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Abstract: Introduction: MiRNAs have been shown to play a crucial role among lung cancer,
pulmonary fibrosis, tuberculosis (TBC) infection, and bronchial hypersensitivity, thus including
chronic obstructive pulmonary disease (COPD) and asthma. The oncogenic effect of several miRNAs
has been recently ruled out. In order to act on miRNAs turnover, antagomiRs have been developed.
Materials and methods: The systematic review was conducted under the PRISMA guidelines
(registration number is: CRD42019134173). The PubMed database was searched between 1 January
2000 and 30 April 2019 under the following search strategy: (((antagomiR) OR (mirna antagonists) OR
(mirna antagonist)) AND ((lung[MeSH Terms]) OR (“lung diseases”[MeSH Terms]))). We included
original articles, published in English, whereas exclusion criteria included reviews, meta-analyses,
single case reports, and studies published in a language other than English. Results and Conclusions:
A total of 68 articles matching the inclusion criteria were retrieved. Overall, the use of antagomiR
was seen to be efficient in downregulating the specific miRNA they are conceived for. The usefulness
of antagomiRs was demonstrated in humans, animal models, and cell lines. To our best knowledge,
this is the first article to encompass evidence regarding miRNAs and their respective antagomiRs in
the lung, in order to provide readers a comprehensive review upon major lung disorders.
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1. Introduction

MicroRNAs (miRNAs) are small molecules made of 21 nucleotides, which modulate several
biological processes through post-transcriptional gene expression regulation [1]. In addition, many
miRNA knockout strains have differential responses to models of several disorders such as neuronal,
cardiac, pulmonary, vascular, renal, immunological, while some of them have altered susceptibility to
fungal or bacterial infections, or altered propensity to develop tumors in cancer models [2]. In fact,
miRNAs may control tumor development, both acting as tumor-promoting miRNAs (oncomiRNAs
and metastamiRNAs) or as tumor suppressor miRNAs [3,4]. Furthermore, it was demonstrated
that several human miRNAs are located in specific genomic sites which are involved in cancer [5].
During the last decade, researchers investigated miRNAs functioning and regulation. More recently,
they focused on miRNA stability and turnover. Indeed, it was established that miRNAs are very
dynamic molecules, presenting with a rapid turnover, which depends on their activation. On these
bases, researchers investigated miRNA-induced silencing complex (miRISC) and Argonaute (AGO)
proteins, which directly interact with miRNAs and are key factors in the assembly and function of
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miRISCs [1]. In order to act on miRNAs turnover, antagomiRs have been developed. They are a
novel class of chemically engineered oligonucleotides, which are specific silencers of endogenous
miRNAs. Specifically, two major molecular changings have been developed in order to increase
chemical stability. Thus, including switching of the phosphodiester support with a phosphorothioate
linkage between nucleotides or including a 2′O-methyl group. Additionally, antagomiRs with a
cholesterol moiety are thought to promote cellular uptake [6]. Considering the complex role of
miRNAs, these new molecules can be powerful tools to silence specific miRNAs in vivo and may
represent a therapeutic strategy for silencing miRNAs in disease. Indeed, Krützfeldt et al. [7] conducted
a study on mice in order to study the biological significance of miR-122, which is abundant in the liver.
Analysis of gene expression of messenger RNA from antagomiR-treated animals disclosed that the 3′

untranslated areas of upregulated genes were extremely enriched with miR-122 recognition motives,
while down-regulated genes were poor of these motives. Moreover, researchers found that cholesterol
biosynthesis genes would have been modulated by miR-122; in fact, plasma cholesterol levels were
reduced in antagomiR-122-treated mice. So far, evidence on antagomiR function has been collected
on cellular, animal, and human models. Moreover, as described below, data in these three groups
are often coherent. This in support of the hypothesis that miRNAs are molecular factors capable of
influencing the expression of several disorders. To date, new studies regarding the use of miRNAs
as therapeutic targets are ongoing, especially in the treatment of HCV infection, atherosclerosis, and
oncologic diseases. As Gambari et al. [3] highlighted in their review, until now, several antagomiRs
have been studied among oncologic diseases as therapeutic agents, both alone or in combination with
standard drugs. The promising results explain the reason why these agents will improve the therapy
of several tumors, such as gastric cancer, gliomas, and breast cancer [8–10]. Indeed, the role of miRNAs
upon lung disorders has been extensively studied. MiRNAs have proven to play a crucial role among
lung cancer, pulmonary fibrosis, tuberculosis (TBC) infection, and bronchial hypersensitivity, thus
including chronic obstructive pulmonary disease (COPD) and asthma. The oncogenic effect of several
miRNAs has been recently ruled out. Herein, a study of our group recently identified for the first
time new mechanisms, supporting the crucial role of cigarette smoke-induced miR-21 expression in
the amplification of inflammatory responses and in tumorigenesis processes within the airways [11].
COPD is a complex disease with a high rate of morbidity and mortality, especially in Western countries.
Disease exacerbations and the associated hospitalizations often represent a considerable expense
at a socio-economic level. Reduced lung function predicts mortality and is key to the diagnosis of
COPD. Shrine et al. [12] conducted a genome-wide associated study in order to highlight new genetic
mechanisms in order to improve future preventive and therapeutic strategies for COPD. More recently,
many authors investigated miRNAs expression in COPD, noticing that wide networks composed of
miRNA and messenger RNA (mRNAs) cooperate in COPD pathogenesis [13]. Moreover, Faiz et al. [14]
investigated whether miRNA expression was modulated by inhaled corticosteroid (ICS) treatment
and identified miR-320d as a novel mediator of ICS, regulating the pro-inflammatory response of
the airway epithelium. Nowadays, among chronic inflammatory lung diseases, asthma is one of
the most prevalent. Pathological mechanisms rely on activation of mast cells and eosinophils and
dysregulation of Th 2 response. Asthmatic patients often have a strong genetic background, however
recent studies demonstrated the role of epigenetic factors such as miRNAs [15]. Gold standard
therapies for asthma control include inhaled β-agonists, both short and long acting, and steroids. On
this background, Yu at al. [16] recently demonstrated that a specific miRNA, miR-16, may be used as a
predictive biomarker of therapeutic response in asthma, thus, suggesting the role of miRNAs not only
upon disease physiopathology but also upon drug response. MiRNAs have shown to have an effect
also upon pulmonary arterial hypertension (PAH). PAH is a complex disease with different clinical
manifestations and high genetic variability. ESC/ERS Guidelines outlined some of the most frequently
involved genetic factors such as nuclear factor of activated T cells (NFAT), hypoxia-inducible factor 1α
(HIF-1α), and signal transducer and activator of transcription 3 (STAT3) [17]. New research showed
that miRNAs may play a crucial role in vascular remodeling, thus inhibiting or promoting pulmonary



Int. J. Mol. Sci. 2019, 20, 3938 3 of 32

vascular resistance. Novel genetic studies have not only focused on chronic lung diseases. Acute
respiratory distress syndrome (ARDS) and acute lung injury (ALI) are well defined clinical disorders
caused by many clinical insults to the lung or because of predispositions to lung injury [18]. These
conditions are characterized by massive lung inflammatory response and alveolar barrier damage,
and supportive care combined with anti-inflammatory drugs and fluid replacement is fundamental.
Currently, there is significant evidence endorsing the crucial role of miRNAs as a new class of gene
regulators in ALI [19]. Although several goals have been reached among oncologic disorders, lung
cancer still represents a high mortality disease. New discoveries on genetic factors and molecular
pathways involved in the disease pathogenesis have been ruled out, however further steps are needed.
Indeed, during the last years, miRNAs were found to be useful screening tools. Moreover, they
can help clinicians to discriminate between primary lung tumors and lung metastases [20]. Finally,
some studies demonstrated that specific miRNAs expression may predict lung tumor prognosis [21].
Most importantly, anti-miRNAs molecules, as antagomiRs, are now emerging as new therapeutic
tools. Therefore, the goal of the actual research is to use miRNAs as therapeutic agents. Single
miRNAs modulate various mRNA target expressions and may have wide impacts on various cellular
processes. Therapies that target individual miRNAs can therefore have wider effects than traditional
single-molecule/single-target methods. Indeed, changing numerous downstream objectives, miRNAs
may improve the probability of adverse effects occurrence, especially when systemic drug delivery
is used. Considering all these, biopharmaceutical companies are actually trying to use miRNAs as
novel therapeutics. Indeed, two clinical studies have been launched for hepatitis C virus infection
and advanced hepatocellular carcinoma [22,23] treatment. Nevertheless, no clinical trials have yet
evaluated the impact on respiratory diseases of miRNA-targeted strategies. To our best knowledge,
this is the first article to encompass evidence regarding miRNAs and their respective antagomiRs in the
lung. In fact, several authors focused on miRNAs and their blocking agents with respect to different
lung diseases such as asthma, COPD, and ARDS. Our work is the first to consider these molecules
from a more extensive view, basing on the idea that several miRNAs play a crucial role in different
respiratory disorders, thus sharing common biological processes in the lung. Moreover, our research
included studies conducted on humans, animals, and cells. The aim of this three-level research was to
confirm data from previous analysis and look for a correlation between these three categories. Thus,
the idea of lung-specific miRNAs could be hypothesized. Furthermore, this concept would have
impact not only on miRNAs knowledge, but also on antagomiR development. New molecules could
be tested as more tailored therapeutic agents with less adverse effects.

2. Materials and Methods

The systematic review was conducted under the PRISMA guidelines (registration number is:
CRD42019134173). The PubMed database was searched between 1 January 2000 and 30 April 2019
under the following search strategy: (((antagomiR) OR (mirna antagonists) OR (mirna antagonist))
AND ((lung[MeSH Terms]) OR (“lung diseases”[MeSH Terms]))). In this analysis, we included original
articles, published in English, whereas exclusion criteria included reviews, meta-analyses, single case
reports, and studies published in a language other than English [3,7,24–71].

3. Results

According to the procedure previously described, we retrieved 68 articles matching the inclusion
criteria (see the flowchart in Figure 1).
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“disease-specific,” appears to be miR-21, which has been found to be somewhat involved in lung 
conditions according to six of the selected papers [8,24–28]. However, miR-155 was also largely 
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works included in our research, the only critical issue eventually identified for our approach concerns 
the right choice for the miRNA to be downregulated to achieve the expected result of the whole 

Figure 1. Study selection.

As shown in Tables 1–5, the vast majority of them included research carried out on cell lines and
on animals, whereas only a few (20, corresponding to 29.4%) investigated the selected topic on humans.
As expected, the condition most widely investigated was lung cancer (21/68), followed by pulmonary
hypertension (7/68). All of the selected papers took into account the efficacy of the antagomiR treatment
on the various diseases, whereas safety was rarely investigated (only in two cases out of 68). Overall,
the use of antagomiR was seen to be efficient in downregulating the specific miRNA they are conceived
for, with quite similar results either in vivo and in vitro and independently from the disease and the
cell line they are used for. Overall, the usefulness of antagomiRs was demonstrated in humans, as
well as in animals and cell lines without particular differences between those three aggregated groups.
According to our results, the miRNA most frequently retrieved in lung conditions, therefore considered
as “organ-specific,” although not “disease-specific,” appears to be miR-21, which has been found to
be somewhat involved in lung conditions according to six of the selected papers [8,24–28]. However,
miR-155 was also largely investigated and found to be involved in five works retrieved [29–32,72].
Further miRNAs frequently involved in lung conditions include miR-7 and miR-34, included in four
articles, and miR-92 and miR-374, with three hits each. As evidenced, despite a handful miRNAs with
multiple hits across the works included in our research, the only critical issue eventually identified for
our approach concerns the right choice for the miRNA to be downregulated to achieve the expected
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result of the whole process. Indeed, even taking into account a single disease (e.g., lung cancer) on a
similar population (e.g., on humans), a plethora of miRNAs with different functions can be identified
as associated with the pathological process, therefore the selection of the right process to be blocked or,
conversely, enhanced, is critical for good outcome of the process. Taking into account some specific
disease categories, the first one to be analyzed, due to its numerical prevalence, was lung cancer.

Table 1. Studies dealing with lung cancer (CDCP1: CUB-domain-containing protein 1; EC: endothelial
cells; HUVECs: human umbilical vein endothelial cells; NOD-SCID: non-obese diabetic severe combined
immune deficient; NSCLC: non-small cell lung cancer; SCID: severe combined immunodeficiency;
TRAIL: tumor necrosis factor-related apoptosis-inducing ligand).

Lung Cancer

Humans

Study Disease Sample miRNAs Findings

Incoronato et al.
(2010) [48] Lung cancer

Cells: Calu-1 NSCLC cells;
H460 cells

Human Tissues: 18
snap-frozen normal and
malignant lung tissues

miR-212

AntagomiR 212
increases PED protein

expression and
resistance to TRAIL
treatment (p < 0.05)

Liu et al. (2011)
[34] Lung cancer

Cells: esophageal cancer cell
lines KYSE150, KYSE410,

KYSE70, EC109, and EC9706.
Clinical samples: 28 ESCC

and 28 normal tissue
samples from surgically

resected esophageal
carcinoma specimens.

Animals: five nude mice,
injected with

EC9706/miR-17-92 and
EC9706/Control cells

miR-19a

Antagomir-19a
treatment impairs

tumor growth in vivo
(p < 0.05)

Liang et al.
(2015) [10] Lung cancer 20 NSCLC patients, 20

controls miR-223

miR-223 antagomir
decreases tumor cell

invasion and increases
EPB41L3 in A549 cells

(p < 0.001)

Wu et al. (2015)
[64] Lung cancer

Humans: 81 NSCLC
patients (12 Stage I, 14 Stage
II, 26 Stage III, 29 Stage IV),

41 controls.
Animals: 4-week-old

BALB/c nude mice.
Cells: NSCLC cell lines
(A549, H1299, H1975,

Hcc827), human embryonic
kidney (HEK) 293T cells

miR-25

miR-25 antagomir
inhibited lung cancer

growth via
upregulation of

MOAP1 in a mouse
xenograft model

(p < 0.01)

Sun et al. (2016)
[62] Lung cancer

Humans: NSCLC tumor
tissue samples.

Cells: human NSCLC cell
lines A549, H1299, SPC-A-1,
95D, SK-MES-1, NCI-H520,
NCI-H460, human normal

lung epithelial cell line
16HBE

miR-346
AntagomiR-346

inhibited NSCLC cell
growth and metastasis
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Table 1. Cont.

Lung Cancer

Humans

Study Disease Sample miRNAs Findings

Vera et al.
(2017) [63] Lung cancer

Fifteen human cancer cell
lines, ovarian cancer

samples (n = 138),
high-grade serous carcinoma

(n = 22); normal ovarian
samples (n = 10), peripheral
blood mononuclear cells (n

= 10)

miR-7, miR-132,
miR-335, and

miR-148a

Relative miR-7 and
MAFG expression

levels decreased when
treated with antagomir

Wu et al.
(2016a) [65] Lung cancer

Humans: patients with lung
adenocarcinoma (n = 129)
and lung squamous cell

carcinoma (n = 54).
Cells: human NSCLC cell

line A549

miR-144-3p

miR-144-3p antagomir
could enhance

proliferation of IL-1β
(p < 0.001)

Wu et al.
(2016b) [66] Lung cancer

Humans: human NSCLC
tumor, adjacent normal lung

tissues (n = 5).
Cells: human NSCLC cell

lines H358 and H23

miR-96

Antagomir-96
increased SAMD9
expression and the
cisplatin-induced

apoptosis and
decreased cisplatin

IC50 (p < 0.05)

Xie et al. (2017)
[70] Lung cancer

Humans: n = 83 patients
with NSCLC.

Animals: NSCLC xenograft
nude mouse model.

Cells: bronchoepithelial cell
line BEAS-2B, A549, and
HCC4006 human NSCLC

cell line

miR-768-3p

miR-768-3p antagomir
induced apoptosis and
Fas/FasL expressional
alteration of NSCLC
cells; antimiR-768-3p

transduction decreased
viability, migration,
invasion, MMP-2,

MMP-9 activities in
A549 and HCC4006
cells; antimiR-768-3p
transfection inhibited

growth and
proliferation of NSCLC

xenografts in nude
mice (p < 0.05)

Zhu et al.
(2018) [55] Lung cancer

Humans: whole blood
samples from patients with
NSCLC and controls; tumor

and nontumorous tissues
obtained from NSCLC

patients (n = 20).
Cells: NSCLC cell lines

SPCA1, A549, H2170

miR-92a

Proliferation of SPCA1,
A549, H2170 inhibited

by antimiR-92a
(p < 0.05)

He et al. (2019)
[33]

Lung
adenocarcinoma

Human lung cancer cells
A549, human bronchial
epithelial cells BEAS-2B,
human lung cancer cells

SPCA1, SPC-A-1-BM human
lung adenocarcinoma

cell line

miR-499a-5p

Inhibition of
miR-499a-5p by

antagomirs restrained
tumor growth in vivo

(p < 0.01)
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Table 1. Cont.

Lung Cancer

Animals

Study Disease Sample miRNAs Findings

Cha et al. (2010)
[40] Lung cancer

Animals: n = 20 5-week-old
male BALB/c nude mice.

Cell lines: CL1-0, CL1-5 lung
adenocarcinoma cell lines.
H1299, PC14, H928, A549

lung cancer, MCF-7,
MDA-MB231, MDA-MD431,
T47D, SKBR3 breast cancer

cell lines

miR-519c

Antagomir inhibition
of miR-519c increased

HIF-1α protein and
enhanced angiogenic

activity (p < 0.05)

Liu et al. (2011)
[34] Lung cancer

Cells: esophageal cancer cell
lines KYSE150, KYSE410,
KYSE70, EC109, EC9706.

Clinical samples: 28 ESCC,
28 normal tissue samples
from surgically resected
esophageal carcinoma

specimens.
Animals: five nude mice

injected with
EC9706/miR-17-92 and
EC9706/Control cells

miR-19a

Antagomir-19a
treatment impairs

tumor growth in vivo
(p < 0.05)

Lin et al. (2013)
[73] Lung cancer

Animals: n = 10 mice.
Cells: lung cancer cell lines

CL1-0, CL1-1, CL1-5 and
CL1-5-F4. A549, HOP-62,

H441, CL141 cells,
melanoma cell line

UACC-257. H1299 and
HEK-293 cells

miR-135b

miR-135b antagomirs
suppress cancer cell
invasion, orthotopic
lung tumor growth
and metastasis in

mouse model (p < 0.05)

Shi et al. (2014)
[59] Lung cancer

Animals: immune-deficient
NOD-SCID mice.

Cells: human NSCLC cell
lines A549, H460, and H1299

miR-34a

Expression of
antimiR-34a in the
CD44lo H460 cells
promoted tumor

development (p < 0.05)

Chiu et al.
(2015) [42] Lung cancer

Human cells: human lung
cancer cell lines CL1-0, F4,

Bm7, Bm7brmx2, A549,
H1299.

Animals: Lung cancer cells
injected into SCID mice

miR-218

CDCP1 protein levels
increased in cells

treated with miR-218
antagomirs (p < 0.05)

Mao et al.
(2015) [74] Lung cancer

Human cells: HUVECs,
tumor cell lines A549, H1299,

HCC827. Animals: male
BALB/c nude mice

miR-494

MiR-494 antagomiR
inhibited angiogenesis

and attenuated the
growth of tumor

xenografts in nude
mice (p < 0.05)

Wu et al. (2015)
[64] Lung cancer

Humans: 81 NSCLC
patients (12 Stage I, 14 Stage
II, 26 Stage III, 29 Stage IV),

41 controls.
Animals: BALB/c nude mice.

Cells: NSCLC cell lines
A549, H1299, H1975, Hcc827,

HEK 293T cells

miR-25

miR-25 antagomir
inhibited lung cancer

growth via
upregulation of

MOAP1 in a mouse
xenograft model

(p < 0.01)
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Table 1. Cont.

Lung Cancer

Animals

Study Disease Sample miRNAs Findings

Xie et al. (2017)
[70] Lung cancer

Humans: n = 83 NSCLC
patients.

Animals: NSCLC xenograft
nude mouse model.

Cells: bronchoepithelial cell
line BEAS-2B, A549 and

HCC4006 human NSCLC
cell line

miR-768-3p

miR-768-3p antagomir
induced distinctly

apoptosis and Fas/FasL
expressional alteration

of NSCLC cells;
miR-768-3p antagomir
transduction decreased

viability, migration,
invasion, MMP-2, and

MMP-9 activities in
A549 and HCC4006

cells; miR-768-3p
antagomir transfection
inhibited the growth
and proliferation of

NSCLC xenografts in
nude mice (p < 0.05)

Zhang et al.
(2018) [53] Lung cancer

Animals: 20 male BALB/c
nu/nu mice.

Cells: EGFR mutant
non-small cell lung cancer

cell line PC-9

miR-214

AntagomiR-214
reversed gefitinib

resistance conferred by
PC-9GR-derived

exosomes in vitro and
reversed gefitinib
resistance in vivo

(p < 0.01 in both cases)

McCann et al.
(2019) [75] Lung cancer

Animals: mice models.
Cells: primary endothelial

cells isolated from normal or
tumor tissue from mice

miR-30c

miR-30c antagomiRs
promoted

PAI-1–dependent
tumor growth and

increased fibrin
abundance (p < 0.05)

Cell Lines

Study Disease Sample miRNAs Findings

Cha et al. (2010)
[40] Lung cancer

Animals: n = 20 5-week-old
male BALB/c nude mice.

Cell lines: CL1-0, CL1-5 lung
adenocarcinoma cell lines.
H1299, PC14, H928, A549

lung cancer, MCF-7,
MDA-MB231, MDA-MD431,
T47D, SKBR3 breast cancer

cell lines

miR-519c

Antagomir inhibition
of miR-519c increased

the level of HIF-1α
protein and enhanced

angiogenic activity
(p < 0.05)

Guo et al.
(2010) [46] Lung cancer

Human small lung cancer
cell line NCI-H69 and
drug-resistant subline

H69AR

miR-134,
miR-379,
miR-495

Sensitivity to
anti-cancer drugs

Cisplatin, Etoposide,
and Doxorubicin

reduced after
transfection of

drug-resistant H69AR
cells with the

antagomirs of miR-134,
miR-379 and miR-495

(p < 0.05)
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Table 1. Cont.

Lung Cancer

Cell Lines

Study Disease Sample miRNAs Findings

Incoronato et al.
(2010) [48] Lung cancer

Cells: Calu-1 NSCLC cells;
H460 cells

Human Tissues: 18
snap-frozen normal and
malignant lung tissues

miR-212

AntagomiR 212
increases PED protein

expression and
resistance to TRAIL
treatment (p < 0.05)

Liu et al. (2011)
[34] Lung cancer

Cells: esophageal cancer cell
lines KYSE150, KYSE410,

KYSE70, EC109, and EC9706.
Clinical samples: 28 ESCC

and 28 normal tissue
samples from surgically

resected esophageal
carcinoma specimens.

Animals: five nude mice,
injected with

EC9706/miR-17-92 and
EC9706/Control cells

miR-19a

Antagomir-19a
treatment impairs

tumor growth in vivo
(p < 0.05)

Lin et al. (2013)
[73] Lung cancer

Animals: n = 10 mice.
Cells: lung cancer cell lines
CL1-0, CL1-1, CL1-5, and
CL1-5-F4. A549, HOP-62,

H441, CL141 cells,
melanoma cell line

UACC-257. H1299 and
HEK-293 cells

miR-135b

miR-135b antagomirs
suppress cancer cell
invasion, orthotopic
lung tumor growth,
and metastasis in

mouse model (p < 0.05)

Shi et al. (2014)
[59] Lung cancer

Animals: Immune-deficient
NOD-SCID mice.

Cells: human NSCLC cell
lines A549, H460, and H1299

miR-34a

Expression of miR-34a
antagomirs in the
CD44lo H460 cells
promoted tumor

development (p < 0.05)

Silveyra et al.
(2014) [60] Lung cancer

Cells: lung adenocarcinoma
cell line NCI- H441, three

Chinese hamster ovary
(CHOK1) cell lines

expressing the human SP-A
variants 1A0, 6A2, and 6A4

miR-183,
miR-4507

antagomir-183
reversed the effects of

mir-183 on SP-A
mRNA levels (p < 0.05)

Chiu et al.
(2015) [42] Lung cancer

Human cells: human lung
cancer cell lines CL1-0, F4,

Bm7, Bm7brmx2, A549, and
H1299.

Animals: lung cancer cells
injected intracardially into

SCID mice

miR-218

CDCP1 levels
increased in cells

treated with
antimiR-218 (p < 0.05)

Mao et al.
(2015) [74] Lung cancer

Human cells: HUVECs,
tumor cell lines A549, H1299,

HCC827. Animals: male
BALB/c nude mice

miR-494

AntimiR-494 inhibited
angiogenesis and

attenuated the growth
of tumor xenografts in
nude mice (p < 0.05)

Sun et al. (2015)
[61] Lung cancer NSCLC cell line A549 miR-1290

AntimiR-1290
suppressed tumor

volume and weight
initiated by CD133+

cells in vivo;
Anti-miR-1290

inhibited proliferation,
clonogenicity, invasion,

and migration of
CD133+ (p < 0.05)
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Table 1. Cont.

Lung Cancer

Cell Lines

Study Disease Sample miRNAs Findings

Wu et al. (2015)
[64] Lung cancer

Humans: 81 NSCLC
patients (12 Stage I, 14 Stage
II, 26 Stage III, 29 Stage IV),

41 controls.
Animals: BALB/c nude mice.

Cells: NSCLC cell lines
A549, H1299, H1975, Hcc827,

HEK 293T cells

miR-25

miR-25 antagomir
inhibited lung cancer

growth via
upregulation of
MOAP1 in mice

(p < 0.01)

Sun et al. (2016)
[62] Lung cancer

Humans: NSCLC tumor
tissues.

Cells: human NSCLC cell
lines A549, H1299, SPC-A-1,
95D, SK-MES-1, NCI-H520,
NCI-H460, human normal

lung epithelial cell line
16HBE

miR-346
AntimiR-346 inhibited

NSCLC cell growth
and metastasis

Wu et al.
(2016a) [65] Lung cancer

Humans: patients with lung
adenocarcinoma (n = 129)
and lung squamous cell

carcinoma (n = 54).
Cells: human NSCLC cell

line A549

miR-144-3p
miR-144-3p antagomir
could enhance IL-1β

proliferation (p < 0.001)

Wu et al.
(2016b) [66] Lung cancer

Humans: human NSCLC
tumor, adjacent normal lung

tissues (n = 5).
Cells: human NSCLC cell

lines H358 and H23

miR-96

Antagomir-96
increased SAMD9
expression and the
cisplatin-induced

apoptosis, it decreased
cisplatin IC50 (p < 0.05)

Vera et al.
(2017) [63] Lung cancer

15 human cancer cell lines,
ovarian cancer samples (n =

138), high-grade serous
carcinoma (n = 22); normal
ovarian samples (n = 10),

peripheral blood
mononuclear cells (n = 10)

miR-7, miR-132,
miR-335, and

miR-148a

Relative miR-7 and
MAFG expression

levels decreased when
treated with antagomir

Xie et al. (2017)
[70] Lung cancer

Humans: n = 83 NSCLC
patients.

Animals: NSCLC xenograft
nude mouse model.

Cells: bronchoepithelial cell
line BEAS-2B, A549 and

HCC4006 human NSCLC
cell line

miR-768-3p

miR-768-3p antagomir
induced distinctly

apoptosis and Fas/FasL
expressional alteration

of NSCLC cells;
miR-768-3p antagomir
transduction decreased

viability, migration,
invasion, MMP-2, and

MMP-9 activities in
A549 and HCC4006

cells; miR-768-3p
antagomir transfection
inhibited the growth
and proliferation of

NSCLC xenografts in
nude mice (p < 0.05)

Zhang et al.
(2018) [53] Lung cancer

Animals: 20 male BALB/c
nu/nu mice.

Cells: EGFR mutant
non-small cell lung cancer

cell line PC-9

miR-214

AntagomiR-214
reversed gefitinib

resistance in vitro and
in vivo (p < 0.01)
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Table 1. Cont.

Lung Cancer

Cell Lines

Study Disease Sample miRNAs Findings

Zhu et al.
(2018) [55] Lung cancer

Humans: whole blood
samples collected from
healthy individuals and

NSCLC patients; tumor and
adjacent nontumorous

tissues from NSCLC patients
(n = 20).

Cells: NSCLC cell lines
SPCA1, A549, H2170

miR-92a

Proliferation of SPCA1,
A549, H2170 inhibited

by antimiR-92a
(p < 0.05)

He et al. (2019)
[33]

Lung
adenocarcinoma

Human lung cancer cells
A549, human bronchial
epithelial cells BEAS-2B,
human lung cancer cells

SPCA1, SPC-A-1-BM

miR-499a-5p

Inhibition of
miR-499a-5p by

antagomirs restrained
tumor growth in vivo

(p < 0.01)

McCann et al.
(2019) [75] Lung cancer

Animals: mice models.
Cells: primary endothelial

cells isolated from normal or
tumor tissue from mice

miR-30c

miR-30c antagomiRs
promoted

PAI-1–dependent
tumor growth and

increased fibrin
abundance (p < 0.05)

Table 2. Studies dealing with bronchial hypersensitivity (avSG: antiviral stress granules; COPD: chronic
obstructive pulmonary disease; pBECs: primary bronchial epithelial cells; PH: pulmonary hypertension;
PKR: protein kinase R; PTEN: phosphatase and tensin homolog; SAECs: small airway epithelial cells).

Bronchial Hypersensitivity

Humans

Study Disease Sample miRNAs Findings

Baker et al.
(2016) [37] COPD

Peripheral lung samples
from COPD patients and

controls; airway
epithelial cells

miR-34a

miR-34a antagomirs increased SIRT1
(p < 0.01)/-6 (p < 0.05) mRNA levels,

decreasing cellular senescence
markers in COPD (p < 0.05)

Hsu et al.
(2016) [76] COPD Five COPD, five smokers,

five controls miR-132

Ectopic expression of PKR or
miR-132 antagomiR alone failed to
restore IFN-β induction (p > 0.05),

co-treatment increased avSG
formation, induction of p300, and
IFN-β in COPD pBECs (p < 0.05)

Jiang et al.
(2018) [49] COPD

Humans: 73 patients with
PH, 32 controls.

Animals: hypoxia-induced
PH mice

miR-190a-5p

Antagomir-190a-5p reduced right
ventricular systolic pressure

(p < 0.01) and enhanced KLF15
expression (p < 0.0001) in lung tissue

Baker et al.
(2019) [38] COPD

30 COPD/18 controls: lung
tissue from tissue bank; 14

COPD, 10 non-smoking
controls: human primary

SAECs cultured; 13 COPD,
five controls: sputum

samples collected

miR-570-3p

Inhibition of elevated miR-570-3p in
COPD small airway epithelial cells,

using an antagomir, restores
sirtuin-1, and suppresses markers of

cellular senescence, restoring
cellular growth (p < 0.05)
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Table 2. Cont.

Bronchial Hypersensitivity

Animals

Study Disease Sample miRNAs Findings

Collison et al.
(2011) [24]

Allergic airway
disease

BALB/c mice sensitized
with house dust mite

miR-145,
miR-21, let-7b

Inhibition of miR-145 (p < 0.05), but
not miR-21 or let-7b (both p > 0.05),
inhibited eosinophilic inflammation,

mucus hypersecretion, TH2
cytokine production, and airway

hyper-responsiveness

Li et al. (2015)
[50]

Airway hyper-
responsiveness

Wild-type specific
pathogen-free BALB/c

mice
miR-9

AntagomiR-9 increased PP2A
activity and GR nuclear

translocation in macrophages
(p < 0.05), restored steroid

sensitivity in steroid-resistant
airway hyper-responsiveness

Plank et al.
(2015) [30] Asthma Specific pathogen-free

BALB/c mice miR-155-5p

Antagomir administration reduced
miR-155-5p expression (p < 0.01),

but failed to alter the disease
phenotype (p > 0.05). It exhibits

poor uptake in lymphocytes

Kim et al.
(2017) [27] Asthma BALB/c mice miR-21

Antagomir-21 increased PTEN
levels (p < 0.05). Treatment with

Ant-21 reduced PI3K activity and
restored HDAC2 levels (p < 0.05),

suppressing airway
hyper-responsiveness and restoring
steroid sensitivity to allergic airway

disease

Lee et al.
(2017) [35]

Acute bronchial
asthma

BALB/c mice sensitized
and challenged with

ovalbumin
miR-21

MiR-21 expression down-regulated
in mice lungs treated with

anti-miR-21. It reduced total cell
(p < 0.001) and eosinophil counts

(p < 0.01) in BAL fluid and the
levels of IL-5 and IL-13 (p < 0.05)

Jiang et al.
(2018) [49] COPD

Humans: 73 patients with
PH, 32 controls.

Animals: hypoxia-induced
PH mice

miR-190a-5p

Antagomir-190a-5p reduced right
ventricular systolic pressure

(p < 0.01) and enhanced the KLF15
expression levels (p < 0.0001) in

lung tissue

Cell Lines

Study Disease Sample miRNAs Findings

Baker et al.
(2016) [37] COPD

Peripheral lung samples
from COPD patients and

controls; airway epithelial
cells

miR-34a

miR-34a antagomirs increased
SIRT1 (p < 0.01)/-6 (p < 0.05) mRNA

levels, decreasing markers of
cellular senescence in airway

epithelial cells from COPD (p < 0.05)

Hsu et al.
(2016) [76] COPD Five COPD, five smokers,

five controls miR-132

Ectopic expression of PKR or
miR-132 antagomiR alone failed to
restore IFN-β induction (p > 0.05),

co-treatment increased avSG
formation, induction of p300 and
IFN-β in COPD pBECs (p < 0.05)

Baker et al.
(2019) [38] COPD

30 COPD/18 controls: lung
tissue from a tissue bank;

14 COPD, 10 non-smoking
controls: human primary

SAECs cultured; 13 COPD,
five controls: sputum

samples collected

miR-570-3p

Inhibition of elevated miR-570-3p in
COPD small airway epithelial cells,

using an antagomir, restores
sirtuin-1 and suppresses markers of

cellular senescence, restoring
cellular growth (p < 0.05)
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Table 3. Studies dealing with pulmonary hypertension (EC: endothelial cells; HPASMCs: human
pulmonary arterial smooth muscle cells; MCT-PAH: monocrotaline pulmonary artery hypertension;
PAH: pulmonary artery hypertension; SMC: smooth muscle cells).

Pulmonary Hypertension

Humans

Study Disease Sample miRNAs Findings

Potus et al. (2014)
[77]

Pulmonary
hypertension

Humans: percutaneous biopsy
of vastus lateralis

(n = 11 patients, n = 9
controls).

Animals: male
Sprague-Dawley rats.

Cells: CD311 cells isolated
from two idiopathic PAH, two

heritable PAH, and three
control quadriceps biopsies

miR-126

AntagomiR-126 in healthy CD31+

cells mimicked the PAH
phenotype. In skeletal muscle of
healthy rats, it decreased muscle
capillarity (p < 0.05) and exercise
tolerance in treadmill tests (p <

0.05)

Animals

Study Disease Sample miRNAs Findings

Pullamsetti et al.
(2012) [25]

Pulmonary
hypertension

Animals: mice and rat models.
Cells: pooled human

umbilical vein ECs and human
pulmonary artery SMCs

miR-17, miR-21,
miR-92a

Ant-17 and Ant-21 reduced right
ventricular systolic pressure, all

antagomirs decreased pulmonary
arterial muscularization. Ant-17
reduced hypoxia-induced right

ventricular hypertrophy,
improved pulmonary artery

acceleration time. In rats, Ant-17
decreased right ventricular
systolic pressure and total

pulmonary vascular resistance
index, increased pulmonary artery

acceleration time, normalized
cardiac output, and decreased

pulmonary vascular remodeling.
In human pulmonary artery
smooth muscle cells, Ant-17

increased p21

Brock et al. (2014)
[39]

Pulmonary
hypertension

Animals: four mice samples
(three in hypoxic condition,

one control).
In vitro: HPASMCs

miR-20a

Animals: AntagomiR-20a
enhanced BMPR2 expression
levels in lung tissues by 59.3%

(p < 0.001), reduced wall thickness
(p < 0.01), luminal occlusion of

small pulmonary arteries
(p < 0.001) and right ventricular

hypertrophy (p < 0.01).
In vitro: Transfection of

HPASMCs with antimiR-20a
activates downstream targets of
BMPR2 increasing activation of

Id-1 and Id-2 (p < 0.05).
HPASMCs proliferation reduced

upon transfection with
antagomiR-20a (p < 0.05)

Potus et al. (2014)
[77]

Pulmonary
hypertension

Humans: percutaneous biopsy
of vastus lateralis (n = 11
patients, n = 9 controls).

Animals: male
Sprague-Dawley rats.

Cells: CD311 cells isolated
from two idiopathic PAH, two

heritable PAH, and three
control quadriceps biopsies

miR-126

AntagomiR-126 in healthy CD31+

cells mimicked the PAH
phenotype. In skeletal muscle of
healthy rats, it decreased muscle
capillarity (p < 0.05) and exercise

tolerance in treadmill tests
(p < 0.05)
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Table 3. Cont.

Pulmonary Hypertension

Animals

Study Disease Sample miRNAs Findings

Sharma et al.
(2015) [57]

Pulmonary
hypertension Male Sprague-Dawley rats miR-206

Knockdown of miR-206 reduced
right ventricular pressure and

right ventricular
hypertrophy index

Gubrij et al.
(2016) [78]

Pulmonary
hypertension MCT-PAH rats miR-223

A223 reduced levels of miR-223 in
pulmonary artery and lungs of
MCT PAH rats as compared to
controls (p < 0.05), but did not
attenuate MCT PAH (p > 0.05)

Mondejar-Parreño
et al. (2019) [51]

Pulmonary
hypertension Pathogen-free male Wistar rats miR-1

AntagomiR-1 prevented (p < 0.05)
hypoxia-induced decline in

voltage-dependent potassium
channel Kv1.5 currents

Cell Lines

Study Disease Sample miRNAs Findings

Pullamsetti et al.
(2012) [25]

Pulmonary
hypertension

Animals: mice and rat models.
Cells: pooled human

umbilical vein ECs and human
pulmonary artery SMCs

miR-17, miR-21,
miR-92a

Ant-17 and Ant-21 reduced right
ventricular systolic pressure, all

antagomirs decreased pulmonary
arterial muscularization. Ant-17
reduced hypoxia-induced right

ventricular hypertrophy,
improved pulmonary artery

acceleration time. In rats, Ant-17
decreased right ventricular
systolic pressure and total

pulmonary vascular resistance
index, increased pulmonary artery

acceleration time, normalized
cardiac output, and decreased

pulmonary vascular remodeling.
In human pulmonary artery
smooth muscle cells, Ant-17

increased p21

Brock et al. (2014)
[39]

Pulmonary
hypertension

Animals: four mice samples
(three in hypoxic condition,

one control).
In vitro: HPASMCs

miR-20a

Animals: AntagomiR-20a
enhanced BMPR2 expression
levels in lung tissues by 59.3%

(p < 0.001), reduced wall thickness
(p < 0.01), luminal occlusion of

small pulmonary arteries
(p < 0.001) and right ventricular

hypertrophy (p < 0.01).
In vitro: Transfection of

HPASMCs with antimiR-20a
activates downstream targets of
BMPR2 increasing activation of

Id-1 and Id-2 (p < 0.05).
HPASMCs proliferation reduced

upon transfection with
antagomiR-20a (p < 0.05)

Potus et al. (2014)
[77]

Pulmonary
hypertension

Humans: percutaneous biopsy
of vastus lateralis (n = 11
patients, n = 9 controls).

Animals: male
Sprague-Dawley rats.

Cells: CD311 cells isolated
from two idiopathic PAH, two

heritable PAH, and three
control quadriceps biopsies

miR-126

AntagomiR-126 in healthy CD31+

cells mimicked the PAH
phenotype. In skeletal muscle of
healthy rats, it decreased muscle
capillarity (p < 0.05) and exercise

tolerance in treadmill tests
(p < 0.05)
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Table 4. Studies dealing with lung injury (BALF: bronchoalveolar lavage fluid; BMDM: bone
marrow-derived macrophages; PBEF: pre-B-cell colony-enhancing factor).

Lung Injury

Animals

Study Disease Sample miRNAs Findings

Xu et al. (2014)
[68] Lung injury

Animals: healthy male
C57BL/6 mice.

Cells: Epithelial cells
miR-17

miR-17 antagomir increased
the expression of FoxA1 in

Acute Lung Injury mice
(p < 0.05)

Yuan et al.
(2015) [32] Lung inflammation

Animals: male wild-type
C57BL/6J mice.

Cells: bone
marrow-derived

macrophages

miR-155

Increased expression of
miR155 by mTREM-1

suppressed by antimiR-155
(p < 0.05)

Fu et al. (2018)
[45]

Pulmonary
inflammation

Animals: male BALB/c
mice.

Cells: murine macrophage
RAW264.7 cells

miR-92a

Antagomir-92a reduced
pathological changes
associated with lung

inflammation, reduces lung
wet/dry ratio (p < 0.01), and

Evans blue dye extravasation
(p < 0.01).

Inhibition of miR-92a reduced
the repression of TNF-α, IL-1β,
IL-6 (p < 0.01) in lung tissues

Wu et al. (2018)
[67] Acute lung injury

MK2 deficient mice
(C57BL/6)

(B6.129P2-Mapkapk2tm1Dgen/J,
and MK2flox/flox mice

Let-7e

Transfection of anti-let-7e into
MK2-/- BMDM rescued

LPS-induced expression of
TNF-α, IL-6, and MIP-2

(p < 0.05)

Xie et al. (2018)
[79]

Lung inflammation,
lung injury

Animals: male C57BL/6
mice.

Cells: RAW264.7 cells
miR-34b-5p

miR-34b-5p antagomir in vivo
inhibited miR-34b-5p

up-regulation, reduced
inflammatory cytokine release,
decreased alveolar epithelial

cell apoptosis, attenuated lung
inflammation, improved

survival by targeting PGRN
during acute lung injury

(p < 0.05)

Huang et al.
(2019) [47] Acute Lung Injury

Sixty healthy male-specific
pathogen free C57BL/6

mice
miR-27b

Downregulation of miR-27b
decreased the levels of IL-1β,
IL-6, and TNF-α in BALF of

Acute Lung Injury mice
(p < 0.05)

Cell Lines

Study Disease Sample miRNAs Findings

Adyshev et al.
(2013) [80] Lung injury Human pulmonary artery

endothelial cells

hsa-miR-374a,
hsa-miR-374b,

hsa-miR-520c-3p,
hsa-miR-1290

Antagomirs for each MYLK
miRNA increased 3′UTR

luciferase activity (1.2–2.3 FI)
and rescued the decreased

MLCK-3′UTR reporter activity
produced by miRNA mimics
(70%–110% increases for each

miRNA; p < 0.05)

Adyshev et al.
(2014) [81] Lung inflammation Human pulmonary artery

endothelial cells
hsa-miR-374a,
hsa-miR-568

Antagomirs for each
PBEF/NAMPT miRNA

increased the endogenous
PBEF/NAMPTmRNA and
protein levels and 3′-UTR

luciferase activity compared
with controls (p < 0.05)
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Table 4. Cont.

Lung Injury

Cell Lines

Study Disease Sample miRNAs Findings

Xu et al. (2014)
[68] Lung injury

Animals: healthy male
C57BL/6 mice.

Cells: epithelial cells
miR-17

miR-17 antagomir increased
the expression of FoxA1 in

Acute Lung Injury mice
(p < 0.05)

Yuan et al.
(2015) [32] Lung inflammation

Animals: Male wild-type
C57BL/6J mice.

Cells: bone
marrow-derived

macrophages

miR-155

Increased expression of
miR155 by mTREM-1

suppressed by antagomir
against miR-155 (p < 0.05)

Fu et al. (2018)
[45]

Pulmonary
inflammation

Animals: male BALB/c
mice.

Cells: murine macrophage
RAW264.7 cells

miR-92a

Antagomir-92a reduced
pathological changes
associated with lung

inflammation, reduces lung
wet/dry ratio (p < 0.01), and

Evans blue dye extravasation
(p < 0.01).

Inhibition of miR-92a
ameliorated the inflammatory

response by reducing the
repression of TNF-α, IL-1β,

IL-6 (p < 0.01) in lung tissues

Xie et al. (2018)
[79]

Lung inflammation,
lung injury

Animals: male C57BL/6
mice.

Cells: RAW264.7 cells
miR-34b-5p

miR-34b-5p antagomir in vivo
inhibited miR-34b-5p

up-regulation, reduced
inflammatory cytokine release,
decreased alveolar epithelial

cell apoptosis, attenuated lung
inflammation, improved

survival by targeting PGRN
during acute lung injury

(p < 0.05)

Table 5. Studies dealing with other conditions (ACE2: Angiotensin Converting Enzyme 2; BMDM: bone
marrow-derived macrophages; BSM: bronchial smooth muscle; CF: Cystic Fibrosis; CIV: canine influenza
virus; hBSMCs: human BSM cells; HLMECs: human lung microvascular endothelial cells; HPASMCs:
human pulmonary arterial smooth muscle cells; HS: honeysuckle; HUVECs: human umbilical vein
endothelial cells; Igfbp5: insulin-like growth factor binding protein 5; MDCK: Madin-Darby Canine
Kidney; MDM: monocyte-derived macrophages; MSC: mesenchymal stromal cell; PASMC: pulmonary
arterial smooth muscle cells; PBMC: peripheral blood mononuclear cells; SARS-CoV: severe acute
respiratory syndrome coronavirus).

Other Conditions

Humans

Study Disease Sample miRNAs Findings

Chatterjee et al.
(2014) [41]

Lung cell
dysfunction HLMECs, HUVECs miR-147b

MiR-147b antagomir increased
total and cell surface

expression of ADAM15 in
endothelial cells (p < 0.05)

Ge et al. (2016) [82] Lung fibrosis

Humans: bronchial
epithelia from lung

transplant patients. Cells:
primary fibroblasts

isolated from human lungs

miR-323a-3p

Antagomirs for miR-323a-3p
augment murine lung fibrosis

after bleomycin injury
(p < 0.05)
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Table 5. Cont.

Other Conditions

Humans

Study Disease Sample miRNAs Findings

Sharma et al. (2018)
[58]

HIV infection
and substance

abuse

Human monocyte derived
macrophages, HPASMCs miR-130a

Transfection of
HPASMCs with

antagomir-130a–ameliorated
the extracellular

vesicles-induced effect
(p < 0.001)

Yuan et al. (2018)
[69] Tuberculosis

Fifty patients, 20 controls.
Monocytes isolated from

peripheral blood
mononuclear cells

miR-196b-5p

antagomir-196b-5p promoted
Bacillus Calmette–Guérin

uptake in MDMs or
differentiated U937 cells

(p < 0.05)

Animals

Study Disease Sample miRNAs Findings

Krützfeldt et al.
(2005) [7]

Various
conditions Mice models

miR-16,
miR-122,
miR-192,
miR-194

Intravenous administration of
antagomirs reduced miRNA
levels in liver, lung, kidney,

heart, intestine, fat, skin, bone
marrow, muscle, ovaries,

and adrenals

Chiba et al. (2009)
[83]

Abnormal BSM
contraction

BSM cells, bronchial
tissues of BALB/c mice miR-133a

Up-regulation of RhoA when
endogenous miR-133a

function inhibited by its
antagomir in hBSMCs (p <
0.05). No effect (p > 0.05) of

miR-133b and let-7a
antagomirs

Pandit et al. (2010)
[84]

Pulmonary
Fibrosis

Animals: mice models.
Cells: 10 Idiopathic

Pulmonary Fibrosis, 10
control tissues

Let-7d

Let-7d antagomir decreased
expression of CDH1 and TJP1
and increased COL1A1 and
HMGA2 expression in the

lungs (p < 0.05)

Rosenberger et al.
(2012) [56] Influenza C57Bl/6, MyD88null mice miR-451

Three types of primary
dendritic cells treated with
antagomirs against miR-451

secreted elevated levels of IL-6
(p< 0.01), TNF (p < 0.05),

CCL5/RANTES (p < 0.05), and
CCL3/MIP1α (p < 0.01)

Asquith et al.
(2014) [85]

Chronic ethanol
consumption

From non-human
primates: PBMC,
mesenteric and

tracheobronchial lymph
nodes, jejunum,

duodenum, ileum, and
descending colon

miR-181a,
miR-221 (in

PBMC),
miR-155 (in

colon)

Transfection of miRNA
antagomirs upregulated both

STAT-3 (p < 0.05)/ARNT
(p < 0.001), VEGF

(p < 0.05)/HGF
(p < 0.01)/G-CSF (p < 0.05)

Zhang et al. (2015)
[52]

Various
disorders

Animals: BALB/c mice.
Cells: 4T1 murine breast

cancer cells
miR-10b

Antagomir-10b and PTX
delivered by D-Lip delays the

growth of 4T1 tumors and
reduce lung metastases;

Hoxd10 expression in tumors
up-regulated (p < 0.01)

Zhou et al. (2015)
[54] Influenza

Animals: six groups of
mice (five mice per group),

including control group.
Cells: MDCK cells

miR-2911

Inhibitory effect of HS
decoction on viral replication

abolished by anti-miR2911
(p < 0.05)



Int. J. Mol. Sci. 2019, 20, 3938 18 of 32

Table 5. Cont.

Other Conditions

Animals

Study Disease Sample miRNAs Findings

Podsiad et al.
(2015) [31] Pneumonia

Animals: wild-type
C57BL/6 mice.

Cells: Human lung
macrophages

miR-155
miR-155 antagomir improved

lung bacterial clearance by
4.2-fold

Zhou et al. (2016)
[86]

Systemic Lupus
Erythematosus

Animals: C57BL/6J (B6)
and

B6.Cg-Mir155tm1.1Rsky/J

mice.
Cells: Hepa 1-6 cells

miR-155
Disease progression reduced
by 20% by in vivo using of

antimiR-155

Ma et al. (2017) [71] Hypoxia
Animals: adult male

Wistar rats.
Cells: PASMC cultured

miR-125a

miR-125a antagomir
mimicked the hypoxic damage

effects to mitochondrial
homeostasis (p < 0.05)

Morales et al.
(2017) [87] SARS-CoV

Animals: female mice.
Cells: mouse delayed

brain tumor cells
expressing the murine

SARS-CoV receptor ACE2

svRNA-nsp3.1,
svRNA-nsp3.2,

svRNA-N,
miR-877

Antagomirs reduced partially
(svRNA-nsp3.1), or totally
(svRNA-nsp3.2, svRNA-N,

miR-877), the luciferase
activity

Zhou et al. (2017)
[88] Influenza Animals: beagles.

Cells: MDCK cells cfa-miR-143
Anti-cfa-miR-143 caused
upregulation of Igfbp5 in
CIV-infected MDCK cells

Fehl et al. (2019)
[44]

Bronchopulmonary
dysplasia Newborn C57BL/6J mice N/A

AntagomiRs impacted lung
volume (p < 0.05), septal

thickness (p < 0.01), and the
transcriptome (p < 0.05) of
developing mouse lungs

Li et al. (2019) [28] Lung ischemia Mail C57/BL6 mice miR-21-5p

Pre-treatment of MSCs with
miR-21-5p antagomir
decreased miR-21-5p

expression level in exosomes
secreted

Tamgue et al.
(2019) [89] Tuberculosis

Bone marrow-derived
macrophages generated
from male BALB/c mice

miR-143,
miR-365

Antagomirs for miR-143 and
miR-365 decreased the

intracellular growth of Mtb
HN878, reduced the

production of IL-6 (p < 0.001)
and CCL5 (p < 0.01 for

miR-143, p < 0.05 for miR-365)
and promoted the apoptotic

death of Mtb HN878-infected
BMDMs (p < 0.01 for miR-143,

p < 0.05 for miR-365)

Zhang et al. (2019)
[90] Influenza

Animals: C57BL/6 mice.
Cells: human pulmonary
epithelial cell line A549

miR-146a

Downregulation of miR-146a
inhibits Influenza A Virus

replication by enhancing type
I IFN response through TRAF6
in vitro and in vivo (p < 0.01)

Cell Lines

Study Disease Sample miRNAs Findings

Chiba et al. (2009)
[83]

Abnormal BSM
contraction

BSM cells, bronchial
tissues of BALB/c mice miR-133a

Up-regulation of RhoA when
endogenous miR-133a

function inhibited by its
antagomir in hBSMCs

(p < 0.05). No effect (p > 0.05)
of miR-133b and let-7a

antagomirs



Int. J. Mol. Sci. 2019, 20, 3938 19 of 32

Table 5. Cont.

Other Conditions

Cell Lines

Study Disease Sample miRNAs Findings

Pandit et al. (2010)
[84]

Pulmonary
Fibrosis

Animals: mice models.
Cells: 10 Idiopathic

Pulmonary Fibrosis and 10
control tissues

Let-7d

Let-7d antagomir decreased
expression of CDH1 and TJP1,

and increased COL1A1 and
HMGA2 expression in the

lungs (p < 0.05)

Bhattacharyya et al.
(2011) [29] Cystic Fibrosis Lung epithelial cells miR-155

Antagomir-155 in CF cells
down-regulates miR-155
expression by 85%; IL-8

mRNA levels decreased of
70% and IL-8 protein levels by

11-fold

Chatterjee et al.
(2014) [41]

Lung cell
dysfunction HLMECs, HUVECs miR-147b

MiR-147b antagomir increased
total and cell surface

expression of ADAM15 in
endothelial cells (p < 0.05)

Fabbri et al. (2014)
[43] Cystic Fibrosis

CF bronchial epithelial
IB3-1 cells infected by

Pseudomonas aeruginosa
miR-93

IL-8 up-regulation in
uninfected cells treated with

antagomiR-93 (p < 0.01)

Zhang et al. (2015)
[52]

Various
disorders

Animals: BALB/c mice.
Cells: 4T1 murine breast

cancer cells
miR-10b

Antagomir-10b and PTX
delivered by D-Lip delays the

growth of 4T1 tumors and
reduce the lung metastases;

up-regulated Hoxd10 in
tumors (p < 0.01)

Zhou et al. (2015)
[54] Influenza

Animals: six groups of
mice (five mice per group),

including control group.
Cells: MDCK cells

miR-2911

Inhibitory effect of HS
decoction on viral replication

abolished by anti-miR2911
(p < 0.05)

Ge et al. (2016) [82] Lung fibrosis

Humans: bronchial
epithelia from lung

transplant patients. Cells:
primary fibroblasts from

human lung explants

miR-323a-3p

Antagomirs for miR-323a-3p
augment murine lung fibrosis

after bleomycin injury
(p < 0.05)

Podsiad et al.
(2015) [31] Pneumonia

Animals: wild-type
C57BL/6 mice.

Cells: human lung
macrophages

miR-155
AntimiR-155 improved lung

bacterial clearance by 4.2-fold
compared with controls

Zhou et al. (2016)
[86]

Systemic Lupus
Erythematosus

Animals: C57BL/6J (B6)
and

B6.Cg-Mir155tm1.1Rsky/J

mice.
Cells: Hepa 1-6 cells

miR-155
Disease progression, reduced
by 20% by in vivo silencing of

miR-155 using antimiR-155

Bartoszewska et al.
(2017) [36] Hypoxia

Hypoxia-induced human
airway epithelial cell lines

Calu-3 and 16HBE14o-;
normal primary bronchial

epithelial cells

miR-200b

Manipulation of miRNA levels
during normoxia and hypoxia
by antagomirs increased CFTR

mRNA levels (p < 0.05)

Ma et al. (2017) [71] Hypoxia
Animals: adult male

Wistar rats.
Cells: PASMC cultured

miR-125a

miR-125a antagomir
mimicked the hypoxic damage

effects to mitochondrial
homeostasis (p < 0.05)

Morales et al.
(2017) [87] SARS-CoV

Animals: Female mice.
Cells: mouse delayed

brain tumor cells
expressing the murine

SARS-CoV receptor ACE2

svRNA-nsp3.1,
svRNA-nsp3.2,

svRNA-N,
miR-877

Antagomirs reduced partially
(svRNA-nsp3.1), or totally
(svRNA-nsp3.2, svRNA-N,

miR-877), the luciferase
activity
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Table 5. Cont.

Other Conditions

Cell Lines

Study Disease Sample miRNAs Findings

Shentu et al.
(2017) [26] Lung fibrosis

Human bone
marrow-derived

Mesenchymal Stem Cells

miR-199a/b-3p,
21-5p, 630,

22-3p, 196a-5p,
199b-5p, 34a-5p,

and 148a-3p

AntagomiR-630 abrogated the
effect of extracellular vesicles
on CDH2 expression (p < 0.05)

Zhou et al. (2017)
[88] Influenza Animals: beagles.

Cells: MDCK cells cfa-miR-143
Anti-cfa-miR-143 caused
upregulation of Igfbp5 in
CIV-infected MDCK cells

Sharma et al.
(2018) [58]

HIV infection
and substance

abuse

Human monocyte derived
macrophages, HPASMCs miR-130a

Transfection of HPASMCs
with antagomir-130a

ameliorated the extracellular
vesicles-induced effect

(p < 0.001)

Yuan et al. (2018)
[69] Tuberculosis

Fifty patients, 20 controls.
Monocytes isolated from

peripheral blood
mononuclear cells

miR-196b-5p

Antagomir-196b-5p promoted
Bacillus Calmette–Guérin

uptake in MDMs or
differentiated U937 cells

(p < 0.05)

Tamgue et al.
(2019) [89] Tuberculosis

Bone marrow-derived
macrophages generated
from male BALB/c mice

miR-143,
miR-365

Antagomirs for miR-143 and
miR-365 decreased the

intracellular growth of Mtb
HN878, reduced the

production of IL-6 (p < 0.001)
and CCL5 (p < 0.01 for

miR-143, p < 0.05 for miR-365),
and promoted the apoptotic

death of Mtb HN878-infected
BMDMs (p < 0.01 for miR-143,

p < 0.05 for miR-365)

Zhang et al.
(2019) [90] Influenza

Animals: C57BL/6 mice.
Cells: human pulmonary
epithelial cell line A549

miR-146a

Downregulation of miR-146a
inhibits Influenza A Virus

replication by enhancing type
I IFN response through TRAF6
in vitro and in vivo (p < 0.01)

3.1. Lung Cancer

All the works retrieved showed an excellent efficacy of antagomiRs in blocking the action of
the respective miRNAs both in vivo (on both humans and animals) and in vitro. The studies, taken
singularly, have shown a wide heterogeneity of the mechanisms investigated and challenged with
a respective wide difference in terms of miRNAs studied and antagomiRs employed. This applies
both analyzing separately single sub-groups of samples and investigating the whole amount of studies
together, making it difficult to identify a “principal” microRNA to be challenged in this specific domain.

3.1.1. Humans

Eleven studies have specifically assessed the role of antagomiRs in human subjects with lung
cancer, all of which demonstrating the usefulness of such compounds in blocking cancer-related cellular
mechanisms, and even restraining the growth of tumors even in vivo (see, for example, He et al.,
2019 [33] or Liu et al., 2011 [34]). The extreme heterogeneity of the miRNAs (and, consequently,
antagomiRs) taken into account reveals the complexity of biological and cellular patterns of the lung
cancer in vivo, suggesting the specific role of each compound for a given mechanism to be studied
and tailored.
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3.1.2. Animals

Ten works investigating lung cancer in animals were retrieved, all of which used mice models
for this assessment. AntagomiRs were demonstrated to be extremely efficient in modulating cancer
growth, preventing it in most cases (see, for example, anti-miR135b, in Lin et al., 2013 [73]; anti-miR19a,
in Liu et al., 2011 [34]; anti-miR494, in Mao et al., 2015 [74]), or even promoting tumor growth when
experimentally needed (see anti-miR30c, in McCann et al., 2019 [75]).

3.1.3. Cell lines

As expected, studies investigating lung cancer in cell lines are the vast majority with respect to
the other sub-groups (20 studies were retrieved). Such studies confirmed in vitro the evidence arising
in vivo, with antagomiRs able to modulate cancer growth depending on the outcome desired. Even on
cell lines, the heterogeneity in terms of miRNAs investigated and antagomiRs employed was present,
as already seen in humans and animals.

3.2. Bronchial Hypersensitivity

Under this category, studies dealing with asthma, COPD, allergic airway disease, airway
hyper-responsiveness were included. Overall, eight studies were found, the majority of which
investigating COPD (four studies) or asthma (three articles). Despite the heterogeneity in terms of
miRNAs investigated, in this case promoted by both the relatively low number of studies retrieved
and by the slightly different kind of diseases included in this category, miR-21 was included in several
studies and its activity successfully challenged by its corresponding antagomiR. In summary, despite
the differences in terms of category of samples studied and antagomiRs used, these compounds have
demonstrated their usefulness also in this class of clinical conditions.

3.2.1. Humans

Only four works investigated such diseases in humans, all of which dealing with COPD. Overall,
the studies highlighted a positive contribution of antagomiRs in decreasing the clinical symptoms of
the disease. In some cases, these molecules have even shown to improve clinical outcomes with the
support of other compounds, like protein kinase R (see Hsu et al. 2016 [76]).

3.2.2. Animals

Six studies were published on animal models, of which three investigated asthma, and one each
COPD, airway disease, and airway hyper-responsiveness. All those studies took into account mice
models, with miR-21 that was investigated in three out of the six works. Overall, the results were
encouraging, with minor differences. Indeed, as observed by Collison et al. [24], just the inhibition of
miR-145, but not miR-21 or let-7b, inhibited eosinophilic inflammation, mucus hypersecretion, TH2
cytokine production, and airway hyper-responsiveness, and also Plank et al. [30] on asthma observed
that the use of the respective antagomiR (anti-miR-155-5p) reduced miR-155-5p expression, but failed
to alter the disease phenotype.

3.2.3. Cell lines

Just three studies, all concerning COPD, were published on cell lines. All the three took into
account different miRNAs and corresponding antagomiRs, but the results were seen to be overall
positive, except the above reported work by Hsu et al. [76], which highlighted the pivotal importance of
combining antagomiRs with protein kinase R to increase antiviral stress granules formation, induction
of p300 and IFN-β in COPD primary bronchial epithelial cells.
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3.3. Pulmonary Hypertension

Six studies investigated pulmonary hypertension in the literature retrieved, mostly dealing with
animal models. Overall, the various antagomiRs used (as previously, the heterogeneity in terms of
miRNAs studied was high) demonstrated a good efficacy in challenging the corresponding miRNA
and in improving the biological outcome.

3.3.1. Humans

Only one work, published by Potus and colleagues [77] investigated the use of antagomiRs
in pulmonary hypertension in humans, through biopsy specimens, with the surprising result that
AntagomiR-126 in healthy CD31+ cells mimicked the PAH phenotype.

3.3.2. Animals

Six works, including that by Potus and colleagues [77] above reported, have used animal models
to this aim. All of them used either mice or rat models, with complete heterogeneity on the miRNAs
studied. Overall, the treatment with antagomiRs improved the outcome with respect to pulmonary
hypertension, except in the study by Gubrij et al. [78], where AntagomiR-223 was efficient in reducing
levels of miR-223 in pulmonary artery and lungs of rats as compared to controls, but failed to attenuate
pulmonary hypertension.

3.3.3. Cell lines

Three articles also took into account cell lines on this specific topic. Despite using different
compounds, tailoring different miRNAs, all the three works highlighted the positive role of antagomiRs
in improving the outcome related to pulmonary hypertension, overall confirming the results obtained
in vivo.

3.4. Lung Injury

In this category, acute lung injury and pulmonary inflammation were included. Overall, eight
articles were included, four each for the two conditions above mentioned. No studies on human subjects
were retrieved, while works dealing with animal models and cell lines were relatively numerous. As
in other sub-groups and possibly due to the slight heterogeneity of the clinical conditions included in
this category, just one miRNA was studied in more than one article even if taken into account in two
studies by the same research team (miR-374a, investigated in Adyshev et al., [80,81]). Summarizing the
results, even in this group of conditions, antagomiRs were extremely useful in improving the outcome
both in vivo and in vitro, with no report of lack of efficacy in any of the studies retrieved.

3.4.1. Animals

Six studies were retrieved on animal models. As in most of the cases previously reported, all of
them were performed on mice models. Three of them investigated miRNAs in lung injury, two of them
in lung inflammation and one [79] in both.

As stated, all the antagomiRs employed successfully reduced the pathological changes, starting
from cellular level, in vivo, without evidence of inefficacy on the samples studied.

3.4.2. Cell lines

Six studies were found also on cell lines. Three of them took into account lung inflammation, two
lung injury and the one by Xie and colleagues [77] reported above both the conditions.

The results obtained confirmed the good reliability and efficacy of antagomiRs in improving
the biomarkers of diseases in vitro, independently from the miRNA (and, therefore, the mechanism)
tailored, with just one antagomiR, antagomiR-374a, that was used in more than one study [80,81], on
lung injury and lung inflammation, respectively.
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3.5. Other Conditions

In this category, several conditions, not matched by the groups above explained, were included,
each of them featuring a small number of studies, and displaying positive results, overall.

3.5.1. Humans

Four studies were performed on humans, one each about lung cell dysfunction, lung fibrosis, HIV
infection and substance abuse, and tuberculosis. Given the different etiopathological processes of such
conditions, also completely different mechanisms were investigated, and different miRNAs tailored.
However, in all four cases, an improvement of the outcome was found in vivo, independently from the
condition studied.

3.5.2. Animals

Sixteen studies on animals were found for this macro-category, with the condition more largely
studied being influenza (four studies). All but two of these studies were carried out on mice or
rats, whereas Asquith et al. [85], studied chronic ethanol consumption in non-human primates, and
Zhou et al. [88] assessed the effect of miRNAs and antagomiRs in influenza in one-month-old beagles.

Three studies [31,72,85] on chronic ethanol consumption, pneumonia, and systemic lupus
erythematosus, investigated the role of miR-155, two [88,89] respectively on tuberculosis and influenza,
of miR-143 and the others showed complete heterogeneity in the miRNAs studied.

Overall, antagomiRs demonstrated their efficacy in tailoring such conditions in vivo also on animal
models, as already seen on humans, despite a lack of complete efficacy noticed by Chiba et al. [83]
for miR-133b and let-7a antagomiRs in abnormal bronchial smooth muscle contraction studied in
BALB/c mice.

3.5.3. Cell Lines

Nineteen studies were included in this category, most of which were already mentioned in the
two previous (humans and animals) groups, as performed both in vivo and in vitro. Three of them
were performed on influenza [86,88,90] and three others on lung fibrosis [26,82,84]. Other conditions
were more rarely studied.

Concerning the miRNAs studied, as above, a slight prevalence (three studies:
Bhattacharyya et al. [29] on cystic fibrosis, Podsiad et al. [31] on pneumonia, Zhou et al. [86] on
systemic lupus erythematosus) included miR-155, with the positive results about the use of the
respective antagomiR seen in vivo that were confirmed in vitro. miR-143 was successfully tailored in
two studies (Tamgue et al. [89] on tuberculosis, Zhou et al., [88] on influenza) confirming the positive
retrievals already seen in vivo.

Overall, the other antagomiRs were also seen to be efficient in positively tailoring the activity of
the respective miRNAs, thus improving the biological outcome of the various conditions they were
applied to, also in vitro, despite minor evidence of lack of (or reduced) efficacy seen in Chiba et al. [83]
on abnormal bronchial smooth muscle contraction and in Morales et al. [87] on SARS-CoV.

4. Discussion

It is well established that miRNAs are pleiotropic molecules involved in almost all major biological
processes. This concept was particularly studied in the lung, where specific miRNAs demonstrated to
cooperate with organ development and pulmonary diseases. During the last years, much data has
been collected on this topic, with special regards to obstructive and restrictive lung diseases [91–93]. In
fact, as Sessa and Hata [94] reported, a typical miRNAs expression profile was noticed and different
miRNAs play an active role among different processes including hemostasis, viral infection, and
inflammation. Lung-specific miRNAs can be used as novel biomarkers in lung disorders. To date,
several pieces of research focused on specific lung disease miRNAs expression patterns. However,
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specific miRNAs expression profiles may be noticed also among different organs. Previously, Wang et
al. [20] conducted a study on rats, demonstrating that two specific miRNAs (miR-195 and miR-200c)
were peculiarly expressed in the lung, while eight miRNAs were co-expressed in the lung and heart
and one miRNA was co-expressed in the lung and kidney. As interest increased on this topic, accessible
databases as, for example, MiRmine were created in order to allow researchers to retrieve expression
profiles of single or multiple miRNAs for a specific tissue or cell line, either normal or with disease
information [95]. According to our results, miR-21 seems to be the most represented miRNA among
lung conditions. MiR-21 is often up-regulated in lung carcinoma. This fact is believed to be a
result of the capacity of miR-21 to inhibit tumor suppressor phosphatase and tensin-homolog [96].
Collison et al. [24] characterized miRNAs expression among house dust mite allergic mice. A group
was treated with antagomiRs that inhibited the function of specific miRNAs in the lung, and the other
group received standard steroid therapy with dexamethasone. Finally, inflammatory lesions and
airway hyper-responsiveness were measured. Researchers found that, although miR-21 and let-7b were
highly expressed during allergic inflammation, blockade of their function was ineffective at modulating
the expression of disease. On the other hand, Kim et al. [27] conducted a study on BALB/c mice noticing
that antagomiR-21 increased phosphatase and tensin homolog (PTEN) levels (p < 0.05). Treatment with
Ant-21 reduced phosphoinositide 3-kinase (PI3K) activity and restored histone deacetylase (HDAC2)
levels (p < 0.05), leading to suppression of airway hyper-responsiveness and to restore of steroid
sensitivity to allergic airway disease. Lee et al. [60] also investigated allergic inflammation among
mouse models, reporting that MiR-21 expression was down-regulated in mice lungs treated with
anti-miR-21. In fact, specific antagomiR reduced both eosinophil count (p < 0.01) and Th2 cytokines
levels, including IL-5 and IL-13 in mice BAL fluid (p < 0.05). MiRNA21 demonstrated positive effects
also upon lung ischemia. Ischemia/reperfusion injury (IRI) is the primary cause of acute lung injury
(ALI) and primary graft dysfunction (PGD) after lung transplantation [97]. Li et al. [28] conducted a
study on murine lung ischemia/reperfusion (I/R) and in vitro hypoxia/reoxygenation (H/R) models
demonstrating that pre-treatment of mesenchymal stromal cells with miR-21-5p antagomiR ameliorated
IRI in the lung. Regarding PAH, Pullamsetti et al. [25] conducted a study both on animal models
and cell lines demonstrating that Ant-17 and Ant-21 reduced right ventricular systolic pressure and
pulmonary arterial muscularization. Moreover, Ant-17 decreased hypoxia-induced right ventricular
hypertrophy and improved pulmonary artery acceleration time. In mice, Ant-17 therapy reduced
right ventricular systolic pressure and total pulmonary vascular resistance index, stabilized cardiac
output and reduced pulmonary vascular remodeling. In human pulmonary artery smooth muscle
cells, Ant-17 increased the cyclin-dependent kinase inhibitor 1A (p21). MiRNA 21 demonstrated to
have a role also upon lung fibrosis. In fact, Shentu et al. [26] demonstrated that human mesenchymal
stem cell-derived extracellular vesicles (mEVs) do contain several specific miRNAs including 21-5p
and 630. MEVs suppress TGFβ1-induced myofibroblastic differentiation of normal and idiopathic
pulmonary fibrosis (IPF) lung fibroblasts, thus mitigating tissue fibrotic response. Investigating the
role of miRNA regarding the pathogenesis and progression of lung fibrosis, Liu et al. [98] found that
miR-21 was up-regulated both in the lungs of mice presenting with bleomycin-induced lung fibrosis
and IPF patients. In this setting, miR-21 was highly expressed by myofibroblasts in the fibrotic lungs.
Furthermore, researchers noticed that miR-21 reduced bleomycin-induced lung fibrosis in rats’ lungs.

Overall, a simple explanation of the mechanisms involving antagomiR-21 in lung conditions is
provided in Figure 2.
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Another miRNA molecule, which is widely expressed in several lung conditions, is miR-155.
Several studies demonstrated that this molecule is upregulated in activated immune cells, such as T and
B lymphocytes, macrophages, and dendritic cells (DCs). Indeed, miR-155 levels increase in response to
inflammatory mediators. Moreover, miRNA-155 can regulate B-cell proliferation, malignancy, antibody
production, and the differentiation and function of IL-17-producing helper T cells. Furthermore,
miR-155 is induced by LPS, as well as other TLR ligands and proinflammatory cytokines [99–101].
As miR-155 is involved in several processes, it is feasible to understand its role upon many lung
disorders. Basing on the hypothesis that miR-155 upregulation could inhibit IL-17 expression and
therefore increase susceptibility to secondary bacterial pneumonia, Podsiad et [31] al. conducted a
study on wild-type C57BL/6 mice and human lung macrophages in order to investigate the role of
miR-155 and the respective antagoMiR upon viral and bacterial pneumonia. They concluded that
miR-155 antagomiR ameliorated lung bacterial clearance compared with controls. MiR-155 plays a
crucial role also upon ARDS. Triggering receptors expressed on myeloid cells (TREM) proteins are a
family of immunoglobulin cell surface receptors expressed on myeloid cells and they are considered
as amplifiers of Toll-like receptor (TLR)-induced inflammation. Experiments with antagomiR-155
confirmed that TREM-1-mediated changes were dependent on miR-155. Yuan et al. [32] conducted
a study on wild-type C57BL/6J mice and bone marrow-derived macrophages demonstrating that
TREM-1 boosted inflammatory response by inducing the expression of miR-155 in macrophages.
Therefore, researchers inhibited TREM-1 using a nanomicellar strategy. Neutrophilic inflammation
was reduced, thus suggesting that TREM-1 inhibition is a potential therapeutic target for neutrophilic
lung inflammation and ARDS. Systemic lupus erythematosus (SLE) is a complex auto-immune disease
which can involve several systems, including lungs. Diffuse alveolar hemorrhage (DAH) is a rare
but severe complication of SLE and miR-155 showed to have a relevant role. In fact, Zhou et al. [86]
found that miR-155 expression was up-regulated during the development of DAH, noticing that
this molecule targets several pro-inflammatory mediators. The extent of lung inflammation was
markedly reduced in miR-155–knockout (miR-1552/2) mice. Moreover, in vivo silencing of miR-155
using miR-155 antagomiR reduced the incidence of iatrogenic-induced DAH. MiR-155 cooperates with
Th2 responses too. In fact, it is extensively expressed in the Th cell, DCs, and macrophages in the
lung. MiR-155 was also found to be up-regulated in the nasal mucosa and airway smooth muscle cells
of allergic asthmatic patients [27,100,101]. Recently, Plank et al. [30] conducted a study on murine
asthmatic models noticing that MiR-155-5p is highly upregulated in mice. However, while targeting of
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miR-155-5p with a specific antagomiR resulted in specific inhibition in vivo, it was not able to alter the
disease phenotype. Authors hypothesized that this could be due to the variation in antagomiR uptake,
which demonstrated to be effective in myeloid cells and weak in lymphocytes. Cystic fibrosis (CF) is
an autosomal recessive disease, due to the occurrence of cystic fibrosis transmembrane conductance
regulator (CFTR) gene mutations and it is characterized by a variable cytokines pro-inflammatory
milieu. Bhattacharyya et al. [29] demonstrated that antagomiR-155 down-regulates miR-155 expression
suppressing IL-8 and other proinflammatory genes in CF cells.

The mechanisms involving antagomiR-155 in lung conditions are displayed in Figure 3.
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5. Conclusions

This systematic review provides numerous shreds of evidence regarding dysregulation in miRNAs
expression in lung diseases. It remains to understand the sources of the various miRNAs, and whether
they have mainly disease- or organ-specific effects. However, these findings may contribute to a better
definition of the complex network of miRNAs involved in lung diseases. Thus, miRNAs have been
proposed as diagnostic or prognostic biomarkers and therapeutic targets for future treatments. Notably,
antagomiRs are chemically modified oligonucleotides that are used to silence microRNAs, having the
property of bind specifically to particular microRNAs. These could represent a therapeutic opportunity
to modulate miRNA-induced, post-transcriptional mRNA regulation. To our best knowledge, this
is the first article describing evidence on the involvement of miRNAs and the efficacy of respective
antagomiRs in different lung diseases, including studies conducted on humans, animals, and cells. In
conclusion, these findings provide new knowledge on the network of miRNAs in lung diseases and
suggest that antagomiRs may represent a target for a specific therapy for these diseases.

Key Points

• Strong evidence confirmed that miRNAs play a crucial role in several pathologic mechanisms,
therefore they have been proposed as diagnostic or prognostic biomarkers and therapeutic targets
for future treatments.

• AntagomiRs are chemically modified oligonucleotides able of silencing microRNAs and are now
emerging as novel therapeutic agents in several conditions.
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• It has been widely demonstrated that miRNAs have a fundamental role among several lung
conditions, moreover, some of these molecules proved to have a lung-specific tropism, thus
suggesting the idea of lung-specific miRNAs patterns.

• To our best knowledge, this is the first article describing the evidence on the involvement of
miRNAs and the efficacy of respective antagomiRs in different lung diseases, including studies
conducted on humans, animals, and cells.

• Coherence between these groups has been demonstrated, thus suggesting the importance of
developing new studies on these agents as target therapies.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microrna biogenesis, function and decay.
Nat. Rev. Genet. 2010, 11, 597–610. [CrossRef] [PubMed]

2. Bartel, D.P. Metazoan micrornas. Cell 2018, 173, 20–51. [CrossRef] [PubMed]
3. Gambari, R.; Brognara, E.; Spandidos, D.A.; Fabbri, E. Targeting oncomirnas and mimicking tumor suppressor

mirnas: Nuew trends in the development of mirna therapeutic strategies in oncology (review). Int. J. Oncol.
2016, 49, 5–32. [CrossRef] [PubMed]

4. Nguyen, D.D.; Chang, S. Development of novel therapeutic agents by inhibition of oncogenic micrornas. Int.
J. Mol. Sci. 2017, 19.

5. Jadideslam, G.; Ansarin, K.; Sakhinia, E.; Babaloo, Z.; Abhari, A.; Ghahremanzadeh, K.; Khalili, M.;
Radmehr, R.; Kabbazi, A. Diagnostic biomarker and therapeutic target applications of mir-326 in cancers: A
systematic review. J. Cell Physiol. 2019. [CrossRef] [PubMed]

6. Yoo, B.H.; Bochkareva, E.; Bochkarev, A.; Mou, T.C.; Gray, D.M. 2’-o-methyl-modified phosphorothioate
antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Res. 2004, 32, 2008–2016.
[CrossRef] [PubMed]

7. Krutzfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of
micrornas in vivo with ’antagomirs’. Nature 2005, 438, 685–689. [CrossRef] [PubMed]

8. Lee, S.H.; Jung, Y.D.; Choi, Y.S.; Lee, Y.M. Targeting of runx3 by mir-130a and mir-495 cooperatively increases
cell proliferation and tumor angiogenesis in gastric cancer cells. Oncotarget 2015, 6, 33269–33278. [CrossRef]
[PubMed]

9. Brognara, E.; Fabbri, E.; Montagner, G.; Gasparello, J.; Manicardi, A.; Corradini, R.; Bianchi, N.; Finotti, A.;
Breveglieri, G.; Borgatti, M.; et al. High levels of apoptosis are induced in human glioma cell lines by
co-administration of peptide nucleic acids targeting mir-221 and mir-222. Int. J. Oncol. 2016, 48, 1029–1038.
[CrossRef] [PubMed]

10. Liang, Z.; Ahn, J.; Guo, D.; Votaw, J.R.; Shim, H. Microrna-302 replacement therapy sensitizes breast cancer
cells to ionizing radiation. Pharm. Res. 2013, 30, 1008–1016. [CrossRef] [PubMed]

11. Pace, E.; Di Vincenzo, S.; Di Salvo, E.; Genovese, S.; Dino, P.; Sangiorgi, C.; Ferraro, M.; Gangemi, S. Mir-21
upregulation increases il-8 expression and tumorigenesis program in airway epithelial cells exposed to
cigarette smoke. J. Cell Physiol. 2019. [CrossRef] [PubMed]

12. Shrine, N.; Guyatt, A.L.; Erzurumluoglu, A.M.; Jackson, V.E.; Hobbs, B.D.; Melbourne, C.A.; Batini, C.;
Fawcett, K.A.; Song, K.; Sakornsakolpat, P.; et al. New genetic signals for lung function highlight pathways
and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 2019, 51,
481–493. [CrossRef] [PubMed]

13. Hobbs, B.D.; Tantisira, K.G. Micrornas in copd: Small molecules with big potential. Eur. Respir. J. 2019, 53.
[CrossRef] [PubMed]

14. Faiz, A.; Steiling, K.; Roffel, M.P.; Postma, D.S.; Spira, A.; Lenburg, M.E.; Borggrewe, M.; Eijgenraam, T.R.;
Jonker, M.R.; Koppelman, G.H.; et al. Effect of long-term corticosteroid treatment on microrna and
gene-expression profiles in copd. Eur. Respir. J. 2019, 53. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nrg2843
http://www.ncbi.nlm.nih.gov/pubmed/20661255
http://dx.doi.org/10.1016/j.cell.2018.03.006
http://www.ncbi.nlm.nih.gov/pubmed/29570994
http://dx.doi.org/10.3892/ijo.2016.3503
http://www.ncbi.nlm.nih.gov/pubmed/27175518
http://dx.doi.org/10.1002/jcp.28782
http://www.ncbi.nlm.nih.gov/pubmed/31069801
http://dx.doi.org/10.1093/nar/gkh516
http://www.ncbi.nlm.nih.gov/pubmed/15064360
http://dx.doi.org/10.1038/nature04303
http://www.ncbi.nlm.nih.gov/pubmed/16258535
http://dx.doi.org/10.18632/oncotarget.5037
http://www.ncbi.nlm.nih.gov/pubmed/26375442
http://dx.doi.org/10.3892/ijo.2015.3308
http://www.ncbi.nlm.nih.gov/pubmed/26708164
http://dx.doi.org/10.1007/s11095-012-0936-9
http://www.ncbi.nlm.nih.gov/pubmed/23184229
http://dx.doi.org/10.1002/jcp.28786
http://www.ncbi.nlm.nih.gov/pubmed/31054160
http://dx.doi.org/10.1038/s41588-018-0321-7
http://www.ncbi.nlm.nih.gov/pubmed/30804560
http://dx.doi.org/10.1183/13993003.00515-2019
http://www.ncbi.nlm.nih.gov/pubmed/31023868
http://dx.doi.org/10.1183/13993003.01202-2018
http://www.ncbi.nlm.nih.gov/pubmed/30846474


Int. J. Mol. Sci. 2019, 20, 3938 28 of 32

15. Heffler, E.; Allegra, A.; Pioggia, G.; Picardi, G.; Musolino, C.; Gangemi, S. Microrna profiling in asthma:
Potential biomarkers and therapeutic targets. Am. J. Respir. Cell Mol. Biol. 2017, 57, 642–650. [CrossRef]

16. Yu, B.; Yao, L.; Liu, C.; Tang, L.; Xing, T. Upregulation of microrna16 alters the response to inhaled betaagonists
in patients with asthma though modulating expression of adrb2. Mol. Med. Rep. 2019, 19, 4027–4034.
[PubMed]

17. Galie, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk
Noordegraaf, A.; Beghetti, M.; et al. 2015 esc/ers guidelines for the diagnosis and treatment of pulmonary
hypertension: The joint task force for the diagnosis and treatment of pulmonary hypertension of the european
society of cardiology (esc) and the european respiratory society (ers): Endorsed by: Association for european
paediatric and congenital cardiology (aepc), international society for heart and lung transplantation (ishlt).
Eur. Heart J. 2016, 37, 67–119.

18. Wheeler, A.P.; Bernard, G.R. Acute lung injury and the acute respiratory distress syndrome: A clinical review.
Lancet 2007, 369, 1553–1564. [CrossRef]

19. Zhou, T.; Garcia, J.G.; Zhang, W. Integrating micrornas into a system biology approach to acute lung injury.
Transl. Res. 2011, 157, 180–190. [CrossRef]

20. Wang, Q.Z.; Xu, W.; Habib, N.; Xu, R. Potential uses of microrna in lung cancer diagnosis, prognosis, and
therapy. Curr. Cancer Drug Targets 2009, 9, 572–594. [CrossRef]

21. Yu, S.L.; Chen, H.Y.; Chang, G.C.; Chen, C.Y.; Chen, H.W.; Singh, S.; Cheng, C.L.; Yu, C.J.; Lee, Y.C.; Chen, H.S.;
et al. Microrna signature predicts survival and relapse in lung cancer. Cancer Cell 2008, 13, 48–57. [CrossRef]

22. Janssen, H.L.; Reesink, H.W.; Lawitz, E.J.; Zeuzem, S.; Rodriguez-Torres, M.; Patel, K.; van der Meer, A.J.;
Patick, A.K.; Chen, A.; Zhou, Y.; et al. Treatment of hcv infection by targeting microrna. N. Engl. J. Med.
2013, 368, 1685–1694. [CrossRef]

23. Bouchie, A. First microrna mimic enters clinic. Nat. Biotechnol. 2013, 31, 577. [CrossRef]
24. Collison, A.; Mattes, J.; Plank, M.; Foster, P.S. Inhibition of house dust mite-induced allergic airways disease

by antagonism of microrna-145 is comparable to glucocorticoid treatment. J. Allergy Clin. Immunol. 2011,
128, 160–167.e4. [CrossRef]

25. Pullamsetti, S.S.; Doebele, C.; Fischer, A.; Savai, R.; Kojonazarov, B.; Dahal, B.K.; Ghofrani, H.A.;
Weissmann, N.; Grimminger, F.; Bonauer, A.; et al. Inhibition of microrna-17 improves lung and heart
function in experimental pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2012, 185, 409–419.
[CrossRef]

26. Shentu, T.P.; Huang, T.S.; Cernelc-Kohan, M.; Chan, J.; Wong, S.S.; Espinoza, C.R.; Tan, C.; Gramaglia, I.; van
der Heyde, H.; Chien, S.; et al. Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular
vesicles blocks myofibroblastic differentiation. Sci. Rep. 2017, 7, 18052. [CrossRef]

27. Kim, R.Y.; Horvat, J.C.; Pinkerton, J.W.; Starkey, M.R.; Essilfie, A.T.; Mayall, J.R.; Nair, P.M.; Hansbro, N.G.;
Jones, B.; Haw, T.J.; et al. Microrna-21 drives severe, steroid-insensitive experimental asthma by amplifying
phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J. Allergy Clin. Immunol. 2017,
139, 519–532. [CrossRef]

28. Li, J.W.; Wei, L.; Han, Z.; Chen, Z. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion
injury in mouse lung by transporting anti-apoptotic mir-21-5p. Eur. J. Pharmacol. 2019, 852, 68–76. [CrossRef]

29. Bhattacharyya, S.; Balakathiresan, N.S.; Dalgard, C.; Gutti, U.; Armistead, D.; Jozwik, C.; Srivastava, M.;
Pollard, H.B.; Biswas, R. Elevated mir-155 promotes inflammation in cystic fibrosis by driving hyperexpression
of interleukin-8. J. Biol. Chem. 2011, 286, 11604–11615. [CrossRef]

30. Plank, M.W.; Maltby, S.; Tay, H.L.; Stewart, J.; Eyers, F.; Hansbro, P.M.; Foster, P.S. Microrna expression is
altered in an ovalbumin-induced asthma model and targeting mir-155 with antagomirs reveals cellular
specificity. PLoS ONE 2015, 10, e0144810. [CrossRef]

31. Podsiad, A.; Standiford, T.J.; Ballinger, M.N.; Eakin, R.; Park, P.; Kunkel, S.L.; Moore, B.B.; Bhan, U.
Microrna-155 regulates host immune response to postviral bacterial pneumonia via il-23/il-17 pathway. Am.
J. Physiol. Lung Cell Mol. Physiol. 2016, 310, L465–L475. [CrossRef]

32. Yuan, Z.; Syed, M.; Panchal, D.; Joo, M.; Bedi, C.; Lim, S.; Onyuksel, H.; Rubinstein, I.; Colonna, M.;
Sadikot, R.T. Trem-1-accentuated lung injury via mir-155 is inhibited by lp17 nanomedicine. Am. J. Physiol.
Lung Cell Mol. Physiol. 2016, 310, L426–L438. [CrossRef]

http://dx.doi.org/10.1165/rcmb.2016-0231TR
http://www.ncbi.nlm.nih.gov/pubmed/30942450
http://dx.doi.org/10.1016/S0140-6736(07)60604-7
http://dx.doi.org/10.1016/j.trsl.2011.01.010
http://dx.doi.org/10.2174/156800909788486731
http://dx.doi.org/10.1016/j.ccr.2007.12.008
http://dx.doi.org/10.1056/NEJMoa1209026
http://dx.doi.org/10.1038/nbt0713-577
http://dx.doi.org/10.1016/j.jaci.2011.04.005
http://dx.doi.org/10.1164/rccm.201106-1093OC
http://dx.doi.org/10.1038/s41598-017-18288-9
http://dx.doi.org/10.1016/j.jaci.2016.04.038
http://dx.doi.org/10.1016/j.ejphar.2019.01.022
http://dx.doi.org/10.1074/jbc.M110.198390
http://dx.doi.org/10.1371/journal.pone.0144810
http://dx.doi.org/10.1152/ajplung.00224.2015
http://dx.doi.org/10.1152/ajplung.00195.2015


Int. J. Mol. Sci. 2019, 20, 3938 29 of 32

33. He, S.; Li, Z.; Yu, Y.; Zeng, Q.; Cheng, Y.; Ji, W.; Xia, W.; Lu, S. Exosomal mir-499a-5p promotes cell
proliferation, migration and emt via mtor signaling pathway in lung adenocarcinoma. Exp. Cell Res. 2019,
379, 203–213. [CrossRef]

34. Liu, M.; Wang, Z.; Yang, S.; Zhang, W.; He, S.; Hu, C.; Zhu, H.; Quan, L.; Bai, J.; Xu, N. Tnf-alpha is a novel
target of mir-19a. Int. J. Oncol. 2011, 38, 1013–1022.

35. Lee, H.Y.; Lee, H.Y.; Choi, J.Y.; Hur, J.; Kim, I.K.; Kim, Y.K.; Kang, J.Y.; Lee, S.Y. Inhibition of microrna-21
by an antagomir ameliorates allergic inflammation in a mouse model of asthma. Exp. Lung Res. 2017, 43,
109–119. [CrossRef]

36. Bartoszewska, S.; Kamysz, W.; Jakiela, B.; Sanak, M.; Kroliczewski, J.; Bebok, Z.; Bartoszewski, R.; Collawn, J.F.
Mir-200b downregulates cftr during hypoxia in human lung epithelial cells. Cell Mol. Biol. Lett. 2017, 22, 23.
[CrossRef]

37. Baker, J.R.; Vuppusetty, C.; Colley, T.; Papaioannou, A.I.; Fenwick, P.; Donnelly, L.; Ito, K.; Barnes, P.J.
Oxidative stress dependent microrna-34a activation via pi3kalpha reduces the expression of sirtuin-1 and
sirtuin-6 in epithelial cells. Sci. Rep. 2016, 6, 35871. [CrossRef]

38. Baker, J.R.; Vuppusetty, C.; Colley, T.; Hassibi, S.; Fenwick, P.S.; Donnelly, L.E.; Ito, K.; Barnes, P.J. Microrna-570
is a novel regulator of cellular senescence and inflammaging. FASEB J. 2019, 33, 1605–1616. [CrossRef]

39. Brock, M.; Samillan, V.J.; Trenkmann, M.; Schwarzwald, C.; Ulrich, S.; Gay, R.E.; Gassmann, M.; Ostergaard, L.;
Gay, S.; Speich, R.; et al. Antagomir directed against mir-20a restores functional bmpr2 signalling and
prevents vascular remodelling in hypoxia-induced pulmonary hypertension. Eur. Heart J. 2014, 35, 3203–3211.
[CrossRef]

40. Cha, S.T.; Chen, P.S.; Johansson, G.; Chu, C.Y.; Wang, M.Y.; Jeng, Y.M.; Yu, S.L.; Chen, J.S.; Chang, K.J.;
Jee, S.H.; et al. Microrna-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis.
Cancer Res. 2010, 70, 2675–2685. [CrossRef]

41. Chatterjee, V.; Beard, R.S., Jr.; Reynolds, J.J.; Haines, R.; Guo, M.; Rubin, M.; Guido, J.; Wu, M.H.; Yuan, S.Y.
Microrna-147b regulates vascular endothelial barrier function by targeting adam15 expression. PLoS ONE
2014, 9, e110286. [CrossRef]

42. Chiu, K.L.; Kuo, T.T.; Kuok, Q.Y.; Lin, Y.S.; Hua, C.H.; Lin, C.Y.; Su, P.Y.; Lai, L.C.; Sher, Y.P. Adam9 enhances
cdcp1 protein expression by suppressing mir-218 for lung tumor metastasis. Sci. Rep. 2015, 5, 16426.
[CrossRef]

43. Fabbri, E.; Borgatti, M.; Montagner, G.; Bianchi, N.; Finotti, A.; Lampronti, I.; Bezzerri, V.;
Dechecchi, M.C.; Cabrini, G.; Gambari, R. Expression of microrna-93 and interleukin-8 during pseudomonas
aeruginosa-mediated induction of proinflammatory responses. Am. J. Respir. Cell Mol. Biol. 2014, 50,
1144–1155. [CrossRef]

44. Fehl, J.; Pozarska, A.; Nardiello, C.; Rath, P.; Surate Solaligue, D.E.; Vadasz, I.; Mayer, K.; Herold, S.; Seeger, W.;
Morty, R.E. Control interventions can impact alveolarization and the transcriptome in developing mouse
lungs. Anat. Rec. (Hoboken) 2019, 302, 346–363. [CrossRef]

45. Fu, L.; Zhu, P.; Qi, S.; Li, C.; Zhao, K. Microrna-92a antagonism attenuates lipopolysaccharide (lps)-induced
pulmonary inflammation and injury in mice through suppressing the pten/akt/nf-kappab signaling pathway.
Biomed. Pharmacother. 2018, 107, 703–711. [CrossRef]

46. Guo, L.; Liu, Y.; Bai, Y.; Sun, Y.; Xiao, F.; Guo, Y. Gene expression profiling of drug-resistant small cell
lung cancer cells by combining microrna and cdna expression analysis. Eur. J. Cancer 2010, 46, 1692–1702.
[CrossRef]

47. Huang, Y.; Huang, L.; Zhu, G.; Pei, Z.; Zhang, W. Downregulated microrna-27b attenuates
lipopolysaccharide-induced acute lung injury via activation of nf-e2-related factor 2 and inhibition of
nuclear factor kappab signaling pathway. J. Cell Physiol. 2019, 234, 6023–6032. [CrossRef]

48. Incoronato, M.; Garofalo, M.; Urso, L.; Romano, G.; Quintavalle, C.; Zanca, C.; Iaboni, M.; Nuovo, G.;
Croce, C.M.; Condorelli, G. Mir-212 increases tumor necrosis factor-related apoptosis-inducing ligand
sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein ped. Cancer Res. 2010, 70,
3638–3646. [CrossRef]

49. Jiang, C.; Guo, Y.; Yu, H.; Lu, S.; Meng, L. Pleiotropic microrna-21 in pulmonary remodeling: Novel insights
for molecular mechanism and present advancements. Allergy Asthma Clin. Immunol. 2019, 15, 33. [CrossRef]

http://dx.doi.org/10.1016/j.yexcr.2019.03.035
http://dx.doi.org/10.1080/01902148.2017.1304465
http://dx.doi.org/10.1186/s11658-017-0054-0
http://dx.doi.org/10.1038/srep35871
http://dx.doi.org/10.1096/fj.201800965R
http://dx.doi.org/10.1093/eurheartj/ehs060
http://dx.doi.org/10.1158/0008-5472.CAN-09-2448
http://dx.doi.org/10.1371/journal.pone.0110286
http://dx.doi.org/10.1038/srep16426
http://dx.doi.org/10.1165/rcmb.2013-0160OC
http://dx.doi.org/10.1002/ar.23931
http://dx.doi.org/10.1016/j.biopha.2018.08.040
http://dx.doi.org/10.1016/j.ejca.2010.02.043
http://dx.doi.org/10.1002/jcp.27187
http://dx.doi.org/10.1158/0008-5472.CAN-09-3341
http://dx.doi.org/10.1186/s13223-019-0345-2


Int. J. Mol. Sci. 2019, 20, 3938 30 of 32

50. Li, J.J.; Tay, H.L.; Maltby, S.; Xiang, Y.; Eyers, F.; Hatchwell, L.; Zhou, H.; Toop, H.D.; Morris, J.C.; Nair, P.;
et al. Microrna-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2a
activity. J. Allergy Clin. Immunol. 2015, 136, 462–473. [CrossRef]

51. Mondejar-Parreno, G.; Callejo, M.; Barreira, B.; Morales-Cano, D.; Esquivel-Ruiz, S.; Moreno, L.; Cogolludo, A.;
Perez-Vizcaino, F. Mir-1 is increased in pulmonary hypertension and downregulates kv1.5 channels in rat
pulmonary arteries. J. Physiol. 2019, 597, 1185–1197. [CrossRef]

52. Zhang, Q.; Ran, R.; Zhang, L.; Liu, Y.; Mei, L.; Zhang, Z.; Gao, H.; He, Q. Simultaneous delivery of therapeutic
antagomirs with paclitaxel for the management of metastatic tumors by a ph-responsive anti-microbial
peptide-mediated liposomal delivery system. J. Control. Release 2015, 197, 208–218. [CrossRef]

53. Zhang, Y.; Li, M.; Hu, C. Exosomal transfer of mir-214 mediates gefitinib resistance in non-small cell lung
cancer. Biochem. Biophys. Res. Commun. 2018, 507, 457–464. [CrossRef]

54. Zhou, Z.; Li, X.; Liu, J.; Dong, L.; Chen, Q.; Liu, J.; Kong, H.; Zhang, Q.; Qi, X.; Hou, D.; et al.
Honeysuckle-encoded atypical microrna2911 directly targets influenza a viruses. Cell Res. 2015, 25,
39–49. [CrossRef]

55. Zhu, Q.; Zang, Q.; Jiang, Z.M. Enhanced expression of non coding mir 92a expression is implicated in the
development of lung cancer. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1028–1034.

56. Rosenberger, C.M.; Podyminogin, R.L.; Navarro, G.; Zhao, G.W.; Askovich, P.S.; Weiss, M.J.; Aderem, A.
Mir-451 regulates dendritic cell cytokine responses to influenza infection. J. Immunol. 2012, 189, 5965–5975.
[CrossRef]

57. Sharma, S.; Umar, S.; Centala, A.; Eghbali, M. Role of mir206 in genistein-induced rescue of pulmonary
hypertension in monocrotaline model. J. Appl. Physiol. (1985) 2015, 119, 1374–1382. [CrossRef]

58. Sharma, H.; Chinnappan, M.; Agarwal, S.; Dalvi, P.; Gunewardena, S.; O’Brien-Ladner, A.; Dhillon, N.K.
Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: Role of altered mirna cargo
in response to hiv infection and substance abuse. FASEB J. 2018, 32, 5174–5185. [CrossRef]

59. Shi, Y.; Liu, C.; Liu, X.; Tang, D.G.; Wang, J. The microrna mir-34a inhibits non-small cell lung cancer (nsclc)
growth and the cd44hi stem-like nsclc cells. PLoS ONE 2014, 9, e90022. [CrossRef]

60. Silveyra, P.; DiAngelo, S.L.; Floros, J. An 11-nt sequence polymorphism at the 3’utr of human sftpa1 and
sftpa2 gene variants differentially affect gene expression levels and mirna regulation in cell culture. Am. J.
Physiol. Lung Cell Mol. Physiol. 2014, 307, L106–L119. [CrossRef]

61. Sun, B.; Yang, N.; Jiang, Y.; Zhang, H.; Hou, C.; Ji, C.; Liu, Y.; Zuo, P. Antagomir-1290 suppresses cd133(+)
cells in non-small cell lung cancer by targeting fyn-related src family tyrosine kinase. Tumour Biol. 2015, 36,
6223–6230. [CrossRef]

62. Sun, C.C.; Li, S.J.; Yuan, Z.P.; Li, D.J. Microrna-346 facilitates cell growth and metastasis, and suppresses
cell apoptosis in human non-small cell lung cancer by regulation of xpc/erk/snail/e-cadherin pathway.
Aging (Albany NY) 2016, 8, 2509–2524. [CrossRef]

63. Vera, O.; Jimenez, J.; Pernia, O.; Rodriguez-Antolin, C.; Rodriguez, C.; Sanchez Cabo, F.; Soto, J.; Rosas, R.;
Lopez-Magallon, S.; Esteban Rodriguez, I.; et al. DNA methylation of mir-7 is a mechanism involved in
platinum response through mafg overexpression in cancer cells. Theranostics 2017, 7, 4118–4134. [CrossRef]

64. Wu, T.; Chen, W.; Kong, D.; Li, X.; Lu, H.; Liu, S.; Wang, J.; Du, L.; Kong, Q.; Huang, X.; et al. Mir-25 targets
the modulator of apoptosis 1 gene in lung cancer. Carcinogenesis 2015, 36, 925–935. [CrossRef]

65. Wu, C.; Xu, B.; Zhou, Y.; Ji, M.; Zhang, D.; Jiang, J.; Wu, C. Correlation between serum il-1beta and mir-144-3p
as well as their prognostic values in luad and lusc patients. Oncotarget 2016, 7, 85876–85887. [CrossRef]

66. Wu, L.; Pu, X.; Wang, Q.; Cao, J.; Xu, F.; Xu, L.I.; Li, K. Mir-96 induces cisplatin chemoresistance in non-small
cell lung cancer cells by downregulating samd9. Oncol. Lett. 2016, 11, 945–952. [CrossRef]

67. Wu, Y.; He, H.; Ding, Y.; Liu, S.; Zhang, D.; Wang, J.; Jiang, H.; Zhang, D.; Sun, L.; Ye, R.D.; et al. Mk2
mediates macrophage activation and acute lung injury by regulating let-7e mirna. Am. J. Physiol. Lung Cell
Mol. Physiol. 2018, 315, L371–L381. [CrossRef]

68. Xu, Z.; Zhang, C.; Cheng, L.; Hu, M.; Tao, H.; Song, L. The microrna mir-17 regulates lung foxa1 expression
during lipopolysaccharide-induced acute lung injury. Biochem. Biophys Res. Commun. 2014, 445, 48–53.
[CrossRef]

69. Yuan, Y.; Lin, D.; Feng, L.; Huang, M.; Yan, H.; Li, Y.; Chen, Y.; Lin, B.; Ma, Y.; Ye, Z.; et al. Upregulation of
mir-196b-5p attenuates bcg uptake via targeting socs3 and activating stat3 in macrophages from patients with
long-term cigarette smoking-related active pulmonary tuberculosis. J. Transl. Med. 2018, 16, 284. [CrossRef]

http://dx.doi.org/10.1016/j.jaci.2014.11.044
http://dx.doi.org/10.1113/JP276054
http://dx.doi.org/10.1016/j.jconrel.2014.11.010
http://dx.doi.org/10.1016/j.bbrc.2018.11.061
http://dx.doi.org/10.1038/cr.2014.130
http://dx.doi.org/10.4049/jimmunol.1201437
http://dx.doi.org/10.1152/japplphysiol.00699.2014
http://dx.doi.org/10.1096/fj.201701558R
http://dx.doi.org/10.1371/journal.pone.0090022
http://dx.doi.org/10.1152/ajplung.00313.2013
http://dx.doi.org/10.1007/s13277-015-3307-4
http://dx.doi.org/10.18632/aging.101080
http://dx.doi.org/10.7150/thno.20112
http://dx.doi.org/10.1093/carcin/bgv068
http://dx.doi.org/10.18632/oncotarget.13042
http://dx.doi.org/10.3892/ol.2015.4000
http://dx.doi.org/10.1152/ajplung.00019.2018
http://dx.doi.org/10.1016/j.bbrc.2014.01.108
http://dx.doi.org/10.1186/s12967-018-1654-9


Int. J. Mol. Sci. 2019, 20, 3938 31 of 32

70. Xie, Z.; Chen, W.; Chen, Y.; Wang, X.; Gao, W.; Liu, Y. Mir-768-3p is involved in the proliferation, invasion
and migration of non-small cell lung carcinomas. Int. J. Oncol. 2017, 51, 1574–1582. [CrossRef]

71. Ma, C.; Zhang, C.; Ma, M.; Zhang, L.; Zhang, L.; Zhang, F.; Chen, Y.; Cao, F.; Li, M.; Wang, G.; et al. Mir-125a
regulates mitochondrial homeostasis through targeting mitofusin 1 to control hypoxic pulmonary vascular
remodeling. J. Mol. Med. (Berl) 2017, 95, 977–993. [CrossRef]

72. Zhou, M.; Hara, H.; Dai, Y.; Mou, L.; Cooper, D.K.; Wu, C.; Cai, Z. Circulating organ-specific micrornas serve
as biomarkers in organ-specific diseases: Implications for organ allo- and xeno-transplantation. Int. J. Mol.
Sci. 2016, 17. [CrossRef]

73. Lin, C.W.; Chang, Y.L.; Chang, Y.C.; Lin, J.C.; Chen, C.C.; Pan, S.H.; Wu, C.T.; Chen, H.Y.; Yang, S.C.;
Hong, T.M.; et al. Microrna-135b promotes lung cancer metastasis by regulating multiple targets in the hippo
pathway and lzts1. Nat. Commun. 2013, 4, 1877. [CrossRef]

74. Mao, G.; Liu, Y.; Fang, X.; Liu, Y.; Fang, L.; Lin, L.; Liu, X.; Wang, N. Tumor-derived microrna-494 promotes
angiogenesis in non-small cell lung cancer. Angiogenesis 2015, 18, 373–382. [CrossRef]

75. McCann, J.V.; Xiao, L.; Kim, D.J.; Khan, O.F.; Kowalski, P.S.; Anderson, D.G.; Pecot, C.V.; Azam, S.H.;
Parker, J.S.; Tsai, Y.S.; et al. Endothelial mir-30c suppresses tumor growth via inhibition of tgf-beta-induced
serpine1. J. Clin. Investig. 2019, 130, 1654–1670. [CrossRef]

76. Hsu, A.C.; Parsons, K.; Moheimani, F.; Knight, D.A.; Hansbro, P.M.; Fujita, T.; Wark, P.A. Impaired antiviral
stress granule and ifn-beta enhanceosome formation enhances susceptibility to influenza infection in chronic
obstructive pulmonary disease epithelium. Am. J. Respir. Cell Mol. Biol. 2016, 55, 117–127. [CrossRef]

77. Potus, F.; Malenfant, S.; Graydon, C.; Mainguy, V.; Tremblay, E.; Breuils-Bonnet, S.; Ribeiro, F.; Porlier, A.;
Maltais, F.; Bonnet, S.; et al. Impaired angiogenesis and peripheral muscle microcirculation loss contribute to
exercise intolerance in pulmonary arterial hypertension. Am. J. Respir. Crit Care Med. 2014, 190, 318–328.
[CrossRef]

78. Gubrij, I.B.; Pangle, A.K.; Pang, L.; Johnson, L.G. Reversal of microrna dysregulation in an animal model of
pulmonary hypertension. PLoS ONE 2016, 11, e0147827. [CrossRef]

79. Xie, W.; Lu, Q.; Wang, K.; Lu, J.; Gu, X.; Zhu, D.; Liu, F.; Guo, Z. Mir-34b-5p inhibition attenuates lung
inflammation and apoptosis in an lps-induced acute lung injury mouse model by targeting progranulin.
J. Cell Physiol. 2018, 233, 6615–6631. [CrossRef]

80. Adyshev, D.M.; Moldobaeva, N.; Mapes, B.; Elangovan, V.; Garcia, J.G. Microrna regulation of nonmuscle
myosin light chain kinase expression in human lung endothelium. Am. J. Respir. Cell Mol. Biol. 2013, 49,
58–66. [CrossRef]

81. Adyshev, D.M.; Elangovan, V.R.; Moldobaeva, N.; Mapes, B.; Sun, X.; Garcia, J.G. Mechanical stress induces
pre-b-cell colony-enhancing factor/nampt expression via epigenetic regulation by mir-374a and mir-568 in
human lung endothelium. Am. J. Respir. Cell Mol. Biol. 2014, 50, 409–418.

82. Ge, L.; Habiel, D.M.; Hansbro, P.M.; Kim, R.Y.; Gharib, S.A.; Edelman, J.D.; Konigshoff, M.; Parimon, T.;
Brauer, R.; Huang, Y.; et al. Mir-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways.
JCI Insight 2016, 1, e90301. [CrossRef]

83. Chiba, Y.; Tanabe, M.; Goto, K.; Sakai, H.; Misawa, M. Down-regulation of mir-133a contributes to
up-regulation of rhoa in bronchial smooth muscle cells. Am. J. Respir. Crit Care Med. 2009, 180, 713–719.
[CrossRef]

84. Pandit, K.V.; Corcoran, D.; Yousef, H.; Yarlagadda, M.; Tzouvelekis, A.; Gibson, K.F.; Konishi, K.; Yousem, S.A.;
Singh, M.; Handley, D.; et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am. J. Respir.
Crit. Care Med. 2010, 182, 220–229. [CrossRef]

85. Asquith, M.; Pasala, S.; Engelmann, F.; Haberthur, K.; Meyer, C.; Park, B.; Grant, K.A.; Messaoudi, I.
Chronic ethanol consumption modulates growth factor release, mucosal cytokine production, and microrna
expression in nonhuman primates. Alcohol. Clin. Exp. Res. 2014, 38, 980–993. [CrossRef]

86. Zhou, S.; Wang, Y.; Meng, Y.; Xiao, C.; Liu, Z.; Brohawn, P.; Higgs, B.W.; Jallal, B.; Jia, Q.; Qu, B.; et al.
In vivo therapeutic success of microrna-155 antagomir in a mouse model of lupus alveolar hemorrhage.
Arthritis Rheumatol. 2016, 68, 953–964. [CrossRef]

87. Morales, L.; Oliveros, J.C.; Fernandez-Delgado, R.; tenOever, B.R.; Enjuanes, L.; Sola, I. Sars-cov-encoded
small rnas contribute to infection-associated lung pathology. Cell Host Microbe 2017, 21, 344–355. [CrossRef]

http://dx.doi.org/10.3892/ijo.2017.4133
http://dx.doi.org/10.1007/s00109-017-1541-5
http://dx.doi.org/10.3390/ijms17081232
http://dx.doi.org/10.1038/ncomms2876
http://dx.doi.org/10.1007/s10456-015-9474-5
http://dx.doi.org/10.1172/JCI123106
http://dx.doi.org/10.1165/rcmb.2015-0306OC
http://dx.doi.org/10.1164/rccm.201402-0383OC
http://dx.doi.org/10.1371/journal.pone.0147827
http://dx.doi.org/10.1002/jcp.26274
http://dx.doi.org/10.1165/rcmb.2012-0397OC
http://dx.doi.org/10.1172/jci.insight.90301
http://dx.doi.org/10.1164/rccm.200903-0325OC
http://dx.doi.org/10.1164/rccm.200911-1698OC
http://dx.doi.org/10.1111/acer.12325
http://dx.doi.org/10.1002/art.39485
http://dx.doi.org/10.1016/j.chom.2017.01.015


Int. J. Mol. Sci. 2019, 20, 3938 32 of 32

88. Zhou, P.; Tu, L.; Lin, X.; Hao, X.; Zheng, Q.; Zeng, W.; Zhang, X.; Zheng, Y.; Wang, L.; Li, S. Cfa-mir-143
promotes apoptosis via the p53 pathway in canine influenza virus h3n2-infected cells. Viruses 2017, 9.
[CrossRef]

89. Tamgue, O.; Gcanga, L.; Ozturk, M.; Whitehead, L.; Pillay, S.; Jacobs, R.; Roy, S.; Schmeier, S.; Davids, M.;
Medvedeva, Y.A.; et al. Differential targeting of c-maf, bach-1, and elmo-1 by microrna-143 and microrna-365
promotes the intracellular growth of mycobacterium tuberculosis in alternatively il-4/il-13 activated
macrophages. Front. Immunol. 2019, 10, 421. [CrossRef]

90. Zhang, F.; Sun, X.; Zhu, Y.; Qin, W. Downregulation of mir-146a inhibits influenza a virus replication by
enhancing the type i interferon response in vitro and in vivo. Biomed. Pharmacother 2019, 111, 740–750.
[CrossRef]

91. Liao, W.; Dong, J.; Peh, H.Y.; Tan, L.H.; Lim, K.S.; Li, L.; Wong, W.F. Oligonucleotide therapy for obstructive
and restrictive respiratory diseases. Molecules 2017, 22. [CrossRef]

92. Mei, D.; Tan, W.S.D.; Wong, W.S.F. Pharmacological strategies to regain steroid sensitivity in severe asthma
and copd. Curr. Opin. Pharmacol. 2019, 46, 73–81. [CrossRef]

93. Testa, U.; Pelosi, E.; Castelli, G.; Labbaye, C. Mir-146 and mir-155: Two key modulators of immune response
and tumor development. Noncoding RNA 2017, 3. [CrossRef]

94. Sessa, R.; Hata, A. Role of micrornas in lung development and pulmonary diseases. Pulm. Circ. 2013, 3,
315–328. [CrossRef]

95. Panwar, B.; Omenn, G.S.; Guan, Y. Mirmine: A database of human mirna expression profiles. Bioinformatics
2017, 33, 1554–1560. [CrossRef]

96. Zhang, J.G.; Wang, J.J.; Zhao, F.; Liu, Q.; Jiang, K.; Yang, G.H. Microrna-21 (mir-21) represses tumor suppressor
pten and promotes growth and invasion in non-small cell lung cancer (nsclc). Clin. Chim. Acta 2010, 411,
846–852. [CrossRef]

97. Porteous, M.K.; Lee, J.C. Primary graft dysfunction after lung transplantation. Clin. Chest Med. 2017, 38,
641–654. [CrossRef]

98. Liu, G.; Friggeri, A.; Yang, Y.; Milosevic, J.; Ding, Q.; Thannickal, V.J.; Kaminski, N.; Abraham, E. Mir-21
mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 2010, 207, 1589–1597.
[CrossRef]

99. O’Connell, R.M.; Taganov, K.D.; Boldin, M.P.; Cheng, G.; Baltimore, D. Microrna-155 is induced during the
macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 2007, 104, 1604–1609. [CrossRef]

100. Comer, B.S.; Camoretti-Mercado, B.; Kogut, P.C.; Halayko, A.J.; Solway, J.; Gerthoffer, W.T. Cyclooxygenase-2
and microrna-155 expression are elevated in asthmatic airway smooth muscle cells. Am. J. Respir. Cell
Mol. Biol. 2015, 52, 438–447. [CrossRef]

101. Suojalehto, H.; Toskala, E.; Kilpelainen, M.; Majuri, M.L.; Mitts, C.; Lindstrom, I.; Puustinen, A.; Plosila, T.;
Sipila, J.; Wolff, H.; et al. Microrna profiles in nasal mucosa of patients with allergic and nonallergic rhinitis
and asthma. Int. Forum Allergy Rhinol. 2013, 3, 612–620. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/v9120360
http://dx.doi.org/10.3389/fimmu.2019.00421
http://dx.doi.org/10.1016/j.biopha.2018.12.103
http://dx.doi.org/10.3390/molecules22010139
http://dx.doi.org/10.1016/j.coph.2019.04.010
http://dx.doi.org/10.3390/ncrna3030022
http://dx.doi.org/10.4103/2045-8932.114758
http://dx.doi.org/10.1093/bioinformatics/btx019
http://dx.doi.org/10.1016/j.cca.2010.02.074
http://dx.doi.org/10.1016/j.ccm.2017.07.005
http://dx.doi.org/10.1084/jem.20100035
http://dx.doi.org/10.1073/pnas.0610731104
http://dx.doi.org/10.1165/rcmb.2014-0129OC
http://dx.doi.org/10.1002/alr.21179
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	Lung Cancer 
	Humans 
	Animals 
	Cell lines 

	Bronchial Hypersensitivity 
	Humans 
	Animals 
	Cell lines 

	Pulmonary Hypertension 
	Humans 
	Animals 
	Cell lines 

	Lung Injury 
	Animals 
	Cell lines 

	Other Conditions 
	Humans 
	Animals 
	Cell Lines 


	Discussion 
	Conclusions 
	References

