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Protein synthesis and its regulation are central to all known forms of life and impinge on
biological arenas as varied as agriculture, biotechnology, and medicine. Otherwise known
as translation and translational control, these processes have been investigated with in-
creasing intensity since the middle of the 20th century, and in increasing depth with
advances in molecular and cell biology. We review the origins of the field, focusing on
the underlying concepts and early studies of the cellular machinery and mechanisms
involved. We highlight key discoveries and events on a timeline, consider areas where
current research has engendered new ideas, and conclude with some speculation on future
directions for the field.

Proteins account for the largest fraction of
the macromolecules in a cell, are important

components of the extracellular milieu, and
fulfill multiple roles—enzymatic, structural,
transport, regulatory, and other—in all organ-
isms. Their synthesis, through the translation
of genetic information encoded in messenger
RNA (mRNA), requires extensive biological
machinery and demands delicate and sophisti-
cated regulation (Hershey et al. 2018). Protein
synthesis is modulated quantitatively, and in
time and space, through a network of stimuli,
responses, and interactions collectively referred
to as translational control. A large proportion
of the resources of cells and organisms is de-
voted to translation and translational control,
as discussed previously in terms of genetics,

bioenergetics, and cell biology (Mathews et
al. 2007).

Herewe summarize the beginnings of the field
and outline the pathway that led to our current
understandingof theprocessesofprotein synthesis
and translational control, placing landmark dis-
coveries on a timeline (Fig. 1). The field is, and al-
ways has been, a broad one. It originated in studies
of topics ranging from virus infection to embryol-
ogyanddevelopment,andhasgrowntoencompass
learning,memory, andgeneticdisease (Tahmasebi
et al. 2018), as well as therapeutic intervention,
among other biomedical areas. It continues to di-
versify and develop with the advent of approaches
of increasing depth and precision. At the same
time, it continues to generate fresh concepts and
present challenges to well-accepted paradigms.
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.1st human disease (SCD) linked to a 
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  factors, eEF-1, eEF-2
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  euk. initiation factors

.Plasma and AAs stimulate
  PS in cell-free system 

.Insulin stimulates PS in 
  isolated rat diaphragm 

.Iron stimulates 
  PS in rabbit 
  reticulocytes 

.Ribosomes

.Ribosomes composed 
  of two unequal subunits

.Streptomycin proposed to 
  target ribosomes

.Polysomes

.Adaptor hypothesis and central dogma

.Messenger hypothesis 

.Tape mechanism

.Wobble hypothesis

.ATP is required 
  for PS

.tRNA.AA-tRNA

.Met-tRNAi

.fMet-tRNAf

.mRNA is information carrier 

.1st protein sequence .1st cell-free translation
  system.1st human cell line

.Antibiotics
  inhibit PS 
  in bacteria

.Cycloheximide inhibits PS in euk. cells

.Fertilization stimulates PS 
  in sea urchin eggs

.Messenger-dependent prok.
  cell-free translation system

.Messenger-dependent 
  euk. cell-free 
  translation system

.Poliovirus infection inhibits
  host cell PS  

 .Translation of 1st 
    mammalian mRNA in vitro 

.Ribosomes are the site 
  of PS 

.1st RNA sequence 

.Stop codons

.Ribosomes read mRNA 
  in 5′ to 3′ direction 

.Completion of the genetic code

A brief history of 
protein synthesis and translation

control (1951–2017)

.GTP required for PS

.AA-tRNA synthetase

.Chloramphenicol interacts 
   with ribosomes

.Ribosome three-site model

.Heme/Fe+2 availability 
  controls globin synthesis 

.Prok. elongation factors, EF-Tu, 
  EF-Ts, EF-G

.Prok. initiation factors, IF1, IF2, IF3

.Puromycin inhibits PS

.RNA tie club

.Synthesis of GMP-PCP

1967–8

.Release factor

.GTP role in initiation 
  of peptide synthesis

1960

.Sucrose
  gradient velocity
  sedimentation 

.GFP was purified 

.SDS-PAGE

.1st ribosome-binding site 
  on mRNA

.Reconstitution of 30S
  ribosomal subunit

.fMet-tRNAf mediates initiation of PS

.Primary sequence and
  secondary structure 
  of mRNA regulate 
  translation initiation

.Nobel Prize - partition 
  chromatography 

.Nobel Prize -
  protein structure 

.Nobel Prize - insulin sequence

.Nobel Prize -
  structure of 
  hemoglobin 

.Nobel Prize - genetic 
  code 

.Inhibition of PS 
  causes memory loss 

.Ribosomal RNA 
  is made in nucleolus 
.tRNA mediates 
  mRNA decoding

.Mitochondria contain 
  ribosomes 

Figure 1. Timeline of discoveries in the fields of protein synthesis (PS) and translational control (1951–2017).
Principal advances are shown according to the year of publication, and are color coded by topic (color key and
abbreviation definitions are at the end of the figure). Some other relevant events are also noted.
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TRANSLATION TIMELINE

Before the early 1950s, most protein synthesis
research addressed physiological questions and
the findings were largely descriptive in nature
(e.g., Daly and Mirsky 1952). Theories of pro-

tein synthesis via enzyme assembly and peptide
intermediates were entertained along with tem-
plate theories (Campbell and Work 1953), and
no component of the translation system was
known (ribosomes included [Palade 1955]). In
this era, studies of protein synthesis were per-
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.eIF4E is an oncogene
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.eIF2α phosphorylation 
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  translation of mRNAs
  encoding ribosomal 
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.Scanning model for
  translation initiation 

.eIF2α is phosphorylated at 
  Ser-51

.Nonsense-mediated 
  mRNA decay

.Rapamycin

.Proof of signal hypothesis

.Toeprinting
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  controls local translation

.21st AA, selenocysteine
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  particle and its receptor

.PKR
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.S6K
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.dsRNA inhibits 
  translation initiation
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  mRNA

.Monoclonal antibodies
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Figure 1. Continued.
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formed on tissues or tissue slices or in whole
animals.

During the decade of the 1950s, the field
underwent a transformation with the develop-
ment of cell-free systems, fundamental discov-
eries (e.g., of transfer RNA [tRNA] and ribo-

somes), and crucial technical advances (such as
radiolabeled amino acids, sucrose gradient cen-
trifugation, and inhibitors). Subsequent decades
were dominated by themes, concepts, and dis-
coveries that furthered the field in different ways.
Foundational discoveries (of polysomes and

1994 199519931992 1996–7 1998–9

2000–1 2002 2003 2005–6 2007

.PERK–/– mice develop diabetes mellitus

.4E-BP2 regulates synaptic 
  plasticity and memory

.eIF2α phosphorylation regulates 
  diet-induced diabetes and obesity

.GCN2 regulates synaptic 
  plasticity, learning and memory

.Brain GCN2 senses AA 
  deficiency and regulates behavior

.4E-BPs regulate
  diet-induced  
  obesity and insulin
  resistance

.Mutation of ferritin IRE 
  causes HHCS syndrome

.Mutation of thrombopoietin uORF

.PERK mutations cause Wolcott–Rallison syndrome

.1st disease-
  causing mutation 
  identified in 
  AARS 

.4E-BP 

.eIF3 interacts with eIF4F via 
  eIF4G

.eIF5 acts as a GAP for eIF2

.eIF1 plays a critical 
  role in initiation codon 
  selection

.GCN2 controls translation 
  via phosphorylation of eIF2α
.Rapamycin inhibits S6K1 
  activity 

.ER-targeted 
  ser/thr kinase 
  (Ire1p/Ern1p)

.mTOR

.tRNA activates GCN2 in 
  response to AA starvation

.Phosphorylation eIF4E at 
  Ser209

.Mnk1 phosphorylates eIF4E

.Mammalian stress response pathway

.mRNAs with structured 
  5′UTR are sensitive to eIF4E

.Riboswitch

.mRNA circulization via 
  eIF4E/eIF4G/Pab1p complex

.Molecular details of ribosomal subunits and antibiotic interactions

.22nd AA, pyrrolysine

.microRNA

.microRNAs repress 
  translational initiation 

.GW/P bodies

.1st structure of a translational 
   initiation factor, IF3

.Mammalian GCN2

.Ribosomal protein mutation linked to 
  a human disease (DBA)

.PERK

.eIF2B mutations cause VWM leukoencephalopathy

.Structure of the whole 70S ribosome

.4EGI-1 disrupts 
  eIF4E/eIF4G 
  interaction

.Pateamine A, Hippuristanol - 
  inhibitors of eIF4A 

.TOR/mTOR controls translation 
  initiation via 4E-BP

.FRET

.Nobel Prize - signal hypothesis

.SILAC

2004

.iTRAQ

.Polysome 
  profiling 
  (microarray) 

  causes hereditary thrombocythemia

Figure 1. Continued.
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mRNA, for example) continued to be made in
the 1960s, together with the seminal elucidation
of the genetic code. The 1970s saw rapid growth
of the field, including the characterization of
most of the components of the eukaryotic trans-
lation system and the beginning of mechanistic
studies. Mechanistic and regulatory themes
dominated the 1980s, and the appreciation of
regulatory pathways expanded rapidly in the
1990s. All of these themes contributed to the
current activity in the first decades of the 21st
century, when much research sought—and still
seeks—to explain physiological and pathophys-
iological responses of the translation system and
to develop therapeutics for treatment of genetic
and acquired diseases and infections.

Principal discoveries are recorded chrono-
logically and thematically (distinguished by col-
or coding) in Figure 1. The timeline illustrates
the fact that in this field, as in others, research
did not always progress in a systematic and or-
derly fashion. Somediscoveries developed slowly
or even lay fallow for many years; the roles of
eukaryotic initiation factors (eIFs) afforded sev-
eral examples of this. Other discoveries, such as
the poly(A) tail of eukaryotic mRNA, immedi-
ately spawned far-reaching advances in multiple
areas of mRNA characterization, isolation, me-
tabolism, and translation. Many advances bene-
fitted from studies in greater depth that were
enabled by new techniques (e.g., gel electropho-
resis, blotting, toeprinting, ribosome profiling)

20092008 20142012–32010

.Dysregulation of eIF4E associated with autism

.Widespread shortening 
  of 3’UTR in cancer

.eIF2γ mutation causes intellectual disability 
  and microcephaly

.GCN2 mutations 
  cause pulmonary 
  veno-occlusive 
  disease 

.DHX29 required for scanning 
  of highly structured 5′UTRs

eIF5 stabilizes 
the binding of 
GDP to eIF2

.TISU element

.Ribosome quality control complex

.EF-P and eIF5A relieve ribosome stalling at 
  polyproline runs  

.Silvestrol

.Ribosome profiling 

.Nobel Prize - GFP.Nobel Prize - mass 
  spectrometric analyses of 
  biological macromolecules

.Nobel Prize - ribosome
  structure

.CUG/Leu-tRNA initiation of translation by eIF2A

2015–7

.Visualization of translation 
   in real time in live cells 

.UTR m6A promotes cap-
  independent translation

2011

RAN 
translation 

.Nobel Prize - Cryo-EM

Technological and foundational advances

Mouse models

Clinically relevant discoveries

Signaling control of translation

Ribosome

RNA biology and genetic code

 Hypothesis/model/mechanism 

Translation factors (non-proteins)

Translation factors (proteins)

Nobel Prize

.LARP1 inhibits TOP mRNA 
  translation downstream of 
  mTORC1 

Figure 1. Continued.
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and technological developments in related fields
(cloning, reverse genetics, X-ray crystallogra-
phy). These drove research forward, providing
fresh insights and mechanistic understanding
of increasing clarityanddetail. Striking examples
came fromstructural investigationsof ribosomes
and components of the translation system with
which they interact (Jobe et al. 2018). Concur-
rently, investigations sometimes in related fields
of study, led to a steady stream of unforeseen
observations, including unorthodox initiation
mechanisms (Meyer et al. 2015; Zhou et al.
2015; Kwan and Thompson 2018; Zu et al.
2018) and novel concepts such as ribosomal het-
erogeneity (Sauert et al. 2015; Genuth and Barna
2018) and the ribosomal concentration model
(Mills and Green 2017; Khajuria et al. 2018),
which expanded the scope of the field.

DEVELOPMENT OF THE PROTEIN
SYNTHESIS FIELD

Biochemical investigations of protein synthesis
began when concepts that are now nearly axi-

omatic were still uncertain. The view of proteins
as unique linear arrays of just 20 amino acid
residues was about to be established with the
publication of the first protein sequence (the
insulin B chain [Sanger and Tuppy 1951]), and
mechanisms of protein synthesis involving the
reversal of proteolysis or phosphorylated inter-
mediates were entertained (Zamecnik 1969).
Radioactive isotopes had begun to revolutionize
many areas of biomedical science in the late
1940s, and radiolabeled amino acids came into
use as tracers around 1950. Researchers synthe-
sized them from simple labeled compounds
such as formaldehyde or sodium cyanide as a
first step in their experiments (e.g., Borsook
et al. 1952), until they became commercially
available in the latter part of the decade. Enabled
by this profound technical advance, investiga-
tions proliferated rapidly and biochemistry ran
ahead of genetics until the advent of cloning and
the systematic exploitation of the yeast system
that began to make their mark in the 1980s.

Siekevitz and Zamecnik (1951) produced a
cell-free preparation from rat liver that incorpo-

PS: Protein synthesis

AA: Amino acid

AA-tRNA: Aminoacyl-tRNA

Euk.: Eukaryotic
Prok.: Prokaryotic

Abbreviations

Mit.: Mitochondrial

eIFs: Eukaryotic initiation factors 

GEF: Guanine nucleotide exchange factor

IRES: Internal ribosome entry site

HRI: Heme-regulated inhibitor

TOR: Target of rapamycin

PKR: Protein kinase R 

MERRF: Myoclonic epilepsy with 
ragged red fibers

PERK: Protein kinase R (PKR)-like 
endoplasmic reticulum kinase 

GCN2: General control nonderepressible 2 

TISU: Translation initiator of short 5′UTR

DBA: Diamond-Blackfan anemia 

HHCS: Hereditary hyperferritinemia
cataract syndrome

4E-BP: Eukaryotic translation initiation 
factor 4E-binding protein 

SCD: Sickle cell disease

AARS: Aminoacyl tRNA synthetase 

ER: Endoplasmic reticulum

GAP: GTPase-activating protein

GW/P bodies: Glycine- and tryptophan-rich
cytoplasmic/processing bodies

IRE: Iron regulatory element

GMP-PCP: Guanosine-5′-[(β,γ)-methyleno]
triphosphate

SDS-PAGE: Sodium dodecyl sulfate
polyacrylamide gel electrophoresis

FRET: Fluorescence resonance energy transfer
ELISA: Enzyme-linked immunosorbent assay

2DE: Two-dimensional gel electrophoresis

SILAC: Stable isotope labeling with amino 
acids in cell culture

iTRAQ: Isobaric tags for relative and 
absolute quantitation 

RAN: Repeat-associated non-ATG  

Cryo-EM: Cryoelectron microscopy 

TOP: Terminal oligopyrimidine tract

m6A: N6-methyladenosine

LARP1: La-related protein 1

GFP: Green fluorescent protein 

dsRNA: Double-strand RNA 

S6K: Ribosomal protein S6 kinase

uORF: Upstream open reading frame
UTR: Untranslated region
VWM: Vanishing white matter

Figure 1. Continued.
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rated amino acids into protein and showed that
energy was required in the form of ATP and
GTP (Zamecnik and Keller 1954; Keller and Za-
mecnik 1956). The translation system was re-
fined by stages and resolved into subfractions
including a microsomal fraction that contained
ribosomes attached to intracellular membrane
fragments (Zamecnik 1960). Pulse-chase exper-
iments showed that ribosomes are the site of
protein synthesis, not an easy task in bacterial
cells where protein synthesis is very rapid: the
assembly of a protein chain on a ribosome was
estimated to take only 5–10 seconds (McQuillen
et al. 1959). It is salutary to recall that this was
accomplished in advance of an understanding of
the central role of RNA in the flow of genetic
information to protein, before the visualization
of polysomes, and well before the first RNA
sequence was completed (Holley et al. 1965).
Amid many concepts (Crick 1959), one idea
posited that each ribosome is dedicated to the
synthesis of a single protein, the “one gene–one
ribosome–one protein” hypothesis. Early in the
1960s, however, polysomes were observed and
their function appreciated in light of the mes-
senger hypothesis and the “tape mechanism” of
translation discussed below (Marks et al. 1962;
Warner et al. 1962, 1963; Arlinghaus and
Schweet 1963; Gierer 1963; Goodman and Rich
1963; Nakamoto et al. 1963; Noll and Wettstein
1963; Wettstein et al. 1963). Technical advances
in electron microscopy (EM) and high-speed
centrifugation made vital contributions during
this phase of the field’s development.

The role of aminoacyl-tRNAwas established
in the late 1950s. An intermediate, activated
state of amino acids was first detected (Hultin
and Beskow 1956), then characterized (Hoag-
land et al. 1958, 1959) and recognized as the
physical manifestation of the adaptor RNA pre-
dicted on theoretical grounds (Crick 1958).
Once its function had been realized, the name
transfer RNA replaced the term “soluble” RNA
(sRNA). Chemical modification of the amino
acid moiety of cysteine-charged tRNACys (to al-
anine) confirmed that the RNA component is
responsible for decoding the template (Chape-
ville et al. 1962). Thus, fidelity of information
transfer from nucleic acid to protein rests in part

on the aminoacyl-tRNA synthetases. One of
these, the valine-specific enzyme from Escheri-
chia coli, was arguably the first macromolecular
component of the protein synthetic apparatus to
be characterized (Berg andOfengand 1958), and
additional synthetases soon followed.

Numerous enzymes catalyzing and facilitat-
ing the several steps in protein synthesis were
steadily purified over the years, with an intense
burst of activity in the 1960s and 1970s. In ad-
vance of full authentication of their purity and
function, these proteins were provisionally
called “factors,” a term that has stuck. Although
many of the factors have been known for almost
half a century, the activities of some of them
remained obscure or debatable until recently
(e.g., EF-P and its homolog eIF5A) (Kang and
Hershey 1994; Aoki et al. 1997; Doerfel et al.
2013; Ude et al. 2013), whereas others are still
emerging (e.g., eIF2A and eIF2D) (Komar et al.
2005; Ventoso et al. 2006; Dmitriev et al. 2010;
Starck et al. 2012; Kearse andWilusz 2017), and
new ones with specialized functions, such as the
internal ribosome entry site (IRES) trans-acting
factors (ITAFs), are being discovered (King et al.
2010; Lee et al. 2017).

Themessenger RNA concept revolutionized
thinking about gene expression in all cells. Ge-
netics and bacteriophage biology, as well as bio-
chemistry, played key parts in the genesis and
confirmation of the messenger hypothesis (see,
for example, Cobb 2015). Jacob and Monod
(1961) hypothesized the existence of an unstable
intermediate between the DNA of the gene and
the ribosome, which could be related to the RNA
produced in phage T2-infected cells (Volkin and
Astrachan 1956; Nomura et al. 1960). On this
view, the ribosome and other components of
the protein synthesis machinery constitute a rel-
atively stable decoding and synthetic apparatus
that is programmedbyunstablemRNA.Thiswas
soon confirmed in bacteria (Brenner et al. 1961;
Gros et al. 1961) and bacterial cell-free systems.
The discovery that poly(U) can direct the syn-
thesis of polyphenylalanine in vitro (Nirenberg
and Matthaei 1961) was a transformative event,
spearheading the elucidation of the genetic code
by themid-1960s. Thewobble hypothesis, which
rationalizes features of the code’s redundancy
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and its decoding by tRNAs, was published by
Crick (1966). In higher cells, the existence of a
class of rapidly labeled RNA, heterogeneous in
size and with distinct chromatographic proper-
ties, was recognized. Its essential feature as an
informational intermediary were confirmed and
messenger-dependent eukaryotic cell-free trans-
lation systems appeared at the end of the decade
(Laycock and Hunt 1969; Lockard and Lingrel
1969; Mathews and Korner 1970).

Building on these foundations, mechanisms
explaining important aspects of translation in
both prokaryotes and eukaryotes emerged in
the 1970s. The question of initiation site selec-
tion was largely accounted for in prokaryotes
by the Shine–Dalgarno sequence base-pairing
with 16S ribosomal RNA (Shine and Dalgarno
1975). A solution to the problem in eukaryotes
came later, in the 1980s, with recognition of cap-
dependent scanning and the Kozak consensus
sequence (Kozak 1978, 1986, 1987; Kozak and
Shatkin 1978), followed by identification of
IRES-dependent mechanisms (Jang et al. 1988;
Pelletier and Sonenberg 1988). The optimal co-
don hypothesis explained howa bias in the usage
of synonymous codons can influence the pro-
duction levels of individual genes (Ikemura
1981) and the signal hypothesis (discussed be-
low) accounted for protein transport into the
endoplasmic reticulum (ER). Investigations of
mRNA translation and metabolism were greatly
facilitated by the discovery in the early 1970s of
the terminal hallmarks found onmost eukaryot-
ic mRNAs, 50 caps (Adams and Cory 1975; Both
et al. 1975; Furuichi and Miura 1975; Furuichi
et al. 1975a,b; Perry and Kelley 1975; Wei and
Moss 1975) and 30 poly(A) tails (Darnell et al.
1971a,b; Edmonds et al. 1971; Lee et al. 1971).

By the end of the 1980s, as a result of the
identification and purification of most of the
components of the translation system and
the reconstitution of their activities in vitro,
the pathway of protein synthesis had been de-
fined and was well understood in outline (Her-
shey et al. 2018). Subsequent detailed analyses
led to an in-depth understanding of many of the
mechanisms of initiation, elongation, and ter-
mination in bacteria (Rodnina 2018) and in eu-
karyotic cells, with indispensable contributions

from yeast genetics and biochemistry (Dever
et al. 2018; Hellen 2018; Merrick and Pavitt
2018). This has allowed questions of regulation
to be addressed at ever-increasing levels of so-
phistication.

ORIGINS OF TRANSLATIONAL CONTROL

The idea of regulation at the transcriptional level
flowed naturally from the messenger concept.
Jacob and Monod (1961) wrote that “the syn-
thesis of individual proteins may be provoked or
suppressed within a cell, under the influence of
specific external agents, and… the relative rates
at which different proteins are synthesized may
be profoundly altered, depending on external
conditions.” They recognized that such regula-
tion “is absolutely essential to the survival of the
cell,” although the notion that it could be exerted
at the translational level was not a principal fo-
cus in the bacterial field. Still, the seeds of the
concept that gene expression can be regulated by
the efficiency of protein synthesis emerged early,
and some from work in bacterial systems.

Among the first observations of regulation at
this level of gene expression were those made in
rabbit reticulocytes (Borsook et al. 1952; Kruh
and Borsook 1956). The term “translational
control” itself was used in 1963 with respect to
the differential expression of proteins from the
RNA genome ofMS2 phage in an E. coli cell-free
translation system (Ohtaka and Spiegelman
1963). The concept spread rapidly into other
areas of research, to the extent that less than
10 years later the presence of translationally si-
lent mRNA that is activated on fertilization of
sea urchin eggs was referred to as a “classical
conclusion” (Humphreys 1971). After the early
studies on phages, much of the focus was on
eukaryotic systems. A virtue of translation as a
site of regulation is that it affords a rapid re-
sponse to external stimuli without invoking nu-
clear pathways for mRNA synthesis, processing,
and transport. Correspondingly, the first cases
recognized were mostly ones in which it was
evident or simple to establish that transcription
and other nuclear events were not responsible.
To illustrate how the evidence for translational
control arose, we briefly describe four para-
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digms, together with an early example of trans-
lational control at the level of elongation.

Sea Urchin Eggs

The eggs of sea urchins and other invertebrates
synthesize protein at a very low rate but are trig-
gered to incorporate amino acids within a few
minutes of fertilizationwith little or no concom-
itant RNA synthesis (Hultin 1961; Nemer 1962;
Gross et al. 1964). The first wave of increased
translation, lasting several hours, is not blocked
by inhibiting transcription (Gross et al. 1964)
because the eggs contain preexisting mRNAs
in a masked form that are not translated until
fertilization. In principle, the limitation could be
caused by a deficiency in the translational ma-
chinery, but there is little evidence to support
this possibility (Humphreys 1969). For example,
egg ribosomes can translate added poly(U) even
though they display little intrinsic protein syn-
thetic activity (Nemer 1962; Wilt and Hultin
1962). Deproteinized egg RNA can be translated
in a cell-free system (Maggio et al. 1964;Monroy
et al. 1965) and cytoplasmic messenger ribonu-
cleoprotein (mRNP) particles were observed
(Spirin and Nemer 1965). Because the assembly
of masked mRNP complexes must take place
during oogenesis, the sea urchin system exem-
plifies a reversible process of mRNA repression
and activation. Current understanding of the
diverse translational control processes operative
during embryonic development and stem-cell
differentiation in the adult are described by
Teixeira and Lehmann (2018).

Mammalian Reticulocytes

It was taken for granted that protein synthesis
(mainly hemoglobin) in mammalian reticulo-
cytes, which are enucleate immature red blood
cells, would be regulated at the translational lev-
el. In the intact rabbit reticulocyte, the synthesis
of heme parallels that of globin (Kruh and Bor-
sook 1956) and globin synthesis is controlled by
the availability of heme or ferrous ions (Bruns
and London 1965). Regulation by heme occurs
in the reticulocyte lysate (Lamfrom and Knopf
1964), the forerunner of the messenger-depen-

dent translation system of Pelham and Jackson
(1976) and some coupled transcription-transla-
tion systems.When globin synthesis is inhibited
in cells or extracts, the polysomes dissociate to
monosomes (Hardesty et al. 1963;Waxman and
Rabinowitz 1966), arguing that regulation im-
pacts translation initiation. The effects of heme
deprivation are mediated by the protein kinase
HRI (heme-regulated inhibitor, EIF2AK1) and
are mimicked by unrelated stimuli, including
addition of glutathione disulfide (Kosower et
al. 1971) or double-stranded RNA mediated by
PKR (protein kinase R, EIF2AK2) (Ehrenfeld
andHunt 1971; Kosower et al. 1971). Regulation
extends to all mRNAs in the reticulocyte lysate
(Mathews et al. 1973), implying that a general
mechanism of translational control is being in-
voked. This mechanism centers on the phos-
phorylation of the α subunit of eIF2, which re-
sults in reduced levels of ternary complex
(eIF2•GTP•Met-tRNAi) and impaired loading
of the 40S ribosomal subunit with Met-tRNAi

(Farrell et al. 1977). Considerable attention has
been given to the family of eIF2 kinases, which
confer sensitivity to a wide range of stimuli. In
addition to HRI and PKR, PERK (PKR-like ER
kinase, EIF2AK3) and GCN2 (general control
nonderepressible 2, EIF2AK4) are activated by
ER stress and uncharged tRNA, respectively
(Merrick and Pavitt 2018; Wek 2018). PKZ, a
PKR-like eIF2α kinase in fish, is activated by
Z-DNA and can also inhibit translation (Bergan
et al. 2008; Liu et al. 2013; Taghavi and Samuel
2013).

Physiological Stimuli

Cells and tissues of higher organisms regulate
the expression of individual genes or classes of
genes at the translational level in response to a
wide variety of stimuli and conditions. Exam-
ples include responses to hormones (Eboué-Bo-
nis et al. 1963; Garren et al. 1964; Martin and
Young 1965; Tomkins et al. 1965) and ions
(Drysdale and Munro 1965); changes in cell
state, such asmitosis (Steward et al. 1968; Hodge
et al. 1969; Fan and Penman 1970) and differ-
entiation (Heywood 1970); and stress resulting
from heat shock (McCormick and Penman
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1969), treatment with noxious substances, and
the incorporation of amino acid analogs (Thomas
and Mathews 1984). Although these findings
strengthened the view that such control is wide-
spread and important, proof that it was exerted
at the translational level was sometimes chal-
lenging in nucleated cells, let alone in tissues
and whole organisms. One approach to this is-
sue took advantage of selective inhibitors of
transcription or translation, such as actinomy-
cin D and cycloheximide, but the results were
liable to be complicated by indirect or side ef-
fects of the drugs in complex systems. The ra-
pidity of a response could also provide sugges-
tive evidence for an effect at the translational
level. Compelling data often came from investi-
gations of the underlying biochemical processes,
for example, by demonstrating changes in poly-
some profiles or initiation factor phosphoryla-
tion states. Several methods can provide rigor-
ous evidence (Hershey et al. 2018) and ribosome
profiling is a powerful and increasingly popular
modern approach (Ingolia et al. 2009, 2018).

Cell growth is dependent on protein synthe-
sis and translational control mediated by the
mammalian or mechanistic target of rapamycin
(mTOR), a protein kinase that lies at the nexus
of numerous regulatory pathways. In the early
1990s, genetic screening for rapamycin-resistant
genes in budding yeast uncovered TOR as a ma-
jor regulator of cell growth (Heitman et al.
1991). A few years later, it was established that
protein synthesis is a major downstream target
(Barbet et al. 1996), and that mTOR controls
translation initiation through phosphorylation
of eIF4E-binding proteins (4E-BPs) (Beretta
et al. 1996). eIF4E is the mRNA cap-binding
protein (Sonenberg et al. 1979) required for
cap-dependent initiation, and its activity is
prevented by dephosphorylated 4E-BP. mTOR
phosphorylates 4E-BP, releasing eIF4E, and al-
lowing cap-dependent translation. The control
of several other translation factors and regula-
tors is also linked to mTOR activity (Proud
2018). mRNAs that harbor a 50-terminal oligo-
pyrimidine (TOP) motif (Levy et al. 1991) were
the first ones found to be translationally sup-
pressed by rapamycin (Jefferies et al. 1994; Te-
rada et al. 1994). The TOPmRNA class includes

those encoding ribosomal proteins and elonga-
tion factors, consistent with the importance of
mTOR in ribosome biogenesis, cell growth, and
cancer (Proud 2018; Robichaud et al. 2018). The
exact mechanism of TOP mRNA translation
regulation remained elusive for many years,
but in recent years the LARP1 protein has
been shown to mediate this effect (Fonseca et
al. 2015; Lahr et al. 2017).

Virus-Infected Cells

The small RNA phages, MS2 and its relatives,
provided some of the first evidence for transla-
tional control, as well as the first clear case of a
mechanism specific for the synthesis of an indi-
vidual protein. The phage genome encodes four
polypeptides (the maturation, coat, and lysis
proteins and RNA replicase) that are initiated
individually and are produced at dissimilar rates.
Several regulatory interactions among them are
nowknown.Onewas revealedby theobservation
that a nonsense mutation early in the cistron
coding for phage coat protein down-regulates
replicase synthesis (Lodish and Zinder 1966);
passage of ribosomes through a critical region
of the coat protein cistron melts the long-range
RNA structure and allows replicase translation.
A second nonsense mutation leads to overpro-
duction of the replicase because the coat protein
acts as a repressor of replicase translation, and
the binding of phage coat protein to the hair-
pin structure containing the replicase AUG is
a well-characterized RNA–protein interaction
(Witherell et al. 1991). Subsequent studies have
disclosed numerous translational control mech-
anisms inphages and inviruses infecting eukary-
otes (Breaker 2018; Stern-Ginossar et al. 2018).

Cellular mRNAs are also subject to transla-
tional control during infection with many vi-
ruses (Stern-Ginossar et al. 2018). Inhibition of
cellular mRNA translation, an aspect of host
cell shutoff, may begin before the onset of viral
protein synthesis and without any apparent in-
terference with cellular mRNA production or
stability. In poliovirus infection, the shutoff of
host-cell translation can be complete within 2
hours after infection and is followed by a wave
of viral protein synthesis (Summers et al. 1965).
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In the first phase, polysomes break down with-
out any effect on translation elongation or ter-
mination (Penman and Summers 1965; Sum-
mers and Maizel 1967). In the second phase,
virus-specific polysomes form (Penman et al.
1963). The cellular mRNA remains intact and
translatable in vitro (Leibowitz and Penman
1971), evidence that initiation has become se-
lective for viral mRNA. Translational inhibition
extends to mRNAs produced by other viruses in
a double infection (Ehrenfeld and Lund 1977),
indicative of a general effect that later work
ascribed to modification of the cap-binding
complex, eIF4F. Cleavage of the eIF4G subunit
of this complex prevents cap-dependent initia-
tion on cellular mRNAs but does not interfere
with initiation on the viral mRNA, which oc-
curs by internal ribosome entry (Kwan and
Thompson 2018). Viruses have evolved many
such specialized mechanisms (Stern-Ginossar
et al. 2018), some of which have led to the
identification of parallel mechanisms in unin-
fected cells themselves.

Secretory Pathway

Protein synthesis is regulated predominantly at
the level of initiation, consistent with the princi-
ple that it is more efficient to govern a pathway
at its outset than to interrupt it midstream with
the ensuing accumulation of intermediates and
logjam of recyclable components. Nevertheless,
well-characterized cases do occur later in the
translational pathway, at the elongation and ter-
mination level (Dever et al. 2018). Proteins des-
tined for secretion or retention in cell mem-
branes are made on polysomes attached to the
ER. In the early 1970s, it began to seem likely that
ribosomes become associated with cell mem-
branes only after protein synthesis has been ini-
tiated (Lisowska-Bernstein et al. 1970; Rosbash
1972) andwhat came to be called a signal peptide
was found on secreted proteins (Milstein et al.
1972; Devilliers-Thiery et al. 1975). These find-
ings lent substance to the signal hypothesis
that proposed that an amino-terminal sequence
might be responsible for secretion (Blobel and
Sabatini 1971). The development of cell-free sys-
tems enabled biochemical dissection of the se-

cretory pathway (Blobel and Dobberstein 1975)
leading to the discovery of the signal recognition
particle (SRP), a ribonucleoprotein, and its re-
ceptor on the ER (Walter and Blobel 1981; Wal-
ter et al. 1981; Gilmore et al. 1982a,b;Meyer et al.
1982). The SRP also interacts with the ribosome
such that the binding of the SRP to a nascent
signal peptide causes translational arrest that is
relieved when the ribosome docks with its ER
receptor. This mechanism ensures cotransla-
tional protein export and prevents the accu-
mulation of secretory proteins in an improper
subcellular compartment (the cytosol). From
another perspective, this mechanism also repre-
sents an example ofmRNA localization achieved
by controlling its translation, distinct from sev-
eral othermethods used by cells to compartmen-
talize translation (Buxbaum et al. 2015; Biswas
et al. 2018).

WHAT OF THE FUTURE?

In the past seven decades, combined genetic,
biochemical, cell biological, pharmacological
and structural approaches have uncovered the
major components involved in protein synthe-
sis, their interactions, and many of the sophisti-
cated regulatory processes that adjust protein
synthesis to developmental and environmental
demands. Technological improvements such as
cryoelectron microscopy (cryo-EM), real-time
single-molecule microscopy, DNA and RNA se-
quencing, mass spectrometry, and rapid kinetic
analysis now provide the opportunity to inter-
rogate translation on spatial and temporal scales
in ways that were not possible before. This in-
creased resolution promises to bring the field
from studies of cells in bulk to organelle-specific
and even single-mRNA levels in vivo. Together
with the increasingly detailed understanding of
the role of translation in physiology and disease
pathogenesis (Tahmasebi et al. 2018), there is
optimism that therapeutic relief from acquired
and genetic diseases may be on the horizon.

Yet the immense complexity of the transla-
tion system continues to pose new challenges
and many uncharted areas remain. Little is
known, for example, about protein synthesis
and translational control in archaea, or in
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chloroplasts and mitochondria, even though
mitochondrial ribosomes were reported half a
century ago (Kuntzel and Noll 1967). Novel
mechanisms can be confidently predicted to be
uncovered by study of these organisms and or-
ganelles, as well, perhaps, from the giant viruses
of Acanthamoeba that encode components of
the translation apparatus (Bekliz et al. 2018;
Stern-Ginossar et al. 2018). Even in well-studied
areas, growing appreciation of the flexibility and
complexity of the translational apparatus points
to the likelihood that more mechanistic variety
will be found than is currently appreciated. Dis-
coveries such as repeat-associated non-ATG
(RAN) translation (Zu et al. 2011, 2018) and
ribosomal heterogeneity (Kondrashov et al.
2011; Robichaud et al. 2018) exemplify how
much is still to be learned. Although it would
be rash to be specific, advances in RNA biol-
ogy—including base modifications and epi-
transcriptomics (Peer et al. 2018), and regulation
by circular and noncoding RNAs (Chekulaeva
and Rajewsky 2018) andmicroRNAs (Duchaine
and Fabian 2018), as well as antisense and inter-
fering RNAs—present new avenues for basic
research and open fresh possibilities for bench-
to-bedside translation.
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