
responsive genes that are promising surrogate bio-
markers in BD, schizophrenia and AD. Using a pharma-
cogenomic approach, we developed a comprehensive
catalogue of small molecules that can be used to
manipulate astrocytes with potential therapeutic benefits.
The power of this approach is highlighted by our
demonstration that drugs acting on LOX and PPAR-γ
have profound effects on astrocytes and that the same
effects were observed for the flavonoid epicatechin. In
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this regard, two of the BD-modifying drugs we identified
are antifungal, which is noteworthy because there is a
strong drive for repurposing drugs that have known
combined antifungal and antipsychotic activity90. Fur-
thermore, our SPIED/CMAP analysis predicts that fur-
ther disease-modifying effects could be achieved by
combinatorial approaches that target PPAR-γ and neu-
rotransmitter signalling, such as the α-1 adrenergic
receptor antagonist phenoxybenzamine91, and the cal-
cium channel antagonist nifedipine, which has been used
in a small cohort study with BD patients92. Nifedipine has
also been shown to activate the PPAR-γ pathway and
suppress atherosclerosis in an animal model93. In con-
clusion, our study establishes unequivocally that astro-
cytes are a target of lithium treatment and provides a
robust framework for a mechanistic approach to identify
new therapeutics for diverse neuropsychiatric and neu-
rodegenerative diseases.
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