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Mitochondrial genomic variation drives
differential nuclear gene expression in
discrete regions of Drosophila gene and
protein interaction networks
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Abstract

Background: Mitochondria perform many key roles in their eukaryotic hosts, from integrating signaling pathways
through to modulating whole organism phenotypes. The > 1 billion years of nuclear and mitochondrial gene co-
evolution has necessitated coordinated expression of gene products from both genomes that maintain mitochondrial,
and more generally, eukaryotic cellular function. How mitochondrial DNA (mtDNA) variation modifies host fitness has
proved a challenging question but has profound implications for evolutionary and medical genetics. In Drosophila, we
have previously shown that recently diverged mtDNA haplotypes within-species can have more impact on organismal
phenotypes than older, deeply diverged haplotypes from different species. Here, we tested the effects of mtDNA
haplotype variation on gene expression in Drosophila under standardized conditions. Using the Drosophila Genetic
Reference Panel (DGRP), we constructed a panel of mitonuclear genotypes that consists of factorial variation
in nuclear and mtDNA genomes, with mtDNAs originating in D. melanogaster (2x haplotypes) and D. simulans
(2x haplotypes).

Results: We show that mtDNA haplotype variation unequivocally alters nuclear gene expression in both females and
males, and mitonuclear interactions are pervasive modifying factors for gene expression. There was appreciable overlap
between the sexes for mtDNA-sensitive genes, and considerable transcriptional variation attributed to particular
mtDNA contrasts. These genes are generally found in low-connectivity gene co-expression networks, occur in
gene clusters along chromosomes, are often flanked by non-coding RNA, and are under-represented among
housekeeping genes. Finally, we identify the giant (gt) transcription factor motif as a putative regulatory sequence associated
with mtDNA-sensitive genes.

Conclusions: There are predictive conditions for nuclear genes that are influenced by mtDNA variation.
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Background
Mitochondria are master regulators of cellular function,
cell death, signaling and a host of metabolic processes
including ATP production and fatty acid oxidation [1,
2]. As major mediators of cellular processes, dysfunction
of mitochondria has been associated with a large num-
ber of pathologies [3], which can have a strong genetic

basis [4–6]. The genetics of mitochondrial disease and
mitochondrial dysfunction more generally is complex
because the mitochondrion is encoded by two distinct
genomes; the nuclear genome (nDNA) encodes > 1000
gene products that function in the mitochondrion, and
the mitochondrial genome (mtDNA) contains 13 protein
coding genes, 22 transfer RNAs and two ribosomal
RNAs that are expressed within the organelle. Greater
than one billion years of nuclear and mtDNA gene co-
evolution [7] has necessitated the coordinated expression
of genes on each genome to precisely control protein
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products in the two-genome-encoded electron transport
chain (ETC) – a genetic model for gene-gene and pro-
tein-protein interactions (GGI and PPI, respectively) [8].
The protein products of both genomes are required for
efficient mitochondrial biogenesis, and mutations in
both nDNA and mtDNA in isolation or in combination
can cause deleterious phenotypic variation [6, 9, 10].
MtDNAs accumulate mutations at a high rate and these

may be in the form of SNPs, or small and large scale dele-
tions [11]. How these haplotype variants, deleterious
somatic point mutations, and large scale deletions affect
phenotypes has been an active research area for the last 30
years [12, 13] and is motivating promising new approaches
to prevent and treat inherited mtDNA-associated diseases
in humans [14–17] .
Mitochondrial replacement therapies are among the

most promising of these therapies, but they face the
challenge of identifying and circumventing unfavorable
(negative) interactions between mtDNA and nDNA. We
refer to these types of gene x gene interactions as mito-
nuclear epistases (G x G). Mitonuclear epistases are
pervasive in model organism research [18–24] and are
largely unpredictable. More generally, epistatic interac-
tions between nuclear genes are presumed to explain a
significant amount of the ‘missing heritability’ in com-
plex traits [25, 26] and diseases [27, 28], therefore any
pharmacogenomic or personalized medicine approach to
disease management will require precise knowledge of
how genes interact with their genetic and physical envi-
ronments to accurately predict efficacy and safety.
We have successfully mimicked a mitochondrial disease

in the fruit fly, Drosophila melanogaster, using mitonuclear
introgression of isogenic nuclear backgrounds and variable
mitochondrial haplotypes in a phylogenetic context [19,
29]. Importantly, we have shown that the amount of
genetic distance between mtDNA haplotypes (numbers of
synonymous or non-synonymous mutations) is a poor
predictor of whole organism phenotypes [18, 20]. For
example, if mutation load/sequence divergence per se is a
predictor of phenotypic divergence, one would expect the
organisms harboring the most dissimilar mtDNA haplo-
types to demonstrate the most divergent phenotypic vari-
ation. In the majority of our studies we have failed to
observe this simple expectation of genome co-adaptation/
co-evolution, partly because mtDNA haplotypes exert their
effects in a context-dependent manner [20, 21, 30]. That is,
haplotype substitutions behave differently depending on
the isogenic nuclear genome they are paired with (G x G
sensitive), or the abiotic environment they are placed in (G
x G x E effect) [20, 22, 30–33]. We have observed mitonuc-
lear genotypes that do follow this simple coadaptation rule,
but these represent only a minority of the tested mitonuc-
lear epistatic combinations [20, 34]. The questions there-
fore are why are some nuclear genetic backgrounds more

sensitive to mtDNA variation (ΔmtDNA) than others?
And could we use the variable penetrance of mtDNA vari-
ation on mitochondrial disease [35] or phenotypic expres-
sion to identify core regions of the interactome [36] that
are sensitive to ΔmtDNA? This might help turn a hitherto
measurement exercise into a predictive model.
Since nuclear genetic backgrounds can exert a large

influence on the sensitivity to mtDNA variation, and the
effects do not repeatedly follow the simple expectations of
co-adaptation, at least in Drosophila, we postulate that
underlying higher-order genetic and protein interaction
networks are central modifiers of the sensitivity to
ΔmtDNA. The lack of uniform ΔmtDNA effects across the
majority of nuclear genetic backgrounds [22, 37] (see also
[38]) suggests that core networks of genes that play
fundamental, or housekeeping roles, are not exposed to
ΔmtDNA effects. We therefore wanted to ask how mtDNA
variation alters gene expression in the context of GGI and
PPIs.
To test this hypothesis we used a subset of a previ-

ously constructed panel of D. melanogaster mitonuclear
genotypes whose nuclear variation originates in the
Drosophila Genetic Reference Panel (DGRP). The nu-
clear backgrounds used were DGRP-315 and DGRP-820
since these revealed a sensitivity to mtDNA for the
whole organism phenotype: egg-to-adult development
time [20]. Using these two nDNA backgrounds, we
tested whether mtDNA influenced nuclear gene expres-
sion (a) within a nuclear background (haplotype effects)
(4 mtDNA × 1 nDNA (DGRP-315)), and (b) across nu-
clear genotypes (G x G) (2 mtDNA × 2 nDNA (DGRP-
315 and DGRP-820)). We found significant mtDNA
‘haplotype’ and mtDNA ‘species’ effects that are enriched
in low-connectivity regions of GGI networks, suggesting
ΔmtDNA does not influence hubs, or highly connected
network regions. We also observed non-random cluster-
ing of highly related or tandem duplicated genes that
were also sensitive to ΔmtDNA. Furthermore, mtDNA
effects are under-enriched in housekeeping genes. We
further show that these mtDNA-sensitive genes, while
evident in low-connectivity regions of GGI and PPI net-
works, have a strong signal for the transcription factor
binding motif associated with giant (gt). The strong asso-
ciation between transcription factor binding sites may
provide a systems-wide explanation of why only certain
regions of the GGI and PPI networks are sensitive to
mtDNA variation, providing a gene regulation compo-
nent of mtDNA effects.

Results
mtDNA effects on nuclear gene expression are numerous
and roughly equal in each sex
Our experimental design allowed examination of between-
mtDNA haplotype contrasts at the individual haplotype
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and between-species levels. The phylogenetic framework
for mtDNA contrasts is shown in Fig. 1a. The dataset for
the DGRP-315 background consisted of four mtDNA
haplotypes that are differentiated by up to 95 amino acid
polymorphisms in their protein-coding sequences and up
to 688 genome-wide SNPs across all mtDNA features
except the AT-rich control region [18, 39]. We first asked
whether there was a correlation between the numbers of
pairwise amino acid substitutions in the protein coding
region of the mtDNA and the numbers of differentially
expressed (hereafter, DE) genes with FDR < 0.05 in the
pairwise gene expression contrasts (Fig. 1b). We found no
evidence that mtDNA amino acid divergence was associ-
ated with the number of DE genes in the combined female
and male datasets (Pearson’s r = 0.22, p = 0.49), the female
dataset alone (Pearson’s r = 0.59, p = 0.21), and the male
dataset (Pearson’s r = − 0.15, p = 0.77). We next tested
whether the numbers of total substitutions across all

features (excluding the AT-rich control region) were corre-
lated with DE genes. We found qualitatively the same
result of no correlation between molecular divergence and
numbers of DE genes: females and males combined (Pear-
son’s r = 0.13, p = 0.68), females alone (Pearson’s r = 0.49,
p = 0.32), and males alone (Pearson’s r = − 0.23, p = 0.66).
These results suggest that our earlier studies’ evidence of
no consistent molecular distance effects at the expression
of whole organism phenotypes is recapitulated with expres-
sion of transcripts, at least to the level of divergence
between the mtDNAs of D. melanogaster and D. simulans.
We next performed an analysis of deviance (ANO-

DEV)-type test [40, 41] across all four mtDNA haplo-
types in each sex. In this ΔmtDNA ‘haplotype’ test all
female haplotypes were simultaneously compared and all
male haplotypes were simultaneously compared in two
independent separate-sex analyses. We first created a
matrix of all six possible independent contrasts in edgeR

Fig. 1 Experiment design and DGRP-315 differentially expressed (DE) gene numbers. The cartoon phylogeny in (a) describes the two D. melanogaster (D.
mel) haplotypes, and the two D. simulans (D. sim) haplotypes. Branch lengths are not proportional to the degree of divergence. Numbers of non-
synonymous SNPs among the haplotypes are reported in the bottom section of (a) in light blue. Numbers of total genome-wide SNP substitutions
(excluding the AT-rich control region) are shown in the top part of the figure in pink. Pairwise contrasts: the numbers of DE genes (FDR < 0.05) in each
pairwise haplotype contrast are shown in (b). Female contrasts are shown in violet (bottom of plot). Male contrasts are shown in the top part in dark blue.
Numbers of DE genes (FDR < 0.05) determined by analysis of deviance-type analyses are shown for ΔmtDNA ‘haplotype’ (c) and ΔmtDNA ‘species’ (d)
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(e.g. Zim53-OreR, Zim53-siI, Zim52-sm21, OreR-siI,
OreR-sm21, siI-sm21). To identify genes that were DE
between the four haplotypes, we performed generalized
linear model likelihood ratio tests on the model fit using
the glmLRT function and tag-wise dispersion estimates,
as implemented in edgeR. We found the numbers of
genes that were differentially expressed within the
DGRP-315 nuclear background to be roughly equal in
females (FDR < 0.05, n = 95 genes) and males (FDR <
0.05, n = 81 genes) (Fig. 1c). A similar result was found
for mtDNA ‘species’ effects in which a larger number of
genes were DE in females (FDR < 0.05, n = 47) than
males (FDR < 0.05, n = 21) (Fig. 1d). For these ΔmtDNA
‘species’ analyses, the RNAseq count data representing
the D. mel haplotypes (Zim53 and OreR) were grouped
together and contrasted against the D. sim haplotypes
(siI and sm21), which were also combined. The smaller
numbers of genes found at the ‘species’ level is consist-
ent with the overall lack of molecular distance effect, but
it is important to note that these effects cannot be delin-
eated with a small number of haplotypes within each
species. For example, a large individual within-species
mtDNA ‘haplotype’ effect can reveal itself as a ‘species’
effect if the variance between replicates of the other hap-
lotypes is low.
We next wanted to test whether broad scale mitonuc-

lear epistasis (interactions between the complete mtDNA
and complete nDNA genomes, and not specific SNP inter-
actions) were present in a sub-set of these genotypes. The
genotypes we used in this test were Zim53;DGRP-315,
sm21;DGRP-315, Zim53;DGRP-820, and sm21;DGRP-820.
The epistasis model was the haplotype difference within
DGRP-315 nuclear background contrasted with the haplo-
type difference in the DGRP-820 nuclear background (e.g.
(Zim53;DGRP-315- sm21;DGRP-315) – (Zim53;DGRP-
820 - sm21;DGRP-820)). The numbers of genes that were
influenced by broad scale mitonuclear epistasis was much
larger in females (FDR < 0.05, n = 606 genes) than males
(FDR < 0.05, n = 18), suggesting the Zim53-sm21 mtDNA
haplotype contrast was variable across DGRP-315 and the
alternative DGRP-820 nuclear backgrounds (see Methods
for details), and that effect was more pronounced in
females. In the remainder of this article we refer to the de-
viance analysis as ΔmtDNA ‘haplotype’, and the species-
level analysis as ΔmtDNA ‘species’. The epistasis contrast
is referred to as ‘mitonuclear variation’ and ‘G x G’.
There was measurable overlap between the sexes for

those genes DE by ΔmtDNA ‘haplotype’. The list of the
FDR < 0.05 DE genes are shown in Additional file 1:
Table S1, and contains genome coordinates and gene
IDS of the private and overlapping (shared) genes. There
was a strong representation of ionotropic receptors and
cuticular proteins in the female-specific list, and Turan-
dot and seminal proteins in males. The shared list was

dominated by mitochondrial DNA genes and ionotropic
receptors (Ir67c and Ir93a), along with shadow, actin
88F, and odorant receptors (Or85F and Or67a). Gene
ontology analysis of the female DE genes revealed the
most enriched process term was ‘chitin-based cuticle
development’ (GO:0040003; FDR q-value [42]=2.56e-04),
while the most enriched term in males was ‘cellular
response to UV’ (GO:0034644), although this was not
significant after multiple test correction (Benjamini and
Hochberg [42] q = 0.39). Of the 20 most significantly DE
genes in each sex, there was an 11 gene overlap. Six of
these genes were mtDNA-encoded, and the remaining
genes were: shadow (a mitochondrial-localized cyto-
chrome P450 involved in ecdysteroid biosynthesis), Iono-
trophic receptor 93a (a glutamate receptor), CG33465 (a
serine protease), Ionotropic receptor 67c (a membrane
bound ligand gated ion channel protein), and Odorant
receptor 85f (a transmembrane chemoreceptor that me-
diates a response to volatile chemicals).
There was a smaller representation of significant

ΔmtDNA ‘species’ genes (Fig. 1d) and small overlap be-
tween males and females for the genes that are DE
(FDR < 0.05; Additional file 2: Table S2). Among the
genes that were consistently DE across the sexes and not
mtDNA-encoded were: CG40211 (formally mapped to
heterochromatin region of 2R [43]), lethal (2) giant lar-
vae, Ionotropic receptor 47a, CG33465, Ionotropic recep-
tor 67c, CG1750, shadow, and Ionotropic receptor 93a.

MtDNA-sensitive genes are physically clustered
throughout the genome
To examine whether there are physical regions of the
genome that show enrichment (clustering) of mtDNA-
sensitive genes we plotted a Manhattan-style figure of
the log10 p-value against the linearized genome coordi-
nates (Fig. 2). We then formally analyzed the distribution
of genes along the chromosomes using Cluster Locator
(http://clusterlocator.bnd.edu.uy/) [44] and the D. mela-
nogaster reference genome (Flybase Release 6.17) with a
Max-gap = 5 parameter. Two-sided Kolmogorov-Smirnov
tests were used to determine if the genes entered in the
list were uniformly distributed along the chromosome
arms and whether the numbers of realized clusters is dif-
ferent to 1000 randomly generated gene lists. We chose
the Top 200 p-value ranked genes as the ‘test set’ in each
contrast, complimentary to the contrasts shown in Fig. 2:
ΔmtDNA ‘haplotype’ variation (Fig. 2a, b); ΔmtDNA ‘spe-
cies’ variation (Fig. 2d, e); mitonuclear (G x G) variation
(Fig. 2g, h) in both females and males, respectively. The
top 200 genes represent the top 1.4% of genes as ranked
by their p-value significance. In all six analyses, the top
200 genes all had an un-adjusted p < 0.05 but the top 200
‘test set’ was used to maintain an equivalent number of
genes in each cluster analysis.
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Fig. 2 Physical location and ID overlap between the sexes of DE genes in the DGRP-315 nuclear background. Physical chromosome locations are
shown on the abscissa of the Manhattan plots (a, b, d, e, g, h) and the significance (−log10 p-value) is shown on the ordinal scale. Each datum
represents an individual transcript. Female ΔmtDNA ‘haplotype’, ΔmtDNA ‘species’, and G x G ‘broadscale epistasis’ distributions are shown in a, d
and g, respectively. Male ΔmtDNA ‘haplotype’, ΔmtDNA ‘species’, and G x G ‘broadscale epistasis’ distributions are shown in b, e, and h, respectively.
Between-sex Venn intersections of DE genes (FDR < 0.05) and shown for ΔmtDNA ‘haplotype’, ΔmtDNA ‘species’, and G x G ‘broadscale epistasis’ in c, f,
and i, respectively. Broadscale epistasis represents the totality of interactions between the complete nuclear genomes and the complete mtDNA
genomes. In other words, these are not specific SNP interactions, but whole scale genome interactions. Broadscale mitonuclear interaction genes are
estimated as the (Zim53-sm21) mtDNA contrast in the DGRP-315 background contrasted against the (Zim53-sm21) contrast in the DGRP-820 background
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In all gene lists, we identified gene clusters that are not
randomly distributed across chromosome arms and which
are sensitive to one or more forms of mtDNA variation
(Table 1). For example, genes that are sensitive to ΔmtDNA
haplotype are often clustered and adjacent e.g. a cluster of
genes in the chitin-related Tweedle gene family coupled
with a cluster of chitin protein genes, both on chromosome
3R in females (Fig. 3). Likewise, in males, significant Turan-
dot genes on the 3R chromosome arm are clustered.
Large, non-random gene clusters tended to be tandem

repeats of duplicated genes and these are often flanked by
long and short non-coding RNAs and antisense RNAs,
and associated with transcription factor binding site hot
spots. These non-random gene clusters are not surprising
since genes that are physically linked by necessity of their
functions or spatial-temporal specificity are likely to be
under similar co-expression / co-suppression patterns
[45]. Indeed, we find that mtDNA-sensitive genes that are
physically clustered show similar norms of reaction across
the mtDNA haplotypes, and these clusters therefore sug-
gest shared regulatory elements (Fig. 3). Females generally
showed a larger number of clusters in the three contrast
types (Table 1), which is expected given females also show
slightly greater numbers of significant genes. Crucially
though, in both sexes and across all three contrast types
the proportions of genes that are found in clusters are
greater than would be expected by chance alone (p < 1e-

10; Table 1). This finding suggests that the mtDNA
impact on nuclear genes involves higher-order regulatory
interactions including co-expressed genes that are func-
tionally, and in many cases, physically linked. The signifi-
cant physical clustering in the most mtDNA-sensitive
transcripts is further supported by re-analysis of data from
a previous mitonuclear gene expression study [21, 30]. In
both females and males the signature of statistical physical
clustering is qualitatively consistent if a much smaller list
of genes passing FDR < 0.05 is used (Additional file 6:
Table S6). In some cases the signal remains with samples
of the top 200–400 p-value ranked genes, but does erode
rapidly with descending position in sequential sets of 200
genes in such a list (Additional file 9: Figure S3).
There was considerable overlap between females and

males for the genes that were sensitive to the above forms
of variation. Using a FDR < 0.05 cut-off, 27 genes were
shared between the sexes for ΔmtDNA ‘haplotype’ variation
(Fig. 2c; Additional file 1: Table S1), 16 genes were shared
between the sexes for ΔmtDNA ‘species’ variation (Fig. 2f;
Additional file 2: Table S2), and four were shared between
the sexes for mitonuclear (G x G) variation (Fig. 2i).

Gene networks with high mtDNA-sensitive gene
representation are poorly connected
So far, we have shown the architecture of mtDNA-sensi-
tive genes is not random with respect to genome physical

Table 1 MtDNA-sensitive genes are more likely to be clustered than randomly distributed. Results of Cluster Locator [44] analyses
are shown, along with D (a uniform distribution test statistic) and the p-value of the distribution. The proportion of genes that are
statistically clustered and the respective p-value are shown for each contrast type. The bottom part of the table includes the size
distribution of clusters in each analysis type. The integer represents the number of clusters of a given size between 2 and 7 genes.
Obviously, the portion of the chromosome can include many more genes as the gap penalty was set at five for all analyses (e.g. there
can be up to five genes between the ‘clustered’ genes and a cluster size of 7 represents a potential window size of up to 32 genes)

Chromosome arm

2 L 2R 3 L 3R X

Sex Contrast # Clusters D P D P D P D P D P % genes clustered P-value

F Δ mtDNA haplotype 27 0.21 0.59 0.18 0.36 0.08 0.82 0.13 0.50 0.21 0.20 43.53 < 1.00e-10

F Δ mtDNA species 18 0.14 0.59 0.15 0.41 0.16 0.34 0.16 0.17 0.25 0.06 24.56 8.12E-04

F G x G effect 27 0.15 0.46 0.25 0.04 0.15 0.10 0.10 0.83 0.19 0.15 38.02 < 1.00e-10

M Δ mtDNA haplotype 21 0.18 0.18 0.21 0.13 0.12 0.62 0.09 0.77 0.20 0.42 28.25 6.86E-05

M Δ mtDNA species 19 0.12 0.89 0.25 0.01 0.20 0.07 0.09 0.79 0.26 0.27 25.15 5.88E-04

M G x G effect 20 0.10 0.96 0.09 0.87 0.16 0.48 0.14 0.23 0.17 0.60 27.88 2.75E-05

Cluster size distribution (number of genes in cluster, gaps = 5)

2 3 4 5 6 7

F Δ mtDNA haplotype 18 3 2 3 1

F Δ mtDNA species 15 1 1 1

F G x G effect 19 3 2 1 1 1

M Δ mtDNA haplotype 17 1 2 1

M Δ mtDNA species 15 3 1

M G x G effect 15 4 1

p-values in bold are significant at α=0.05
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location and mean expression level. To better understand
if the non-random associations were related to the under-
lying gene co-expression networks, we mapped significant
mtDNA-sensitive genes onto a de novo Drosophila Genet-
ics Reference Panel (DGRP) gene co-expression network
constructed using a Weighted Gene Co-expression Net-
work Analysis (WGCNA) (see Methods for details). The
WGCNA network we produced from the 185-genotype
DGRP whole transcriptome resource [46] contained 16
proper modules of statistically co-expressed genes, and
one improper module containing genes that cannot be
statistically grouped with a co-expression gene set (e.g.
those genes in proper modules) [47]. By far the largest
proportion of the genes that were sensitive to mtDNA
variation in both males and females were associated with
the improper module with extremely low or zero connect-
ivity, suggesting mtDNA sensitive genes are underrepre-
sented in well-connected modules, even though we
identified local co-regulation signatures on small numbers
of clustered genes (above; Fig. 3). Approximately 65% of
ΔmtDNA ‘haplotype’-sensitive genes (P < 0.05 threshold)
in females are found in the improper module. The zero-
linkage improper module represents ~ 42% of the total
genes that were analyzed in the network, resulting in an
overall and significant 1.49 x enrichment of mtDNA-sen-
sitive genes (Hypergeometric test: p = 3.77e-22) in that
module. The same qualitative effect was observed if we
used a strict significance cut-off of FDR < 0.05 (enrich-
ment: 1.45 x expected, Hypergeometric test: p < 0.001).

We observed the same effect in males for P < 0.05
threshold (1.50 x enrichment, Hypergeometric test: p =
3.30e-34) and FDR < 0.05 (1.73 x expected, Hypergeo-
metric test, p = 1.69e-08). Taken together, we find that
the poorly-connected module with no signature of gene
co-expression is enriched for genes that are sensitive to
mtDNA variation in both sexes.
Our main motivation for using the complete DGRP

collection to construct our co-expression gene network
was partly to capture the network topology that is evi-
dent across a large number of genotypes (185 DGRP
lines), but mainly because we did not want the network
topology to be constrained or influenced by our experi-
mental design. In order to confirm that our mtDNA-
sensitive gene enrichment in poorly connected improper
modules was repeatable in an independently constructed
network, we also performed WGCNA on the RNA-seq
reads we generated in the current investigation. We
identified 31 modules of co-expressed genes and one
improper module of low/zero connectivity genes. In our
second de novo network, the improper (low/zero con-
nectivity) module contained 2802 genes out of a total 13,
738 (~ 20.4%), yet it contained 69/95 (72.6%) of the sig-
nificant ΔmtDNA haplotype-sensitive genes in females
(3.5 x expected, Hypergeometric test: p = 3.90e-28), and
57/81 (70.4%) of the significant ΔmtDNA haplotype
genes in males (3.4 x expected, Hypergeometric test: p =
3.31e-22). In both of our constructed networks there
were several modules that contained mtDNA-sensitive

Fig. 3 Differentially expressed genes statistically cluster within chromosomes. Shown is an example of a female gene cluster demonstrating
consistent norms of reaction across contiguous genes on the 3R chromosome arm. The cluster is flanked by a non-coding RNA, a feature we
identified across multiple clusters. The run of significant and contiguous genes is bounded by non-significant genes. CPM = counts per million, a
measure of relative transcript expression
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genes (Additional file 7: Figure S1) however no individual
module was statistically overrepresented, or enriched.

MtDNA contrasts provide unique signatures of
enrichment in protein-protein interaction networks
We have previously documented genotype-specific re-
sponses to mitonuclear variation whereby different nu-
clear backgrounds demonstrate almost unique transcript
responses to mtDNA variation in Drosophila [21, 30].
We have further demonstrated that gene-gene module
connectivity is strongly associated with the sensitivity of
a gene to mtDNA variation (see above). We next wanted
to test the hypothesis that the genes that are induced or
suppressed when placed in an alternative mtDNA envir-
onment, are connected through functional pathways,
and/or have some underlying co-regulatory signature.
To test this we used systematic functional annotation

and visualization of biological networks (SAFE) [48], along
with network analysis to compare and map enriched net-
work regions in an established protein-protein interaction

(PPI) network [49]. In this analysis, each node of the net-
work (protein-coding gene) has an attribute score: the
log10 p-value of an mtDNA contrast of interest. The sum
of the attribute scores (−log10 p-values) in the focal gene’s
local interaction neighborhood is then compared to a
random expectation model and a p-value is calculated.
The degree of neighborhood enrichment of high or low
attribute values is represented by a heat component and
visually represented by color intensity. Figure 4 shows the
SAFE enrichments of a subset (ΔmtDNA haplotype
(Fig. 4a & d), ΔmtDNA species (Fig. 4b & e), and GXG
(Fig. 4c & f)) of all mtDNA contrasts in females (Fig. 4a, b
& c) and males (Fig. 4d, e & f). Across the nine analysis
types (Additional file 8: Figure S2), there are regions of the
PPI network that are consistently enriched for proteins
whose genes are highly differentially expressed and in the
same way there are regions that are unique in each ana-
lysis. Consistent with the GGI analysis, we find poorly
connected regions of the PPI network to have proportion-
ally more mtDNA-sensitive genes. The main difference

Fig. 4 Mapping DE gene enrichments using SAFE and a PPI network analysis. The network topology used in these analyses is based on the network
of [49]. The network topology is identical in a-f. Highly connected genes are present at the center of the network. Poorly connected (~ 2 to 20 gene)
sub networks are shown at the bottom and top right of each figure. Enriched regions of DE genes in the PPI network are displayed as a heat
component. Red is enriched, violet is not enriched. Contrasts are as follows: ΔmtDNA ‘haplotype’ (a, d), ΔmtDNA ‘species’ (b, e), and G x G ‘broadscale
epistasis’ (c, f). Female analyses are shown in A, B, and C, male analyses are shown in D, E, and F Contrasts show both conserved and private regions of
enrichment across contrasts. The six remaining haplotype pairwise comparisons (for females as an example) are shown in Additional file 8: Figure S2
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between the GGI and PPI networks is that the PPI net-
work is composed of known and validated interactions. As
a result, negligible strength protein-protein interactions,
the equivalent of zero/low-connectivity improper GGI
modules, are not present in the PPI network. Nevertheless,
low-connectivity regions of the PPI network are over rep-
resented, suggesting central hubs of the PPI are not major
sources of mtDNA-sensitive genes (Fig. 4).
We formally tested the neighborhood connectivity [50] of

significant and non-significant genes using NetworkAnaly-
zer [51] and found the ΔmtDNA ‘haplotype’ DE genes (top
200 ranked by p-value) had a significantly smaller neighbor-
hood connectivity than non-significant genes in both sexes.
In females the average neighborhood sizes of significant
(high ranking) and non-significant (remaining) genes were
18.74 and 26.18, respectively (Welch’s Two sample t-test:
t = 4.734, df = 245.67, p = 3.721e-06). In males the high
ranking genes were from average neighborhood sizes of
14.97 (significant genes) and 26.42 (remaining genes)
(Welch’s Two sample t-test t = 7.25, df = 244.84, p5.53e-12).
Neighborhood connectivity is the size of the neighborhood
that a focal node is in [47, 51]. Therefore in the PPI net-
work analyzed here, we found the significant DE genes were
from smaller neighborhoods, suggesting they have fewer
interacting genes (and therefore edges). This conjecture
was confirmed by the significantly smaller degree (number
of edges) in ΔmtDNA ‘haplotype’ DE genes (top 200 ranked
by p-value, Welch’s Two sample t-test: Females t = 3.5654,
df = 246.75, p = 0.0004; Males t = 10.302, df = 409.05, p <
2.2e-16) compared to non-significant genes.
The ΔmtDNA ‘species’ sensitive genes and GxG- sensi-

tive genes demonstrated qualitatively the same effects, and
both neighborhood connectivity and degree measures
were significantly smaller in the significant genes lists
compared to the non-significant genes in both sexes.
The GGI and PPI network analyses present a consistent

result that ΔmtDNA ‘haplotype’ sensitive genes are found
in poor connectivity regions of networks, with relatively
small numbers of edges. In a similar manner to the SAFE
algorithm we devised a test to quantify the amount of
mtDNA sensitivity in neighborhoods of genes. For this
test, the nodes that connect directly to a focal gene are
scored as their log (likelihood ratio) from the formal
ΔmtDNA ‘haplotype’ analysis and the mean of all interac-
tions was used to rank the focal genes. For this analysis we
used a more comprehensive PPI network that was ob-
tained from the Drosophila Interactions Database (DroID)
[52]. A full description of the analysis appears in the
Methods. The gene rankings for females and males can be
found in Additional file 3: Table S3. The most highly
ranked genes correspond with regions of the network that
are inherently connected to mtDNA-sensitive genes and
are not necessarily the DE genes themselves. This ap-
proach is likely to be more robust than a straightforward

DE analysis because it uses prior systems information
about known sub-networks to identify hotspots of mtDNA-
sensitive genes. In the same way that we found genes that
were physically co-expressed in clusters along the chromo-
somes, we now had the opportunity to test whether the
interaction network is clustered with respect to mtDNA-
sensitive genes.
A gene ontology (GO) analysis of the 200 top-ranked

focal genes in female neighborhoods revealed significant
enrichment of the ‘electron transport chain’ GO process
term (FDR q-value: 6.2e-45) and the ‘NADH dehydrogen-
ase activity’ functional GO term (FDR q-value: 2.74e-26).
In males, the same two terms -‘electron transport chain’
GO process (FDR q-value: 1.61e-41) and ‘NADH dehydro-
genase activity’ GO function (FDR q-value: 2.28e-24) -
were top-ranked. Clearly, top-ranked focal genes in both
sexes are enriched for similar GO terms and between the
genes lists there was considerable overlap between the
sexes for the top 200 gene identities (intersection = 77
genes; Fig. 5b). It is noteworthy, however, that the GO cat-
egories were similar between the sexes, yet approximately
two-thirds of the genes in the lists were unique to each
sex, suggesting sex-specific gene neighborhood enrich-
ments. The top two focal genes in both sexes were
CG4942 (a membrane insertase associated with the Cox18
family [54]), and mitochondrial Leucyl-tRNA synthetase.
Interestingly, a second membrane insertase (CG6404) was
also the top 20 focal genes in both sexes.
We next conducted a transcription factor motif analysis

to determine if the 77 shared genes between females and
males were enriched for any binding site motifs that may
indicate enrichment for regulatory sequences. Figure 5d
shows the results of this analysis and reveals a strong sig-
nature for the basic leucine zipper factor giant (gt). Two
of the 77 genes in the intersection (bellweather (blw) and
ATPsynthase gamma (ATPsynγ)) are known to directly
interact with giant. Bellweather encodes an alpha subunit
of the mitochondrial F1F0 ATP synthase complex (com-
plex V), the final enzyme of the oxidative phosphorylation
pathway. ATP synthase gamma encodes an additional sub-
unit of Complex V. We repeated this motif enrichment
analysis on the intersected genes from the top 200 genes
in the SAFE analysis (Fig. 5c) for which there was a 34
gene overlap across the sexes (Fig. 5a). Again, we identi-
fied giant as the highest ranked gene by z-score. Three of
the 34 genes in the female-male intersection are known to
interact with giant: ATPsynthaseC (ATPsynC), blw (see
above), and ATPsynγ (see above).
The striking enrichment for the giant transcription fac-

tor binding site (TFBS) motif at high ranking ΔmtDNA
‘haplotype’ neighborhoods provides an opportunity to
make some predictions about where mtDNA substitutions
may affect transcript expression in the context of overall
genome architecture. The giant gene is not differentially
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expressed across mtDNA haplotypes in either females
(p-value = 0.524; FDR = 1.0) or males (p-value = 0.175;
FDR = 1.0). To test the repeatability of the giant TFBS
enrichment across alternative nuclear backgrounds, we
performed SAFE enrichments using the same PPI net-
work along with three different nuclear backgrounds
from previous mitonuclear transcription investigations
(DGRP-820, and OregonR and AustriaW132) [21, 30].
Across all four nuclear backgrounds, giant was the top
ranking TFBS motif overall and was the number one rank
in 4/8 background x sex combinations (Additional file 10:
Figure S4). This result was qualitatively identical when
median rank or mean rank was used, suggesting the giant
association is robust across unrelated isogenic nuclear
backgrounds. Since genome architecture is partly deter-
mined by co-expressed clusters of genes that have devel-
opmental stage-specific expression patterns in general,
we next wanted to test whether the timing of a gene’s
expression was associated with its clustering.

Timing of gene expression during development is poorly
correlated with the norms of reaction of mtDNA-sensitive
genes
We wanted to determine if there was correspondence, or
more generally, overlap between the timing of a gene’s
expression during development, and whether those same

genes were sensitive to mtDNA variation as a 5 days old
adult fly. In other words, we asked whether genes that are
expressed at a particular developmental stage are more
sensitive to mtDNA variation. We obtained D. melanoga-
ster development stage-specific expression data from [55]
and compared the dendrograms of gene expression pat-
terns after hierarchical clustering, with clustering patterns
obtained in our mtDNA-specific RNA-seq dataset. Figure 6
shows an example of the positioning of the top 500 genes
ranked by p-value for the ΔmtDNA ‘species’ effect in
females, with the corresponding genes in the development
stage data set. To quantify the concordance between the
sorting on dendrograms – the “phenetic resemblance”
[56] - as a test of consistency, we estimated entanglement
using the [dendextend] R package [57]. In this context,
entanglement is a measure of the quality of the alignment
of the two dendrograms and therefore is a proxy of the
amount of crossing over between the alternative den-
drograms. High entanglement scores (on a 0- > 1 scale)
indicate poor similarity between dendrograms, while
low entanglement indicates high concordance.
In all nine analysis comparisons, the top 500 genes

ranked by p-value, were found in a mixture of develop-
ment-stages and were not specific to embryo, larval, pupal,
or adult stages. The example shown in Fig. 6 (entangle-
ment = 0.75, post-step2side untangling = 0.22, see Methods

Fig. 5 Female-male enriched gene overlap and transcription factor binding site enrichments. The 200 top ranked genes in both males and
females were intersected for the SAFE (a) and neighborhood enrichment analyses (b). The overlapping proteins were analyzed for transcription
factor binding site enrichment using oPOSSUM-v3 [53]. The SAFE analysis overlap (34 genes (a and c)) and the network neighborhood score
overlap (77 genes (b and d)) were both highly enriched for the giant (gt) TFBS motif. Z-scores represent over-representation of the TFBS motif
relative to a background set. The dashed horizontal lines in d and e represent the mean z-score + 2*SD

Mossman et al. BMC Genomics          (2019) 20:691 Page 10 of 23



for details) describes the female top 500 ΔmtDNA ‘species’
effect genes. The same qualitative effect is observed when
the top 50, 100, or 200 genes are used (data not shown).
The tanglegram (the lines connecting genes with the same
ID) indicates there is some signal of similar sorting of the

behavior of mtDNA-sensitive genes and their behavior
during development. Groups of genes that are clustered in
one dendrogram were also partially clustered in the other
dendrogram and these are identified by more-or-less paral-
lel lines in the tanglegram. This suggests that the norms of

Fig. 6 Tanglegram and heatmaps of the top 500 ΔmtDNA ‘species’ DE genes in females. Hierarchical clustering dendrograms and heatmaps of
RNA-seq reaction norms (left) and development time expression (right) [55] are compared, revealing extensive crossing over and also consistent
regions where there is phenetic resemblance between dendrograms (where parallel lines join genes with the same ID). DE genes are not limited
to any particular ontogenetic gene expression period. Arbitrarily colored lines represent genes that are adjacent in both dendrograms. The same
effects were evident when the top 50, 100, or 200 genes were used in the analysis. The order of genotypes in the leftmost heatmap (RNA-seq
data) is OreR, Zim53, siI and sm21 (left to right). The developmental time course is color coded: embryo (violet), larval (red), pupal (black), and
male (sand) and females (green) adult stages are shown
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reaction of genes are to some degree associated with the
behavior of that same gene over developmental time and
therefore, haplotype-specific changes are being revealed at
specific developmental stages associated with those genes.
In this example the overall entanglement value was high
(0.75) indicating a poor statistical support of concordance,
even though there are clear clusters of genes showing
resemblance between their reaction norm and the develop-
ment stage of expression.
We calculated a second measure of similarity between

the topologies of two hierarchical dendrograms using
Goodman and Kruskal’s (G-K) γ [58], a value ranging from
− 1 to + 1. Gamma is the probability of a consistent rank-
ing minus the probability of an inconsistent ranking [59].
Values near zero indicate dendrograms that are not statisti-
cally similar in topology and γ = 1 is a perfect correlation.
Following 100 permutations of γ against a null model of
the same dendrogram but with shuffled leaves (gene IDs)
we found zero support for ‘similarity’ between the dendro-
grams (γ = − 0.00574, 95% CI: − 0.048 to 0.043). The per-
mutated γ values were significantly different from a perfect
alignment (with γ =1, one-sided t-test: p-value~ 0) and
significantly different from a random shuffling of dendro-
gram leaves (γ = − 0.3733, one-sided t-test: p-value~ 0). So,
while the dendrograms are themselves dissimilar in top-
ology, there is moderate entanglement between them,
highlighting a potential for stage-specific expression that is
altered by mtDNA variation. The cophenetic correlation
was 0.307.
In the equivalent analysis in males, the entanglement

value was 0.60 (0.23 after step2side optimization). The
permutation test of the G-K gamma statistic revealed
significant dissimilarity between dendrogram topologies
(one-sided t-test against γ =1; p-value~ 0; one sided t-test
against γ = 0.12; p-value~ 0; overall γ mean = − 0.0009,
95% CI: − 0.014 to 0.019); qualitatively the same result as
in females. The cophenetic correlation was 0.05.
So far, the top genes in the ΔmtDNA ‘species’ effect

list show some localized, but not general signal of
correspondence with the developmental stage expres-
sion profile. Using the complete transcriptome data
set [55], we next tested whether there was a signal of
mtDNA-sensitivity after transcriptome-wide hierarch-
ical clustering.

Signal of mtDNA effects are clustered in different
developmental stages across all transcripts
We next performed a sliding window analysis across the
whole transcriptome that had been sorted by hierarchical
clustering. In this way, genes with mtDNA-sensitivity were
mapped to the dendrogram of development stage expres-
sion. Using a sliding window of 50 ordered genes, we
scored the rolling sum across the whole dendrogram. We
identified several regions of the dendrogram with a strong

signal of mtDNA-sensitivity enrichment (Fig. 7). Import-
antly, these regions are also associated with specific
mtDNA pairwise contrasts, suggesting the unique poly-
morphisms between mtDNA haplotypes are not just chan-
ging the numbers of differentially expressed genes, but
also identities of temporal co-expression hubs, consistent
with the enriched regions of the GGI and PPI networks
and the tanglegrams (see above). The genes in the
enriched peaks were more likely than not to be found in
the improper module of low-connectivity genes. Gene
ontology analyses were conducted on a 400 gene window
centered on the highest-peak gene in regions GO1-GO5
(Fig. 7; Additional file 5: Table S5). Figure 7A-P describes
the mtDNA contrasts, and there are clear sex- and haplo-
type-contrast-specific cluster peaks. Distinct haplotype
contrasts (and therefore the variants the contrasts expose)
are clearly associated with different windows of gene ex-
pression in the developmental time course.

Essential (housekeeping) genes are underrepresented in
mtDNA-sensitive gene sets
We have shown that nuclear genes whose expression is al-
tered by mtDNA background tend not to be hubs in PPI
and GGI and are enriched in the set of genes that show low
co-expression. We finally tested whether known house-
keeping genes were associated with variation in mtDNA.
We used two datasets to test this hypothesis: Three Dros-
ophila housekeeping gene cluster types identified by Weber
and Hurst [60] and the Online GEne Essentiality database
(OGEE: http://ogee.medgenius.info/browse/).
The top 500 ΔmtDNA ‘haplotype’-sensitive genes were

statistically underrepresented in the ‘breadth’ clusters
[60], containing genes that are expressed in all 14 adult
tissues: females (6.1% of expected, Hypergeometric test:
p = 5.00e-27) and males (20.6% of expected, Hypergeo-
metric test: p = 2.53e-16). The Tau clusters, which also
contain low-specificity housekeeping genes, were also
statistically underrepresented in females (5% of expected,
Hypergeometric test: p = 1.06e-14) and males (7.6% of ex-
pected, Hypergeometric test: p = 1.49e-13). A third cluster
type, defined by genes with high levels of co-expression
and functional coordination, showed evidence of statistical
underrepresentation in females (60.3% of expected, Hyper-
geometric test: p = 0.0028), but no underrepresentation in
males (78.3% of expected, Hypergeometric test: p = 0.22).
ΔmtDNA ‘species’-sensitive genes demonstrated quali-

tatively the same under-enrichments except for the small
(third) cluster in females, which showed no statistical
difference from the expected (89.9% of expected, p =
0.67). The broad-scale mitonuclear (GxG) genes were
underrepresented in the breadth clusters (females: 53.3%
of expected, Hypergeometric test: p = 0.0001; males:
41.1% of expected Hypergeometric test: p = 1.14e-07)
and the tau clusters (females: 22.7% of expected,
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Hypergeometric test: p = 1.33e-08; males: 30.2% of ex-
pected Hypergeometric test: p = 7.21e-07), but showed no
statistical under- or over-enrichment in the small clusters
(females: 97.6% of expected, Hypergeometric test: p =
0.89; males: 78.3% of expected Hypergeometric test:
p = 0.22). These results are largely supported by other
mitonuclear genotypes from previous studies [21, 30],
which show under-enrichment of housekeeping genes in
mtDNA-sensitive gene lists across multiple nuclear back-
grounds and in both sexes (Additional file 5: Table S5).
In the second essential gene data set, there were two

cases of significant departure from the expected num-
bers of genes given the gene list sizes. The length of the
essential genes list that could also be found in the DE
gene lists was 294. In the intersection of the top 500
genes ranked by p-value, the female ΔmtDNA ‘species’
list was significantly different from the expected number
(48.1% of expected, Hypergeometric test: p = 0.04),
and the male ΔmtDNA ‘haplotype’ was significantly
underrepresented (16.0% of expected, Hypergeometric
test: p < 0.001). All remaining intersections were not
significantly different from expected (Hypergeometric
test: P > 0.05 in all cases).

Discussion
The interaction between mtDNA- and nuclear-encoded
genes and their products is a mainstay of eukaryotic life,
and understanding how mtDNA variation can influence
the behavior of the interactome is a fundamental goal in
quantitative genetics. Here, we show that mtDNA variation
alters nuclear gene expression unequivocally in both sexes,
has a strong signature of gene co-regulation components
and gene clustering, and is modified by broadscale mito-
nuclear epistasis. Altogether, we show that there are pre-
dictive patterns to mtDNA-sensitivity and core regions
(and individual genes) of the interactome that are sensitive
to mtDNA variation. More importantly, we also show for
the first time in any species that the most sensitive genes
to mtDNA variation are found in poorly connected regions
of GGI and PPI networks, with non-housekeeping roles.
Examination of mtDNA-sensitive genes lists reveals an
abundance of ETC complex genes, and this association
with OXPHOS is perhaps not surprising since we have
deliberately disrupted a co-evolved gene-gene and protein-
protein interacting complex. That we recover OXPHOS-
related genes, and that there is an underlying signature of
transcription factor binding motifs, we can suggest that

Fig. 7 Haplotype contrasts show signals of temporal expression clustering that differ between contrast types and between the sexes. The
heatmap represents a hierarchical clustering of the transcriptome (n = 12,007 genes) that could be compared between the current study and that
of Graveley et al. (2010). Sliding window analyses (A to P) represent the numbers of genes that are found in the top 500 DE gene lists, ranked by
p-value. The rolling sum was collected over a window size of 50 genes. Female (green: A to H) and male (brown: I to P) analyses are shown.
Contrasts are reported as follows: ΔmtDNA ‘haplotype’ (A, I), ΔmtDNA ‘species’ (B, J), Zim53-OreR (C, K), Zim53-siI (D, L), Zim53-sm21 (E, M), OreR-
siI (F, N), OreR-sm21 (G, O), and siI-sm21 (H, P). Regions of interest are highlighted by GO: 1 – GO: 5 labels. Gene ontology analyses corresponding
to these regions can be found in the Additional file 4: Table S4
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giant associated sequences may be predictive sites for
ΔmtDNA effects.
In both sexes we also found common genes among the

mtDNA-sensitive network neighborhoods. Mitochondrial
Cox18 membrane insertases (CG4942(top-rank) and
CG6404) were common in the top 20 neighborhoods in
both males and females, and have a major role in the
assembly of respiratory chain complex IV [61]. The sec-
ond ranked hub gene in both sexes was a mitochondrial
Leucyl-tRNA synthetase (LeuRS-m). tRNA synthetases are
involved in mitochondrial translation and the ligation of
amino acids to their cognate tRNAs in mitochondria. We
have previously identified nuclear-encoded tyrosyl-tRNA
synthetase as a causal nuclear gene that interacts epistati-
cally with polymorphism in its respective mitochondrial
tRNATyr in Drosophila [19]. The negative epistasis pheno-
copies a mitochondrial translation defect and causes a
range of deleterious traits, effectively mimicking a mito-
chondrial disease.
In D. melanogaster and D. simulans, the mtDNA tRNA

Leu(CUN) is flanked by the long ribosomal RNA and ND1
genes, and overlaps a known rRNA transcription termin-
ator sequence [62]. Between Drosophila species [62] and
the haplotypes used in this study [63], the rRNA tran-
scription termination sequence is fully conserved. Tran-
scription of the neighboring ribosomal genes (found on
the same polycistronic transcript as tRNA Leu(CUN)) is
estimated to be up to seven times higher than genes
clustered downstream of the transcription termination
site [64]. It follows that the co-transcription of tRNA
Leu (CUN) with neighboring ribosomal genes may allow
its abundance to act as a proxy of ribosomal RNA levels,
and provide a small molecule signaling component to
gene regulation stoichiometry.
In humans, Leucyl-tRNA synthetase is a key mediator for

amino acid signaling to mammalian target of rapamycin
(mTOR) [65]; a major protein kinase involved in protein
translation, regulation of cell size, autophagy, and a
mediator of energy balance via transcriptional control of
mitochondrial function [66]. It is perhaps unsurprising that
genetic interactors of mTOR are themselves sensitive to
mtDNA mutations, since mitochondria are deeply associ-
ated with protein translation and considerably overlap with
the functions of mTOR. Our results suggest that mtDNA
mutations are likely to indirectly (sensu ‘omnigenic’ model
[67]) or directly affect systems-level functions of mitochon-
dria via mTOR and its interactors, a phenomenon we have
previously reported in a mtDNA introgression model [68].
In that study it was noted that the benefits of rapamycin to
the cell are highly dependent on the mtDNA genotype,
once again reinforcing the genetic context-specificity of
rapamycin on mitochondrial function.
The association between the interactors of Leucyl-tRNA

synthetase and highly differentially expressed genes in the

present study suggests tRNA synthetases may mediate a
common syndrome of mtDNA variation. That is, tRNA
synthetases and their interactors are highly sensitive to
polymorphism in their cognate tRNAs. This mechanism
requires mtDNA polymorphism in the respective tRNA to
disrupt efficient communication with the synthetase pro-
tein, for example during aminoacylation [69]. So, are there
polymorphisms in one or both of the mt tRNALeu genes
between haplotypes in this study system? Yes- one of the
mtDNA tRNALeu molecules (tRNALeu(UUR)~ nt 3014–
3079) is monomorphic, but the other (tRNALeu(CUN)~ nt
12,697–12,761) contains two polymorphisms: a species-
specific SNP that delineates OregonR (Genbank accession
number AF200828.1) and Zimbabwe53 (AF200829.1)
from the D. simulans haplotypes; and a second SNP that
delineates siI (AF200834.1) from sm21 (AF200841.1) (data
not shown, alignments from [63]). The first polymorphism
occurs in the variable loop and the second occurs in the
TΨ loop. Altogether, there is clear potential for tRNALeu(-

CUN) mutations to be associated with systems-wide gene
expression, although this may not necessarily require
mitonuclear interaction and could be a phenomenon of
mtDNA variation per se. Future work should investigate
this possible link.
Transfer RNAs are among the most conserved sequences

on the mtDNA molecule, yet they are hotspots for patho-
logical mutations [70, 71] with approximately two-thirds of
human pathological mtDNA mutations occurring in one
tenth of the mitochondrial genome; occupied by tRNAs
[72, 73]. One of the first human diseases linked to a tRNA
mutation was identified in the mitochondrial tRNALeu(UUR)

gene, and is associated with mitochondrial encephalomy-
opathy, lactic acidosis, and stroke-like episodes (MELAS)
[74]. Furthermore, mutations in tRNALeu(CUN) have been
associated with skeletal and eye muscle disorders [75, 76],
isolated skeletal myopathy [77], exercise intolerance [78],
and cardiomyopathy in humans [79]. The inherent coup-
ling of mtDNA tRNAs and their respective synthetase
proteins from the nuclear genome provides a mitonuclear
epistasis model that can be used to dissect the role of this
dual-encoded PPI system.
We have previously shown that there is appreciable

developmental time variation across the genotypes used in
this study, with siI;DGRP-315 demonstrating the slowest
development time [20]. Future work should aim to deter-
mine if the underlying genetic patterns of co-variation that
are revealed at the systems biology level are useful predic-
tors of fine-scale epistatic interactions that influence
whole organism phenotypes.

Non-coding RNAs and clusters of mtDNA-sensitive genes
We found that nuclear genes that are sensitive to mtDNA
variation are overrepresented as physical contiguous clus-
ters on chromosome arms. Interestingly, these clusters
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were often flanked by non-coding and antisense RNAs,
suggesting a possible mtDNA-related regulatory role of
these non-coding genes. Protein coding genes constitute
only a small fraction of transcribed DNA (1–2% in humans:
[80]) (20% in D. melanogaster [55]) and non-coding RNAs
are important factors of gene regulation and epigenetics in
mammals [81] and Drosophila [55]. Specifically, large inter-
genic non-coding RNAs play an important role in guiding
chromatin-modifying complexes to specific loci [82], and
can be modified by environmental factors (e.g. low protein
diet) that can also be sex-specific [83, 84].
Here, we propose that the physical proximity of non-cod-

ing RNAs to mtDNA-sensitive clusters is good evidence
that these untranslated sequences may be important genetic
landmarks for trans-acting factors associated with mtDNA
variation. In males, we found a cluster of Turandot genes
on 3R were significantly altered by ΔmtDNA. Turandot
(Tot) genes are a family of eight stress induced humoral fac-
tors that are found in three locations around the D. melano-
gaster genome [85]. TotA encodes a peptide that is secreted
into the haemolymph from the fat body and makes the
organism more resistant to a myriad of stresses, including
bacterial challenge, high temperature, mechanical pressure,
dehydration, UV irradiation, and oxidative agents [86]. It is
likely that all eight proteins in the Turandot family respond
to stress in the fat body via the JAK-STAT pathway [87].
Not only is there a significant cluster of ΔmtDNA sensitive
genes on the 3R chromosome (TotA, TotC, TotX), but a
fourth TotM gene is also significant and found on the 2 L
chromosome arm. This highly coordinated gene family re-
sponse to mtDNA variation may imply that mitochondrial
variation is associated with bacterial response pathways.
In some cases, genes that were highly ranked neighbor-

hood hubs were fully nested in long, non-coding RNAs
(e.g. CG33229, the third ranked hub gene, fully nested in
lncRNA: CR42862). We do not have the resolution at this
stage to describe the importance of non-coding RNAs, but
we show strong evidence that non-random associations of
mtDNA-sensitive clustered genes are physically linked to
non-coding RNA.
In both co-expression gene clustering (GGI) and neigh-

borhood connectivity (PPI) analyses, low connectivity and
low edge numbers were associated with mtDNA-sensitive
genes. This is perhaps not surprising because theoretical
derivations of WGCNA show proper modules have high
average clustering coefficients when compared with im-
proper modules [47], and proper modules sparsely overlap
with mtDNA-sensitive genes. Therefore the mtDNA-sen-
sitive genes are, by definition, more likely to have relatively
low-connectivity and relatively low edge numbers. Never-
theless, our GGI and PPI analyses independently provide
good support that mtDNA-sensitive genes are enriched in
low connectivity regions of GGI and PPI networks. The
PPI network [49] we used as the topology of our network

parameter analysis (clustering coefficients and degree) is
likely to be collinear with a large amount of the GGI net-
work we established. Since both analyses consistently de-
scribe the same effect, we should consider this systems
biological approach to mtDNA genetic effects as a power-
ful tool to dissect the regional enrichments of mtDNA-
sensitive genes.
High connectivity (hub) genes generally show low ex-

pression variance and are under higher constraint than
low connectivity genes [88]. Likewise, housekeeping genes
that show low tissue specificity have typically high cluster-
ing coefficients [89] . Taken together, these observations
are consistent with our finding of low-connectivity gene
enrichments in our significant mtDNA-sensitive gene lists,
and an underrepresentation of housekeeping genes.

Specific haplotype contrasts show specific transcriptome
responses
One of the illuminating findings from this study is that
pairwise contrasts between haplotypes demonstrate both
quantitative and qualitative differences in their abundance
and network positioning. In other words, the polymor-
phisms that delineate haplotypes show a propensity to
affect different gene sets that have different temporal pat-
terns of expression and are found in different regions of
PPIs. The patterns of gene expression that we observed in
various contexts are not necessarily independent. For ex-
ample, genes that are physically interacting are more likely
than not to be found nearby in a hierarchical clustering of
temporal expression pattern or quite possibly, physically
clustered on chromosomes [45]. The main purpose of this
study was to define predictive properties of mtDNA-sensi-
tive genes, and a much clearer picture emerges when sev-
eral pieces of evidence are compiled.
We found robust evidence that the highest ranking gene

hubs associated with mtDNA effects across the sexes
share common transcription factor binding sites and there
was a strong signature of enrichment from the giant (gt)
transcription factor. Interestingly, the position weight
matrix of the giant binding site motif is ATTACGTAAT
[90]; a hairpin compatible sequence that has the potential
to form cruciform structures [91], which themselves have
been implicated in gene expression regulation. The same
cis-regulatory motif has previously been identified in
Drosophila nuclear OXPHOS genes [92] and highlights
that genes that are surrounded by mtDNA-sensitive genes
are likely to also be nuclear OXPHOS genes themselves.

Non-random genomic associations and mtDNA-sensitive
genes
We performed several tests to determine if mtDNA-sen-
sitive genes are non-random with respect to their phys-
ical positioning on chromosomes, their temporal
expression during development, and their physical location
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in GGI and PPI networks. In all tests, we found good
evidence that mtDNA-sensitive genes are not randomly
distributed in any of the above scenarios. In fact, the repre-
sentation of tandem duplicates, and similar norms of reac-
tion for closely physically linked genes suggests there are
central regions of co-regulation. In mtDNA genes, how-
ever, the rules are different. The similar norms of reaction
of adjacent genes can be explained by the generation of
polycistronic mRNAs during transcription [93], since the
mitochondrion is transcriptionally a prokaryote with large
polycistronic transcripts. Alternatively, RNA-seq read map-
ping biases generated by mapping mtDNA sequences to a
known, sometimes highly dissimilar sequence, may con-
tribute to the ‘species’ effects in mtDNA genes. In this
study we have therefore focused our interpretation on the
nuclear genes that are presumably under some retrograde
signaling from the mtDNA or mitochondrion.

Conclusions
It is challenging to tease apart the major associations of
mtDNA sensitive genes in this study partly because of
their collinear nature. Expression timing, spatial expres-
sion, housekeeping roles, and physical location etc. are
all inextricably linked because the genome’s architecture
has been shaped over evolutionary time by necessity of
spatial-temporal expression patterns [60]. What we do
show, however, is that core regions of the interactome
are sensitive to ΔmtDNA, and these gene sets are often
consistent across the sexes, with underlying co-regula-
tory signatures. This is a major development for predict-
ing the most likely sources of mitonuclear
incompatibilities in, for example, patients undergoing
mitochondrial replacement therapy. We show here that
genes disrupted by ΔmtDNA are most likely to be found
in the improper module, have transcription factor bind-
ing site enrichments for the giant TF, are statistically
enriched in clusters, underrepresented in housekeeping
genes, and are often associated with non-coding RNAs.
Future work should aim to further dissect the identity of
trans-acting factors that mediate the cross-talk between
nDNA and mtDNA genomes, and determine whether
the results we have found at the whole organism level
are found in individual tissues. The possibility of mosaic
effects across different tissue types would suggest our re-
sults here may be conservative. It remains to be seen
how individual cells and tissues respond to ΔmtDNA. A
more comprehensive understanding at the cell and tissue
levels is necessary to improve the accuracy of anticipated
effects of mtDNA mutation.

Methods
Fruit fly genotypes and husbandry
The strains used in the current study are a sub-set of a
larger panel of mitonuclear genotypes constructed using

the Drosophila Genetic Reference Panel (DGRP) and six
phylogenetically distinct mtDNA haplotypes [20]. DGRP
strains were obtained from the Bloomington Drosophila
Stock Center, Indiana University. Flies were generated
by mitonuclear introgression using precise balancer
chromosome extraction (see Zhu et al. 2014 for crossing
scheme; Mossman et al. 2016 for details). Male flies from
the original DGRP stocks were then backcrossed to vir-
gin females of the newly constructed mitonuclear strains
for greater than five generations to eliminate residual
nuclear heterozygosity that may have been maintained
during the chromosome substitutions. In the current
study we selected the DGRP-315 (RRID:BDSC_25181)
and DGRP-820 (RRID:BDSC_25208) nuclear backgrounds
along with two D. melanogaster mtDNA haplotypes: (i)
Zimbabwe53, (ii) OregonR; and two D. simulans haplo-
types: (iii) siI, and (iv) sm21. We selected these genotypes
based on their development time phenotypic scores in the
previous study. The selected genotypes therefore do not
represent a random sample of mitonuclear variation in
Drosophila. However, as we wanted to characterize haplo-
type and G x G effects on gene expression we theorized
that such effects would be more likely to be detected in ge-
notypes with known whole organism phenotypic variation.
For the G x G interactions, we focused on a 2 mtDNA× 2
nDNA experimental design as we have found this to be
sufficient to capture genes whose expression is sensitive to
mitonuclear effects [21]. The G x G experimental haplo-
types were Zimbabwe53 from D. melanogaster, and sm21
from D. simulans on DGRP-315 and DGRP-820 nuclear
backgrounds. Our standard reporting of mito;nuclear ge-
notypes is the mtDNA haplotype followed by the nuclear
background (e.g. Zim53;DGRP-315 is the Zimbabwe53
mtDNA haplotype on the DGRP-315 nuclear background).
The mtDNA sequence divergence estimates are reported
in a previous publication [18]. Briefly, there are up to 103
amino acid substitutions between the mtDNA contrasts in
the current study, and up to 438 synonymous substitutions.
The numbers of fixed differences between species mtDNAs
are much lower in magnitude.
Flies of each mitonuclear genotype were reared under

standard laboratory conditions in a controlled environment
room on 12 h light: 12 h dark cycles at a constant 25 °C.
Prior to the experimental setup, flies were maintained in
density-controlled bottles for two generations to minimize
condition-dependent carry-over effects on offspring traits.
When the experimental cohort was ready to be studied,
newly eclosed virgin males and females were collected to-
gether and held in bottles with a cornmeal-yeast food
(quantities per 200ml food - Agar: 1 g, SAF yeast: 20 g,
Yellow cornmeal: 9 g, Sucrose: 20 g, Tegosept: 0.45 g dis-
solved in 95% ethanol 4.5 ml, distilled H2O to 200ml total
volume) for 3 days. After this holding time, males and fe-
males were separated by sex and held in same-sex vials of
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the same food type for 2 days until they were flash frozen
in liquid nitrogen and stored at − 80 °C prior to RNA ex-
traction. The flies used for RNA sequencing were 5 day old
adults at time of RNA extraction.

Wolbachia elimination
One hundred and eight out of the 205 DGRP genotypes
are known to contain Wolbachia pipientis [94], a bacterial
endosymbiont that is maternally transmitted and that can
confer altered phenotypes. The infection status of the
original DGRP-315 strain is negative, and the DGRP-820
is positive. To eliminate any cofounding effects of Wolba-
chia in our flies, larvae (and subsequent adults) were
cultured on Instant Carolina Media with 0.03% tetracyc-
line for two generations. Strains were then screened for
Wolbachia infection status using two Wolbachia-specific
primer pairs: (i) 1F, 5′- ttgtagcctgctatggataact-3′, 1R, 5′-
gaataggtatgattttcatgt-3′ and (ii) 2F, 5′-tgtggtgccagagtactt-
gaa-3′, 2R, 5′-gctttataagcgcgttcagc-3′. Wolbachia-positive
controls were run in the same PCRs and failure of
samples to amplify either PCR product was evidence of
Wolbachia-negative status. All strains were confirmed
as Wolbachia-negative prior to this study.

RNA extraction
Total RNA was extracted from batches of 30 whole flies
per biological replicate (× 4) per strain in both sexes. Each
biological replicate was sourced from an independent
rearing bottle. Whole flies were initially homogenized
using a Qiagen TissueLyzer (Qiagen). Total RNA was ex-
tracted using Qiagen RNeasy mini Kits (Qiagen) following
manufacturer’s instructions. Total RNA extractions were
stored at − 80 °C before submission for mRNA molecular
preparation and sequencing with Genewiz (Genewiz,
South Plainfield, NJ), using their in-house pipeline for 50
bp single-end reads on the Illumina Hiseq 2500 platform.

Sequence read analysis
Sample preprocessing was performed using computational
resources from the Brown University Center for Compu-
tation and Visualization (CCV). Fastq files were assessed
for quality control measures using the FastQC program
(fastqc/0.10.1) (https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/). Libraries were then filtered for low
quality reads using the FASTX toolkit (v2.6) (http://han-
nonlab.cshl.edu/fastx_toolkit/), specifically the fastq_qual-
ity_filter with -q 20 (minimum quality phred score 20)
and -p 80 (minimum percentage of bases that must have
the –q score). For example, 80% of reads in a sequence
must have at least a minimum phred score of 20 to pass
quality filtering. Truseq adapters were then clipped from
the sequences using the fastx_clipper program imple-
mented in the FASTX toolkit (v2.6) (http://hannonlab.
cshl.edu/fastx_toolkit/commandline.html). Sequence reads

were then mapped to the Drosophila dm3 reference gen-
ome using TopHat (v2.0.12) [95] and Bowtie2 (v2.2.3) [96]
using the flags -p 16 -i 30 -I 20000 --segment-length 25
and the dm3flybase.gtf annotation file obtained from the
University of California Santa Cruz Browser (https://gen-
ome.ucsc.edu/) [97]. BAM files were converted to. SAM
files using samtools (v0.1.19) [98] and sequences were
counted at annotated genome features using htseq-count
implemented in the HTSeq program [99]. Read counts at
gene features were used for downstream analyses of
mRNA expression.

RNA-seq data analysis
We used the edgeR package [40] on the read count data (see
above) to formally detect significantly differentially expressed
(DE) genes. Multiple test correction was performed using
the Benjamini-Hochberg method [42] and a False Discovery
Rate (FDR < 0.05) was used unless otherwise stated. To test
whether mtDNA haplotype per se was associated with gene
expression, we performed Analysis of Deviance-type con-
trasts. To test for pairwise mtDNA haplotype contrasts
within each sex, the full model (including all haplotypes)
was fit using gene dispersion parameters based on estima-
teGLMCommonDisp, then estimateGLMTrendedDisp, then
estimateGLMTagwiseDisp as described in the edgeR vi-
gnette (https://bioconductor.org/packages/release/bioc/vi-
gnettes/edgeR/inst/doc/edgeRUsersGuide.pdf). Contrasts for
all pairwise comparisons were performed within each sex to
test whether genetic distance between mtDNA molecules
was associated with the numbers of DE genes. Contrasts
were made to test for mtDNA ‘species’ effects and broad-
scale mtDNA x nDNA interactions (GxG). In the latter test,
the (Zim53-sm21) contrast in the DGRP-315 background
was contrasted against the (Zim53-sm21) contrast in the
DGRP-820 background. This was repeated in both sexes.

Manhattan plots of DE significance
To determine whether there was genomic location struc-
ture in ΔmtDNA haplotype, ΔmtDNA species, and GxG
DE genes (expression quantitative trait loci: eQTLs), we
downloaded the genomic coordinates of all genes in the
analyses from Flybase using the batch download tool
(http://flybase.org/batchdownload). Chromosome loca-
tions of genes were linearized with respect to their mean
(middle nucleotide) gene coordinates. We plotted the –
log10(p-value) of the respective DE analysis with the
physical gene location.

DGRP WGCNA analysis
To test if differences between mtDNA haplotypes (ΔmtDNA),
or mtDNAs from different species (ΔmtDNA ‘species’),
and mitonuclear (GxG) DE genes were associated with
internal or external regions of gene-gene interaction
(GGI) networks, we first mapped these genes to an

Mossman et al. BMC Genomics          (2019) 20:691 Page 17 of 23

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/commandline.html
http://hannonlab.cshl.edu/fastx_toolkit/commandline.html
https://genome.ucsc.edu/
https://genome.ucsc.edu/
https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://flybase.org/batchdownload


independent empirical GGI network. Externally-sourced
D. melanogaster gene expression profiles from 185 repli-
cated DGRP genotypes in both sexes were obtained from
the DGRP2 website (http://dgrp2.gnets.ncsu.edu/) and were
clustered in an unsupervised manner using the Weighted
Gene Co-expression Network Analysis (WGCNA) R pack-
age [100]. We used the independently obtained gene co-ex-
pression networks from the DGRP resource to map our
significantly differentially expressed genes to circumvent
the network topologies being influenced by our
experimental design (see main text). WGCNA networks
were constructed using the following user-supplied param-
eters: power = 15 (based on the soft threshold analysis
≥0.9), merging threshold = 0.0, network type = ‘unsigned’,
max block size = 1000, minimum module size = 30). For the
Cytoscape display figures (Additional file 7: Figure S1),
gene interactions were restricted to those with a weight
threshold > 0.05 (only well supported gene-gene inter-
actions were plotted). Preceding the blockwiseModules
command, we set a random seed (10913) for future
replication.

Protein-protein interaction (PPI) network
We obtained a signed, functional protein-protein inter-
action network (Table S15 in [49] to test for functional
enrichment of our DE genes in a spatial context using
the Spatial Analysis of Functional Enrichment (SAFE)
package [48] and Cytoscape (v3.6.1) [101] plug-in. The
PPI network was constructed in Cytoscape using the
prefuse force directed layout algorithm and enriched re-
gions of DE genes were calculated based on the SAFE
enrichment score. The ‘attribute’ that was mapped to
the network was the –log10(P-value) of a gene in an
edgeR contrast of interest (see above).
Network analysis was performed on all genes in the

Vinayagaman et al. (2013) PPI network to determine if
any network parameters (average shortest path length,
betweeness centrality, closeness centrality, clustering coef-
ficient, eccentricity, neighborhood connectivity, radiality,
stress, and the topological coefficient) were associated
with DE in the three analysis classes (ΔmtDNA haplotype,
ΔmtDNA species, and G x G). To conduct this we used
the NetworkAnalyzer [51] network analysis tool imple-
mented in Cytoscape with the ‘undirected network’ selec-
tion. We only report the results of the neighborhood
connectivity and degree variables in the Results section
due to redundancy of other (collinear) variables.

Focal gene neighbor enrichment
To test whether network connectivity to neighboring
genes is associated with any transcription factor binding
site signatures, we downloaded and analyzed a PPI net-
work from the Drosophila Interactions Database (DroID)
[52] (version 2018_08, downloaded September 2018,

dataset: ‘Gene Expression Correlation and Confidence
Scores for physical protein-protein interactions’; http://
www.droidb.org/data/DroID_v2018_08/confidence_cor-
relation.txt).
This dataset includes the PPI from [49] but also includes

additional PPI datasets from experimentally derived phys-
ical protein interactions from the databases: BioGRID
(https://thebiogrid.org/), IntAct (https://www.ebi.ac.uk/in-
tact/), MINT (https://mint.bio.uniroma2.it/) and BIND
(http://bind.ca). These PPIs include additional interactions
that increase the power to detect network neighbors that
are differentially expressed. The main motivation of this
analysis was to find hub proteins across a more compre-
hensive PPI network that are known to interact with pro-
teins whose encoding genes are DE by ΔmtDNA. To
perform this analysis the PPI network was first recipro-
cally inverted (e.g. an A- > B interaction is equal to a B- >
A interaction). This way all focal genes would be assessed
for the strength of the mtDNA DE effect of their known
interactors. Interactions involving micro RNAs (miRNAs)
were then removed, since these were not assayed in the
RNA-seq analysis. In the final step, interactions without a
confidence score, along with duplicate interactions were
removed. The network used includes 210,486 edges and
8879 nodes (genes).
Differential expression of focal gene interactors was

then assessed as the mean likelihood ratio (LR) of all
known interactors based on the DroID PPI network (see
above Fig. 5). Therefore for a given protein of gene A,
that interacts with proteins of genes B, C and D, the
mean LR values of genes B, C, and D were tabulated and
ranked based on their mean LR value. High mean LR
values are associated with genes that are directly linked
to sub-networks of highly DE genes. The top 200 genes
of these lists in females were intersected with the top
200 genes in males to find conservative genes that are
hubs of DE across both sexes. This analysis was per-
formed on the LRs of the ΔmtDNA haplotype, ΔmtDNA
species, and G x G analyses.
All focal proteins (8879 in total) were assessed for

their neighborhood ΔmtDNA effects. Proteins with low
numbers of interactors could have a disproportionate
influence on the mean value if their interactors had high
(or low) LRs. While this effect is likely ‘biological’ we
were cognizant that the number of interactors could in-
fluence the mean in a large way. To test this possibility,
we conducted a sensitivity analysis on the minimum
number of interactors a focal protein could have and this
parameter had no qualitative effect on the top-ranked
transcription factor highlighted by oPPOSSUM-3.0 [53]
(data not shown). Furthermore, there was no relation-
ship between the total number of interactors and the
mean neighborhood LR (e.g. female mtDNA haplotype
effect: r = 0.01, df = 8850, P > 0.05). We were therefore
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confident that our TF motif analysis was conservative
and showed little sensitivity to the number of interactors
considered.

Housekeeping gene clusters, essential genes, and
ΔmtDNA
We obtained our gene expression measures based on whole
fly RNAseq and therefore needed to cross reference with
tissue-specific datasets to align our results with known
housekeeping genes that show expression across tissue
types in Drosophila. To determine whether ‘housekeeping’
genes and ‘essential’ genes were enriched, indifferent, or
underrepresented in the mtDNA contrasts, we downloaded
known clusters of genes [60] that are physically localized in
D. melanogaster and are consistent with housekeeping roles
(demonstrate low tissue specificity or expression across all
tissues), since their expression is abundant across many
tissues. In Weber and Hurst’s (2011) analysis they identified
three gene cluster types corresponding with: ‘Large’ clusters
that contain functionally unrelated housekeeping genes,
‘Tau’ clusters that contain low tissue-specificity genes and
‘Small’ clusters that contain genes with high levels of co-
expression that are functionally coordinated. We inter-
sected the top 500 genes identified in the three DE analysis
types in each sex with the known clusters in Weber and
Hurst (2011). The results of the intersection correspond to
the ‘realized’ intersections that we measured in our ana-
lyses. We also tested whether our realized intersections
were different from a random genome-wide expectation.
That is, for a random sample of 500 genes in the genome,
how many housekeeping genes identified in [60] would we
expect to intersect by chance? We permuted this 10,000
times with randomly sampled gene sets. To formally test
for evidence of enrichment, we used a hypergeometric dis-
tribution test, phyper, implemented in the [stats] R package
to calculate the probability of a realized overlap occurring
by chance.
To test whether ‘essential’ genes are enriched or un-

derrepresented in our DE gene sets, we downloaded an
essential/non-essential gene list from the Online GEne
Essentiality database (OGEE: http://ogee.medgenius.info/
browse/) for D. melanogaster. We performed intersec-
tions between empirically-identified ‘essential’ genes with
our realized DE gene lists. We focused on the genes that
could be found in both DE and gene essentiality datasets
(12,090 genes in total) [102, 103], identifying 294 ‘essen-
tial genes’ as a test set. Hypergeometric tests were used
to formally test for over- or under-enrichment, as above.

Developmental stage-specific enrichments
To test whether gene expression at particular developmental
stages was associated with DE genes, e.g. are mtDNA-
sensitive genes clustered in time in the fruit fly, we per-
formed dendrogram comparisons of gene expression based

on the current study, with developmental stage gene
expression obtained from the literature [55]. We used
the dendextend R package on clustered gene expression
profiles to compare dendrograms for overlap and en-
tanglement. Entanglement is an index between 0 and 1
and is a proxy for the amount of crossing over between
dendrograms. High values represent highly entangled
dendrograms, with low congruence, and vice versa. We
report the results of the top 500 genes ranked by p-value
for the entanglement analysis. The results for the top
50, 100 and 200 genes were qualitatively similar of the
top 500 gene analyses (data not shown). We assessed
congruence using: (i) unaltered dendrograms, and (ii)
dendrograms constructed using a greedy forward step
wise rotation approach to find a more optimal align-
ment solution (step2side entanglement). We further
calculated Goodman and Kruskal’s gamma statistic [58,
59]; a measure of similarity between two hierarchical
dendrograms, and the cophenetic correlation [56] with
complete linkage to test for evidence of significant simi-
larity (correlation) between gene orders across two focal
dendrograms. The algorithms were implemented in the
dendextend R package [57]. We performed a permuta-
tion test to calculate the statistical significance of the
Goodman and Kruskal’s gamma index distribution against
the null hypothesis of no similarity [57].
To look for non-random clusters of gene expression, we

performed hierarchical clustering on the developmental
time data across all available transcripts. Using this hier-
archical clustered gene order we asked whether a dendro-
gram ‘leaf’ was a ‘top 500 significant’ gene across all
comparison types. Intersected genes were scored as ‘1’,
while non-intersected genes were scored as ‘0’. We then
performed a sliding window analysis across the dendro-
gram to count the number of positive intersections with
our significant gene list. The rolling sum of a 50 bp
window was calculated using the rollsum function in the
<zoo> R package. The same analysis was performed on a
hierarchical clustering of tissue-specific gene expression to
interrogate clusters of significant genes. Regions of inter-
est were tested for Gene Ontology (GO) enrichments
using the Gorilla Gene enrichment tool [104].

Transcription factor binding site enrichment
oPOSSUM-3.0 was used to test for transcription factor
binding motif overrepresentation near genes of interest
identified in SAFE [48] and neighborhood connectivity ana-
lyses. The scanning parameters were: + 1000 bp/− 1000 bp
of the transcription start site (TSS), and a minimum of 85%
sequence similarity between the transcription factor bind-
ing motif and the Ensemble v64 dm3 annotated genome
sequence, obtained from the UCSC Genome Browser [97].
All remaining parameters were kept as default and all 14,
832 genes in the oPOSSUM3.0 database were used as the
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background gene set. Transcription factors were ranked by
their ascending z-score and plotted to illuminate over-
represented TFBS. Binding site motifs were informed
by the JASPAR transcription factor binding site profiles
[90]. Position weight matrices from JASPAR were used
to test for secondary DNA strand folding structures
using Mfold [105] and a folding temperature of 25 °C
(the temperature the flies were maintained at during
this study). All remaining parameters were kept as de-
fault values.

Statistical analyses
All statistical analyses and data visualizations were per-
formed using R (v3.1.5) [106]. Library preprocessing was
conducted on the Brown University CCV cluster.

Additional files

Additional file 1: Table S1. Genes that are DE by ΔmtDNA ‘haplotype’
(FDR < 0.05). Genes that are private to each sex and shared between
sexes are shown. Annotation symbols, Flybase IDs, cytogenetic map
locations, chromosome arms, strand, gene symbols, names and the sex
that the gene is significant in are shown. Genes that are shared between
the sexes are marked as ‘both’ and are in gray boxes. FDR values are
shown for females and males. (XLSX 24 kb)

Additional file 2: Table S2. Genes that are DE by ΔmtDNA ‘species’
(FDR < 0.05). Genes that are private to each sex and shared between
sexes are shown. Annotation symbols, Flybase IDs, cytogenetic map
locations, chromosome arms, strand, gene symbols, names and the sex
that the gene is significant in are shown. Genes that are shared between
the sexes are marked as ‘both’ and are in gray boxes. FDR values are
shown for females and males. (XLSX 16 kb)

Additional file 3: Table S3. Gene rankings of sensitized PPI hubs in
female and male data sets. (XLSX 836 kb)

Additional file 4: Table S4. Gene ontologies of the five focal regions
described in Fig. 7. GO Process, GO function and GO component terms
are shown for each region, along with their metrics. (XLSX 137 kb)

Additional file 5: Table S5. MtDNA-sensitive genes are often under-
enriched in housekeeping gene lists. Hypergeometric analyses of
enrichment of mtDNA sensitive genes (FDR < 0.05) among housekeeping
gene lists are shown for three cluster types (Breadth, Tau and Small).
Significant (P < 0.05) deviations from the expected overlap are
highlighted in bold. (XLSX 13 kb)

Additional file 6: Table S6. Cluster Locator analyses of the FDR < 0.05
and top 200-ranked genes across four independent isogenic nuclear
backgrounds and both sexes. Results are qualitatively similar in both
analyses and both test sets are significantly clustered in three out of four
nuclear backgrounds. For the top 200 gene set, all four nuclear
backgrounds demonstrate significant clustering. (XLSX 12 kb)

Additional file 7: Figure S1. WGCNA-MtDNA-sensitive genes are found
in low abundance in ‘proper’ modules. Eight proper gene modules of co-
expressed genes, as revealed by WGCNA and represented by different
colors are shown in A to H. Nodes represent genes and grey lines are
edges connecting genes. Large nodes have a p-value < 0.05, while large
nodes with red outer rings are significant at FDR < 0.05. Three contrast
types are shown: ΔmtDNA ‘haplotype’, ΔmtDNA ‘species’, and G x G. The
majority of significant genes are found in the improper (grey) module
(not shown), with zero statistical support for module membership. (PDF
608 kb)

Additional file 8: Figure S2. Mapping DE gene enrichments using
SAFE and a PPI network [49] analysis (all female genotype contrasts).
Enriched regions of DE genes in the PPI network are shown as a heat

component. Red hotspots show enriched regions of DE genes
corresponding with: ΔmtDNA ‘haplotype’ (A), ΔmtDNA ‘species’ (B), G x G
‘mitonuclear epistasis’ (C), Zim53-OreR (D), Zim53-siI (E), Zim53-sm21 (F), OreR-
siI (G), OreR-sm21 (H), and siI-sm21 (I). Contrasts show both conserved and
private regions of enrichment across contrasts. (PDF 1117 kb)

Additional file 9: Figure S3. Top ranked DE genes are physically
clustered in the genome; a pattern consistently observed across
independent nuclear genetic backgrounds and sexes. Physical clustering
erodes with increasing p-value in the ΔmtDNA DE analysis. Each plot
shows the window position of non-overlapping 200 gene groups from a
ranked-by-p-value DE gene list. The most significant 200 genes are on
the far left of each plot (window 1) and increasing p-value genes are
associated with higher value 200-gene windows. The ordinal scale shows
the significance (−log10 p-value) of the statistical clustering obtained
using the cluster locator package as in the main analysis. Results from
four independent nuclear backgrounds are shown: DGRP-315 (A, B);
DGRP-820 (C, D); OregonR (E, F); and AustriaW132 (G, H). Females are
shown in (A, C, E, G); males are shown in (B, D, F, H). A local weighted
regression curve is shown in red in each plot. (PDF 5 kb)

Additional file 10: Figure S4. Giant has the strongest transcription
factor enrichment score for mtDNA effects across four nuclear backgrounds
and two sexes. The TF with the lowest rank (median TFBS enrichment rank:
ordinal axis) has consistently the highest z-score; a measure of TFBS
enrichment. The median rank across eight nuclear backgrounds x sex
combinations is shown in blue for each transcription factor. Individual data
are plotted in empty black circles. Transcription factors are ranked on the
abscissa by their increasing median rank. (PDF 10 kb)
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