Skip to main content
. 2019 Aug 27;10:913. doi: 10.3389/fphar.2019.00913

Table 1.

In silico models for the development of novel antibacterial compounds.

No. Ntotal Nantibiotics Number of variables Techniquea) Overall accuracyb) (%) Ref.
1 111 60 7 LDA 93.8/91.5** (Garcia-Domenech and de Julian-Ortiz, 1998)
ANN 89.0/97.9**
2 664 249 62 ANN 94.8** (Tomas-Vert et al., 2000)
3 59 24 17 LDA 85.0/84.0*** (Mishra et al., 2001)
4 661 249 6 LDA 92.6/93.6* (Cronin et al., 2002)
BLR 94.7/94.3*
5 664 249 3 LDA 90.1** (Aptula et al., 2003)
BLR 92.1**
6 351 213 7 LDA 91.0/89.0*** (Molina et al., 2004)
7 433 217 6 LDA 85.7/87.5** (Murcia-Soler et al., 2004)
62 ANN 98.7/91.4**
8 667 363 7 LDA 92.9/94.0** (Gonzalez-Diaz et al., 2005)
9 657 249 34 ANN 92.9**/100.0*** (Cherkasov, 2005)
10 2,030 1,006 8 LDAc) 90.4/89.3**/93.1*** (Marrero-Ponce et al., 2005)
11 4,346 520 62 kNN 95.0/95.0*/84.4*** (Karakoc et al., 2006)

12
611 230 36 SVC 100.0*/100.0**/98.1*** (Yang et al., 2009)
kNN 97.7**/96.1***
DT 98.6*/92.3**/91.0***
13 7,517 2,066 21 kNNc) 99.2*/81.8**/78.3*** (Wang et al., 2014)
14 2,230 1,051 3 LDAc) 85.6/87.2**/86.2*** (Castillo-Garit et al., 2015)
15 3,500 628 4 ISE 94.6/72.0*** (Masalha et al., 2018)

a)LDA, linear discriminant analysis; ANN, artificial neural network; BLR, binary logistic regression; kNN, k-nearest neighbors; MLR, multiple linear regression; SVC, support vector classification; DT, decision tree; ISE, iterative stochastic elimination. b)*Cross-validation; **internal test set; ***external test set. c)Models that demonstrated the highest quality with external test set