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Background
Around 10% to 15% of the patients with cancer present with 
metastatic disease.1 In most of these cases, the location of the 
primary site can readily be identified, but in 3% to 5% of the 
cases, the origin of the metastasis remains unknown even after 
performing additional tests such as immunohistochemistry, 
colonoscopy, computed tomography (CT) scans, and so on. 
Such cases are known as cancers of unknown primary (CUPs).2 
Standard treatment is not the same for different cancer types, 
and CUP cases are thus generally harder to treat and conse-
quently have significantly worse survival compared with the 
average cancer patient. Using molecular data to determine the 
primary site can help doctors make the right treatment choice.

Several studies have used machine learning methods to 
identify the primary site of the metastatic cancer. These studies 
can be categorized based on the type of the applied omics data: 
genomics, transcriptomics, or methylomics.

Genomics-based CUP classif ication

Genomics data provide information about somatic variants 
(SVs) that are found in the cancer but not in the healthy tissues 
of a patient. These come in different sizes from single nucleo-
tide variants (SNVs) that affect a single base pair to large copy 
number variations (CNVs) that affect thousands. These SVs 

can be used to predict the cancer type either by looking at 
driver mutations that tend to cluster in specific genes depend-
ing on the cancer type or by analyzing the whole spectrum of 
mutations to get information about the mutational processes 
that have affected the cancer.

Dietlein and Eschner3 applied a classifier based on Bayesian 
spam filtering techniques to exonic mutations and achieved an 
accuracy of 71% for 23 cancer-derived cell lines. By considering 
subtypes of cancer together with mutations in cancer driver 
genes, Amar et al4 proposed a multi-label classifier to refine the 
associations of genes with cancer subtypes in addition to the 
prediction of the corresponding primary site. Marquard et al5 
improved the accuracy of classification of 6 cancer types up to 
85% by applying SV (SNV and CNV). Another successful 
study on using SV is presented by Soh et al,6 in which support 
vector machine (SVM)7 yields an overall accuracy of 77.7% for 
28 cancer types.

Using mutational status of known driver genes to predict 
cancer type is limited by the facts that in more than one-third 
of all cancers no known driver mutation is found and that many 
driver genes are shared between cancer types.8 Likewise, the 
mutational spectrum is useful for classifying cancer types in 
some cases but many mutational signatures are shared between 
cancer types9 and many cancer samples only have a limited 
number of mutations. Consequently, the information about the 
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mutational signatures becomes sparse. For these reasons, it is a 
challenging task to identify the cancer type solely based on 
genomics data. In comparison, transcriptomic and methyl-
omics data have the advantage that they purvey information 
about the tissue of origin and from the onset and they can thus 
be used to detect the cancer type in early cancers with few 
accumulated genomic changes.10

Transcriptomics-based CUP classif ication

In transcriptomics, the quantity of various RNA molecules is 
measured in a sample. Such data can be produced by either 
next-generation sequencing (NGS) or by microarrays. Some 
transcriptomics studies look at all RNA molecules, whereas 
others focus on a specific subset of RNAs such as mRNAs, 
microRNAs, or long noncoding RNAs.

microRNAs are small, noncoding RNAs that regulate 
gene expression (GE). They are usually dysregulated in can-
cers, and several studies have used them in CUP classifica-
tion. To classify 14 cancer types based on microRNA data, 
SVM was used with the accuracy of 89%.11 K-nearest neigh-
bor (KNN) was also used to classify CUPs based on micro-
RNA data and the result confirmed the clinical suspicion in 
12 out of 13 cases.12 In addition, Varadhachary et al13 classi-
fied 25 cancers with an accuracy of 85% using KNN on 
another microRNA dataset.

Galea et al14 applied both classification and clustering tech-
niques to deal with GE profiles of cancer types/subtypes. 
Labeled data from The Cancer Genome Atlas (TCGA) was 
used to classify 9 types of cancers. By using clustering methods, 
35 subtypes of cancers were identified with a mean accuracy of 
76%. The possibility of the impurity of the biopsies was con-
sidered to propose a robust classifier with the accuracy of 95% 
over 16 diseases.15

A downside of transcriptomics data is that it does not gen-
eralize well across technology platforms. A classifier trained on 
RNAseq data cannot be expected to give meaningful results on 
a microarray dataset. Even if both datasets are produced by 
RNAseq, one cannot expect good results unless the exact same 
quantification software and normalization procedures have 
been applied.

Methylomics-based CUP classif ication

DNA methylation is a main driver of cell differentiation, and 
methylomics data are thus very useful for distinguishing differ-
ent types of somatic cells. By applying methylation array of 38 
cancers and random forest (RF)16 as a classifier, the primary 
site of the CUP cases is classified with average sensitivity and 
specificity of 97.7% and 99.6%, respectively.17

Although DNA methylation is very good at distinguishing 
between cancers originating from different cell types, DNA 
hypermethylation is mainly influenced by pre-existing cell-
type-specific chromatin marks or transcriptional programs18 

and methylomics data are thus not as good at separating cancer 
types originating from the same organ.

Multi-omics-based CUP classif ication

As referenced earlier, a lot of studies have used molecular data 
to predict cancer type. So far these studies have, however, lim-
ited themselves to a single type of omics data. But the informa-
tion carried by different molecular feature spaces varies across 
the cancer types,18 and the reduced cost of molecular assays 
means that multiple types of data are produced for more and 
more clinical cancer samples. As a result, it is natural to con-
sider whether an integrative multi-omics method can improve 
the classification accuracy.

To integrate multi-omics data, 2 main concerns are impor-
tant for us: (1) handling the problem that for a subset of 
cohort only 1 or 2 types of the molecular data are available (2) 
avoiding overfitting.7,19,20 By considering these concerns, we 
evaluate the possibilities for incorporating different types of 
data.21 The first option is concatenating the datasets followed 
by learning a classifier based on the integrated data. The sec-
ond alternative is to learn separate classifiers for each data 
type and then make the final classification based on the out-
put of those classifiers.

To use a concatenated feature space, each subject that is 
used for training should include all the omics data types. In 
addition, the probability of overfitting, which increases in high-
dimensional feature spaces, is higher for a concatenated one in 
comparison with single omics data.7,19,20 As a result, a concat-
enated feature space might not be an acceptable option for 
integrating different molecular data types. Therefore, we use 
the second alternative, which is integrating the results of clas-
sifiers.21 Ensemble methods such as bagging, boosting, Bayes 
optimal classifier, and so on can be used to learn a combination 
of the classifiers.22,23

To use multi-omics data in the setting of ensemble meth-
ods, we propose a hierarchical machine learning approach. 
The idea is first to classify based on the most informative type 
of omics data, in which different cancer types are well sepa-
rated with high accuracy. The probability of providing a high-
certainty answer in the first step of classification increases 
using the most informative omics data. However, if such 
answer cannot be provided at this step, then a classifier using 
another omics type will be used as tie-breaker among the pos-
sible types suggested by the first classifier. The main advan-
tage of this method is the ability to use training samples not 
covered by all 3 omics types. For each layer of the hierarchy, a 
classifier is trained using one of the omics data types. During 
the classification process, the closest cancer types to a test 
subject are selected using one of the molecular features. If this 
selection includes more than 1 cancer type the process of the 
classification continues to the next layer based on the top-tier 
cancer types and using another type of omics data. The hope 
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is that some of the close cancer types in the first feature space 
are more separable in the other one.

Materials and Methods
Dataset preparation

We have gathered GE and Methylation (METH) data, 
together with SVs including SNVs and CNVs from 33 cancer 
types from TCGA project (Appendix Table C1). Total number 
of samples of GE, METH, and SV are 9204, 10 533, and 
10 784, respectively. As a result, there is not a complete overlap 
of the subjects across the 3 molecular features. Table 1 repre-
sents the number of samples for each cancer type for GE, 
METH, and SV. Due to the similarities of colon adenocarci-
noma (COAD) and rectum adenocarcinoma (READ), these 2 
cancer types are considered as one.24 Therefore, there are in 
total 32 cancer types for classification.

From the SNV mutations, we count the number of trinu-
cleotide base substitutions (TBS) for each sample. To compute 
TBSs, the following process is applied: there are 6 types of 
strand symmetric base substitutions including C>A, C>G, 
C>T, T>C, T>A, and T>G. In addition, there are 16 (= 4 × 4) 
choices for the context of the mutated base on the chromo-
some. Therefore, there are 96 (= 6 × 16) types of TBSs. For the 
CNVs, the levels of amplifications and deletions of cancer 
driver genes, which are reported by Catalogue of Somatic 
Mutations in Cancer (COSMIC, Appendix Table C1), are 
used. The feature space of somatic variation is made by concat-
enation of TBS and CNV.

In the preprocessing phase before using GE, we exclude all 
genes that are unexpressed in more than 90% of the samples. 
This leaves 18 793 genes in the dataset. The methylation data we 
use consist of precomputed mean levels of methylation for CpG 
sites for each gene. The intersection of the genes across different 
cancer types is used to make a single dataset with 13 692 features. 
Afterwards, imputation of missing values of each gene is done by 
assigning the average level of methylation of that gene.

To evaluate the performance of the proposed method, a 
test dataset with subjects covering all 3 data types is required. 
Therefore, 4176 samples are randomly selected from the 
intersection of the GE, METH, and SV to make the test 
data. The rest of the samples are used for training which cov-
ers 5028, 6357, and 6608 samples for GE, METH, and SV, 
respectively.

We further validate the hierarchical model using the meta-
static samples provided by Robinson et  al25 called MET500. 
All the pediatric cases together with diseases that are not cov-
ered in the TCGA project are excluded. Furthermore, only the 
subjects which are indicated in the clinical data as metastatic 
are used in this study. As a consequence, GE and SV data from 
185 subjects are available. Appendix Figure B1 shows the his-
tological type of the metastatic samples as well as the biopsy 
site. To differentiate between histological types of MET500 
and cancer types of TCGA, we have added the postfix of 

“_MET500” to the former. Appendix Table C2 presents the 
actual histological names used in MET500 and the associated 
abbreviations used in this study.

Before using GE, we perform computational sample purifi-
cation to reduce the effects of contamination from the sur-
rounding normal tissue. To accomplish this goal, the portion of 
the normal tissue presented in the GE profile of a biopsy is 
estimated and subtracted accordingly.26 Normal tissues used 
for purification process are taken from the Genotype-Tissue 
Expression (GTEx) project.27

Machine learning

The classification process of the proposed hierarchical method 
is based on applying 2 single classifiers which are trained inde-
pendently using 2 different types of omics data. For a given test 
sample, the first classifier is applied to select a set of top-tier 
cancer types. We refer to this first classifier as the base classif ier. 
If more than 1 cancer type is selected, then the second classifier 
is used as a tie-breaker to make the final classification among 
these. To train each classifier, binomial logistic regression 
(BLR) with ridge penalty28 using 3-fold cross-validation is 
applied in the setting of One vs One (OvsO) to estimate a 
separating hyperplane between each pair of cancer types.

Based on the OvsO comparisons, we create a vote table where 
each binary classifier gives a vote for the predicted class and we 
count the votes received by each class. We then use the number 
of votes to select a set of top-tier classes that should be passed on 
the next level in the hierarchy. This top-tier set consists of: (1) 
any classes that get the maximum observed number of votes29 
and (2) any classes that beat a class with maximum number of 
votes in a one-to-one comparison. If we are at the lowest level in 
the hierarchy, then a single class among the top-tier classes must 
be assigned to the given test sample. To achieve that, we use the 
following rules to reduce the set of top-tier classes:

1.	 Recalculate the vote table using only the top-tier classes 
and only keep the classes that get the maximum number 
of observed votes in this new table. This step is repeated 
until no further classes are removed.

2.	 If more than 1 class is still left, then choose the class with 
the highest average probability score when looking at the 
OvsO comparisons between the remaining classes.

The explained classification process is summarized in 
Figure 1. In Step (A), all the classes are used and the classes 
with maximum number of votes are identified ({B, E}). Then, 
“C” which beats one of the classes with maximum number of 
votes (“B”) is added to the selected set of top-tier classes. In 
Step (B), refinement is applied to {B, C, E}: the voting table 
corresponding to the given set is made followed by selecting 
the closest cancer types using the same rules applied in Step A. 
This process continues iteratively until the size of the selected 
set of top-tier classes cannot be further reduced using these 
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rules. In this example it is not possible to refine {B, C, E}. 
Therefore, the probability table calculated in the OvsO com-
parisons between all the pairs of {B, C, E} is taken into account 

in Step (C). Finally, the class with the maximum mean prob-
ability (“E”) is assigned to the given test sample. In the afore-
mentioned algorithm, whenever only 1 class is selected at Step 

Table 1.  Dataset specifications.

Cancer name Abbreviation Number of 
samples for GE

Number of 
samples for METH

Number of 
samples for SV

Acute myeloid leukemia LAML 141 200 161

Adrenocortical carcinoma ACC 79 80 92

Bladder urothelial carcinoma BLCA 412 436 418

Brain lower grade glioma LGG 530 531 528

Breast invasive carcinoma BRCA 1062 891 1067

Cervical squamous cell carcinoma and endocervical 
adenocarcinoma

CESC 304 312 302

Cholangiocarcinoma CHOL 36 45 36

Colon-rectum adenocarcinoma COAD-READ 408 443 620

Esophageal carcinoma ESCA 184 202 185

Glioblastoma multiforme GBM 222 300 486

Head and neck squamous cell carcinoma HNSC 505 580 507

Kidney chromophobe KICH 66 66 66

Kidney renal clear cell carcinoma KIRC 369 485 370

Kidney renal papillary cell carcinoma KIRP 292 321 292

Liver hepatocellular carcinoma LIHC 372 429 375

Lung adenocarcinoma LUAD 574 508 577

Lung squamous cell carcinoma LUSC 554 413 561

Lymphoid neoplasm diffuse large B-cell lymphoma DLBC 48 48 48

Mesothelioma MESO 83 87 83

Ovarian serous cystadenocarcinoma OV 237 619 507

Pancreatic adenocarcinoma PAAD 177 195 184

Pheochromocytoma and paraganglioma PCPG 184 187 184

Prostate adenocarcinoma PRAD 502 550 499

Sarcoma SARC 257 269 259

Skin cutaneous melanoma SKCM 105 475 472

Stomach adenocarcinoma STAD 406 397 440

Testicular germ cell tumors TGCT 156 156 156

Thymoma THYM 119 126 123

Thyroid carcinoma THCA 502 567 499

Uterine carcinosarcoma UCS 57 57 57

Uterine corpus endometrial carcinoma UCEC 181 478 550

Uveal melanoma UVM 80 80 80

Abbreviations: GE, gene expression; METH, methylation; SV, somatic variant.
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(A) or (B), it is the end of the classification process and that 
class is assigned to the sample.

To integrate multi-omics data, the refinement process (steps 
(B) and (C)) is accomplished using a second feature space. As 
the set of top-tier classes might be more separable in the new 
space, this tie-breaking classifier can improve the performance 
of classification. The other important advantage of the pro-
posed hierarchical method is that no optimization technique is 
required for learning the combination of 2 layers, and the train-
ing cohorts of different omics types can be different.

Results and Discussion
To evaluate the performance of the proposed classifier, we first 
examine the results of classification using a single type of omics 

features before we test the classification using multi-omics data. 
The same test cohort is used for all the examinations.

Total accuracy together with the range of specificity, sensi-
tivity, precision, and negative predictive value (NPV)30 within a 
single feature space by using the OvsO rules are given in Figure 
2. Total accuracy is the fraction of correctly classified subjects 
to the size of the test cohort. The average of each of the quanti-
ties of specificity, sensitivity, precision, and NPV across cancer 
types is also provided (P < 10−16). The confidence level of 95% 
is used to compute P-values. Gene expression and METH data 
types hold tissue-specific information together with alterations 
associated with the cancerous disease.31,32 Therefore, by apply-
ing an appropriate machine learning method, high accuracy of 
cancer classification is expected from these profiles. In this 

Figure 1.  The proposed process of the classification using OvsO. Step A: selecting the top-tier classes with maximum number of votes ({B, E}) together 

with “C” which beats “B.” Step B: further refinement is applied on {B, C, E}. This process continues iteratively until the size of the selected set of top-tier 

cancers cannot be further reduced. Step C: based on the probability table, “E” with the maximum mean probability is assigned to the given sample.
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study, total accuracy of GE and METH is 94.3% and 97.8%, 
respectively. When we look at the cancer types with low clas-
sification sensitivity, we see that cholangiocarcinoma (CHOL) 
is not classified well in comparison with most of the other can-
cer types by using SV, GE, and METH. (Clinically as well as 
pathologically, CHOL may also be very difficult to diagnose.33 
Quite often CHOL is reported as the carcinoma of the upper 
gastrointestinal tract, including bile duct.). Esophageal carci-
noma (ESCA) and uterine carcinosarcoma (UCS) have the 
same problem within SV and GE, whereas kidney chromo-
phobe (KICH) has low sensitivity using GE and METH. 
Therefore, ESCA, UCS, and KICH have the chance for cor-
rect classification using another feature space, which is not 
available for CHOL.

Appendix Figure B2 shows the confusion matrices of each 
of the feature spaces. As expected, SV has higher error rate in 
comparison with the other omics data. The number of mis-
classified pairs of each of the single omics data is represented 
in chord diagrams in Figure 3. The abbreviations of the cancer 
names are given in Table 1. When using GE, cancers belong-
ing to the pan-squamous (LUSC, HNSC, CESC, ESCA, and 
BLCA)18 have more overlap with each other in comparison 
with SV and METH. However, the number of misclassified 
samples for the pair of STAD and ESCA is considerable for 

GE. Pan-kidney (KIRC, KIRP, and KICH)18 includes close 
cancer types using METH and GE. ACC and KIRC is 
another overlapped pair in METH feature space. Cancers 
associated with digestive organs (ESCA, COAD-READ, 
STAD, LIHC, CHOL, and PAAD) have more overlap with 
each other when applying GE compared to SV and METH. 
Misclassified samples between cancer types related to the 
digestive organs and pan-squamous are notable when SV and 
METH are used. In addition, CHOL and COAD-READ are 
both close to BRCA when using METH. In the case of SV, 
LIHC and BRCA are identified as close cancer types. LGG 
and GBM have overlap when using SV and GE. The classifi-
cation performance of SKCM is better for GE and SV in 
comparison with METH. Pan-GYN (BRCA, OV, UCEC, 
and UCS)18 has important cancer types, which overlap with 
each other using GE. These cancers have other overlaps with 
pan-squamous and those related to the digestive organs when 
METH and SV are used.

As seen in Figure 3, the overlap of the cancer types is not the 
same when different omics data are used. As a result, to improve 
the accuracy of using single omics data, we apply our proposed 
hierarchical setting. By referring to the type of the features 
used for these classifiers, the hierarchy is named. For example, 
in the case of “GE-SV,” GE is used for the base classifier and 

Figure 2.  Total accuracy and the range of specificity, sensitivity, precision, and NPV related to each of the omics data. *P < 10−16, the average of 

sensitivity and precision of SV. **P < 10−28 for the rest of quantities. NPV indicates negative predictive value; SV, somatic variant.
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SV for the tie-breaker. The number of misclassified and cor-
rectly classified samples by the proposed method is given in the 
bar charts of Figure 4. In each figure, the left plot demonstrates 
total accuracy and number of samples classified by the base 
classifier and tie-breaker. Number and accuracy of classifica-
tion of the samples analyzed by the tie-breaker are given in the 
right plot.

Misclassified samples by the tie-breaker are divided into 2 
groups: “misclassified by tie-breaker, correction possible” and 
“misclassified by tie-breaker, correction not possible.” The dif-
ference between these 2 groups is related to the set of top-tier 
classes suggested by the base classifier. If the actual class of a 
test sample is not given in the selected set of cancers, then there 
is no possibility for the tie-breaker to correctly classify it. These 
samples are labeled as “correction not possible.” Otherwise, 
there is possibility for correctly classify that sample (ie, “correc-
tion possible”).

In all the tested hierarchies, the accuracy of the base classi-
fier improves by using another omics data. As it is expected, 
using a highly accurate classifier as a tie-breaker results in less 
misclassified samples. By applying SV-METH, an additional 
40.08% of the further examined samples are correctly classi-
fied. In the combination of GE-METH, METH can identify 
all the samples with the possibility of correction. By applying 
the most accurate classifiers (METH-GE in this study), 
98.04% of the test samples are correctly classified. In the 
aforementioned combination, METH (used for the base clas-
sifier) presents the most accurate results among the single 
omics data. Therefore, as a base classifier, it increases the num-
ber of correctly classified samples which do not need to be 
examined further (depicted in blue in Figure 4). In addition, it 
suggests promising sets of top-tier cancers to the next layer to 
decrease the number of samples indicated as “misclassified by 

tie-breaker, correction not possible.” In the combination of 
METH-GE, GE is the second-most accurate single omics 
data. When it is used for further analysis of the samples, it 
reduces the error of classification as a tie-breaker.

The MET500 data set does not include methylation data. 
As a result, GE and SV are used to classify the primary site of 
the cancers. As the performance of classification using GE is 
better than SV, it is applied as the base classifier. Figure 4D 
illustrates the number of samples of MET500 and accuracy of 
classification by using GE and GE-SV. Although the tran-
scriptome profiles and mutational burdens of metastatic can-
cers are different from primary tumors,25 GE-SV classify 
MET500 with an accuracy of 82.17%. By applying the sug-
gested algorithm, number of further examined samples is 8 
(out of 185). Although the performance of SV is lower than 
GE, it can still improve the accuracy of classification as a 
tie-breaker.

Appendix Figure B3 shows the bar charts of the number of 
correct/mis-classified cases together with the sensitivity of 
classification for MET500 using GE-SV by considering (1) 
histological type and (2) biopsy site of the subjects. BRCA_
MET500, squamous_pan_MET500, and SARC_MET500 
are the most prevalent histological types, and these are classi-
fied with a sensitivity of 95.2%, 100%, and 90.5%, respec-
tively. However, only 27.8% of CHOL_MET500 are 
classified correctly. As this cancer type is poorly diagnosed 
using different multi-omics data of TCGA (Figure 2 and 
Appendix Figure B2), our classifier is not capable of correctly 
identifying CHOL. In the case of the biopsy site, most of the 
misclassified samples are taken from liver (sensitivity of diag-
nosis 72.3%). The other main biopsy sites are lymph node, 
lung, brain, and bone with sensitivity of 88.2%, 91.7%, 50%, 
and 100%, respectively.

Figure 3. N umber of misclassified pairs using single omics data. The weight of the edges shows how significant is the overlap of close cancer types 

using (A) SV, (B) GE, and (C) METH. For example, 27 samples of STAD are misclassified as ESCA and 13 samples of ESCA are classified as STAD by 

using GE. As a result, the number of misclassified pairs <STAD, ESCA> using GE is 40, which is illustrated as the weight of the edge between STAD and 

ESCA. ESCA indicates esophageal carcinoma; GE, gene expression; METH, methylation; NPV, negative predictive value; STAD, stomach 

adenocarcinoma; SV, somatic variant.
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Figure 4.  (Continued)
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Figure 4.  Accuracy of classification and number of misclassified/correctly classified samples by the base classifier and tie-breaker. (A) to (C) are 

associated with the classification of the test cohort of TCGA. In these figures, SV, GE, and METH are used for the base classifier, accordingly. (D) illustrates 

the classification result for MET500 with the base classifier of GE and SV in the second layer. At the left plot of each figure, the total number of samples 

which are misclassified/correctly classified is depicted. The upper part of these plots indicated by dashed lines show the samples which are further 

examined. Total accuracies using single omics data and in combination with the other features are given, respectively. In the right plot of each figure, further 

examined samples and corresponding accuracies are given. Misclassified samples are categorized into 2 groups: “correction possible” and “correction not 

possible.” In the case of former, the actual class of a test sample is selected for further analysis. However, for the latter case, the actual class is not given in 

the set of top-tier cancers. GE indicates gene expression; METH, methylation; SV, somatic variant; TCGA, The Cancer Genome Atlas.
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Figure 5 shows the biopsy site, histological type, and the 
assigned cancer type related to the misclassified samples after 
applying GE-SV classifier. 50% of the misclassified samples 
with the biopsy site of the liver are identified as CHOL_
MET500 (9 out of 18). There are 4 samples of BLCA_
MET500 which are classified as CESC and LUSC which 
makes sense as BLCA, CESC, and LUSC are all squamous 
cell cancers, and these are known to show high degrees of 
molecular similarity.18 In addition, 3 out of 4 of the misclassi-
fied GBM samples are classified as LGG and these are both 
tumors of the brain, so in these cases we at least get the organ 
of the tumor right.

Conclusions
In this study, a new hierarchical method for CUP classification 
using multi-omics data is proposed, in which classification is 
accomplished by applying one of the omics data as a base clas-
sifier. If a high certainty answer cannot be provided using the 
base, another type of omics data is used as a tie-breaker.

We show that in any combination of omics data, the accu-
racy of the base classifier is improved by the addition of 
another feature space. The most effective combination for the 

hierarchical model is achieved by using the most informative 
data for the base classifier and the second most informative 
one for the tie-breaker, which corresponds to first classifying 
using methylation data and then using GE data for the tie-
breaker. The main advantage of using the most informative 
omics data is decreasing the number of misclassified samples 
for which further examination is not required. In addition, it 
increases the possibility of suggesting a promising set of can-
cers to the next layer. The second-most accurate classifier 
reduces the error of classification as a tie-breaker.

During the learning process, a separating hyperplane is esti-
mated for each pair of cancer types using each of the omics 
data. As a result, an arbitrary set of suggested cancers can be 
examined independently of the others. In addition, different 
training cohorts can be used for each of the omics types. As 
BLR is applied to learn the separating hyperplanes, the proba-
bility of a given sample belonging to a certain cancer type is 
available. This feature, together with the advantage of applying 
independent separating hyperplanes, is used for refinement of 
the set of top-tier classes using tie-breaker.

In this study, the tested omics data include methylome, 
transcriptome, simple nucleotide variations, and CNVs from 
TCGA. Methylation-gene expression was the best combina-
tion, but as methylation data are not present in the MET500 
dataset, we instead use the GE-SV classifier for this validation 
data set. The combination of GE-SV classifies MET500 with 
an accuracy of 82.17%.

In conclusion, our results on TCGA and metastatic samples 
show that using multi-omics data might be useful in the clini-
cal setting to improve the diagnosis of the patients with CUP. 
The proposed hierarchical method can easily be extended to 
include other types of data (eg, proteomics/metabolomics or 
histological images). As the method is not dependent on hav-
ing the same type of data for all samples, it is feasible to include 
other types of data without reducing number of training sam-
ples drastically. The strategy used in the proposed hierarchical 
classifier is not limited to the context of bioinformatics but 
could in principle be used for other classification problems.
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SV, somatic variant.
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Appendix A
Probabilities computed using binomial logistic 
regression

By applying binomial logistic regression (BLR), the probabili-
ties of belonging to the classes can be computed. For the sam-
ples which are far from the separating hyperplane, the likelihood 
corresponding to the winner class is more than those near to it. 
The following equations are applied to compute the probabili-
ties of belonging to the classes28

Pr G c x
xT=( ) =

+
− +( )1
1

1 0

|
e β β

Pr PrG c x G c x
xT=( ) =

+
= − =( )

+ +( )2 1
1

1
1

0

| |
e β β

where G c c∈{ , }1 2  represents the label of the suggested class, x  
is the feature vector of the given sample, and β  s are the esti-
mated parameters of the biclassifier.
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Appendix B

Figure B1.  Histological type and the biopsy site for the metastatic 

samples of MET500. The most frequent biopsy sites are liver, lymph 

node, and lung with 65, 34, and 12 cases, respectively. Prevalent 

histological types are BRCA_MET500, Squamouse-pan_MET500, 

SARC_MET500, and CHOL_MET500 with 63, 23, 21, and 18 samples. 

SARC_MET500 and SKCM_MET500 are associated with a wide range of 

biopsy sites.
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Figure B3.  The bar chart and sensitivity of classification for MET500 with respect to (A) histological type and (B) biopsy site of the subjects.
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Table C2.  Actual histological name used in MET500 and the corresponding abbreviation used in this study.

Abbreviation Histological types presented in MET500

NSCLC_MET500 NSCLC (non-small cell lung cancer)

PRAD_MET500 Poorly_differentiated_prostate_carcinoma_with_focal_small_cell/neuroendocrine

BRCA_MET500 Breast cancer
Ductal_carcinoma, Ductal_/_lobular_carcinoma, Lobular_carcinoma Carcinoma_with_apocrine_features
Poorly_differentiated_carcinoma_with_lobular_features
Mixed_ductal_and_lobular_carcinoma
Ductal_and_lobular_carcinoma

SARC_MET500 Dediferentiated_liposarcoma, Pleomorphic_sarcoma
Myxoid/round_cell_liposarcoma
High_grade_sarcoma, Undifferentiated_pleomorphic_sarcoma
Pleomorphic_undifferentiated_sarcoma, Leiomyosarcoma
Synovial_sarcoma

CHOL_MET500 Extra-hepatic_cholangiocarcinoma
Cholangiocarcinoma

THYM_MET500 Thymoma
Thymic_squamous_carcinoma

ACC_MET500 Adrenocortical_carcinoma

KIRC_MET500 Renal_cell_carcinoma

LIHC_MET500 Hepatocellular_carcinoma

COAD_READ_MET500 Colorectal_adenocarcinoma

STAD_MET500 Signet_ring_adenocarcinoma
Gastrointestinal_stromal_tumor

OV_MET500 Serous_carcinoma
Serous_papillary_carcinoma
Papillary_serous_carcinoma

BLCA_MET500 Urothelial_carcinoma
Urothelial_carcinoma_with_squamous_differentiation

Squamous_pan_MET500 Poorly_differentiated_squamous_carcinoma
Squamous_cell_carcinoma

TGCT_MET500 Non-seminomatous_germ_cell_tumor

GBM_MET500 Glioblastoma

SKCM_MET500 Melanoma

MESO_MET500 Mesothelioma

Table C1.  Data portals and the date of downloads of the used datasets.

Dataset Date of download Source

GE November 16, 2016 TCGA project (GDC data portal: https://portal.gdc.cancer.gov)

SV January 20, 2017 TCGA project (GDC data portal: https://portal.gdc.cancer.gov)

METH May 18, 2018 http://firebrowse.org/ provided by TCGA project; filenames: *.meth.by_mean.data.txt

COSMIC January 12, 2017 Catalog of the Somatic Mutations in Cancer: https://cancer.sanger.ac.uk/cosmic

GTEx December 2016 dbGaP (The Database of Genotypes and Phenotypes: https://www.ncbi.nlm.nih.gov/gap)

MET500 January 4, 2018 dbGaP (The Database of Genotypes and Phenotypes: https://www.ncbi.nlm.nih.gov/gap)

Abbreviations: COSMIC, Catalogue of Somatic Mutations in Cancer; GE, gene expression; METH, methylation; NPV, negative predictive value; SV, somatic variant; 
TCGA, The Cancer Genome Atlas.
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