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Abstract

The receptors for the brain and gastrointestinal peptide, cholecystokinin, can be classified into 

CCKA and CCKB subtypes. Having recently cloned the rat CCKB receptor, we used it’s cDNA to 

isolate the human CCKB receptor homologue from brain and stomach which encodes a 447 amino 

acid protein with 90% identity to both rat CCKB and canine gastrin receptors. Northern 

hybridization identifies transcipts from stomach, pancreas, brain and gallbladder. The CCKB 

receptor gene maps to chromosome 11. Expression of the receptor cDNA in COS-7 cells was 

characteristic of a CCKB receptor subtype pharmacology. These data confirm that we have cloned 

a novel gene for the human brain and stomach CCKB receptor.

The cholecystokinin (CCK) family of peptides and their receptors are widely distributed 

throughout the central nervous system (CNS) and gastrointestinal tract (1,2). The receptors 

for cholecystokinin can be divided into two subtypes on the basis of their affinity for 

nonsulfated analogues of CCK. CCKA receptors, having a high affinity only for sulfated 

CCK-8, are found principally in the gastrointestinal tract and select areas of the CNS while 

CCKB (gastrin) receptors, having a high affinity for both sulfated and nonsulfated CCK 

analogues, are found principally in the CNS and select areas of the gastrointestinal tract 

(3,4). Recently, highly selective nonpeptide antagonists have been developed which support 

this subtype classification. Two of the most potent and selective antagonists are L-364,718 

for CCKA receptors (5) and L-365,260, for CCKB receptors(4). Although the physiological 

and behavioral role of CNS CCKB receptors is not well understood, they have been shown to 

regulate anxiety, arousal, neuroleptic activity (6,7) and opiate induced analgesia (8,9). 

Outside the CNS, CCKB receptors regulate gastric acid secretion (10,11) and may play a 

role in gastrointestinal motility (12,13) and growth of normal and neoplastic gastrointestinal 

tissue (14).
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*To whom correspondence should be addressed. 

U.S. Department of Veterans Affairs
Public Access Author manuscript
Biochem Biophys Res Commun. Author manuscript; available in PMC 2019 September 03.

Published in final edited form as:
Biochem Biophys Res Commun. 1992 November 30; 189(1): 296–303. doi:
10.1016/0006-291x(92)91557-7.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Little is known about the structure and pharmacology of the human CCKB receptor because 

of either the difficulty in obtaining fresh tissue or long term culture of normal tissue 

expressing CCKB receptors. Tumor cell lines from human small cell carcinoma (14), and 

lymphoblastic T-cells (JURKAT) (15) have been shown to express CCK receptors with a 

CCKB receptor subtype similar to rat, however, some gastric carcinomas (16), leiomyomas 

(17) and colonic carcinomas (18) appear to have a unique “CCKB-like” pharmacology and 

structure. Having recently cloned the rat CCKB receptor cDNA (19), we used this cDNA to 

isolate the human CCKB receptor cDNA and analyze the receptor structure and functional 

expression.

MATERIALS AND METHODS

TISSUE PROCUREMENT, RNA ISOLATION, AND cDNA SYNTHESIS:

Human gastric fundus was obtained as a fresh surgical specimen and immediately frozen in 

liquid nitrogen. Total RNA was isolated using a low temperature guanidine isothiocyanate 

method (20) and poly (A)+ RNA was isolated using oligo d(T) cellulose chromatography. 

Oligo d(T) primed cDNA was synthesized using Superscript reverse transcriptase (BRL, 

Gaithersburg, MD) from one microgram poly (A)+ RNA.

ISOLATION OF cDNA CLONES:

A human frontal cortex cDNA library in the Lambda ZAP II vector (Stratagene, LaJolla, 

CA) was screened using a [32P] random primed probe derived from the rat CCKB receptor 

cDNA. Approximately 7.5 × 105 clones were screened at low stringency (3 × 20′ washes at 

37°C, 2X SSC/0.l% SDS [1X SSC= .15 M NaCl; 15mM sodium citrate). Positively 

hybridizing clones were plaque purified.

PCR CLONING:

To obtain a full length human CCKB receptor cDNA, approximately 5 ng of. single stranded 

human stomach fundus cDNA and the following primers were used in the polymerase chain 

reaction: a 64 fold degenerate 5′ sense primer: 5′-GGA(G/C)(C/T)TC(A/G)(G/C)(A/

T)GG(A/G)GCCATGGA-3′ was derived from a highly conserved 5′ flanking nucleotide 

sequence of the rat (19), and guinea pig (unpublished data) CCKB receptor cDNA. The 3′ 
antisense primer (nucleotides 1431 to 1452; Fig. 1) were derived from the 3′ noncoding 

region of the clone isolated from the human frontal cortex cDNA library described above. 

Each primer contained an additional 5′ 9 bp cap and Xba I site (ACTGACTAGTCTA) 

necessary for subsequent ligation into the vector, pCDL-SRα at the Xba-1 restriction 

enzyme site.

DNA SEQUENCING:

Both strands of the cDNA clones isolated from the human frontal cortex cDNA library and 

the product from PCR cloning from the human stomach cDNA were sequenced using the 

dsDNA Cycle Sequencing System (Bethesda Research Laboratory), Gaithersburg, MD).

Pisegna et al. Page 2

Biochem Biophys Res Commun. Author manuscript; available in PMC 2019 September 03.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



DNA AND PROTEIN SEQUENCE ANALYSIS:

The nucleotide and deduced amino acid sequences were analyzed by the Wisconsin Genetics 

Computer Group software package using the “Pileup” program (21).

NORTHERN BLOT ANALYSIS OF mRNAs:

Approximately 2 μg of poly (A)+ RNA isolated by oligo dT cellulose chromatography were 

loaded in each lane and were separated electrophoretically on a 1.5% agarose/formaldehyde 

denaturing gel and blotted onto Nytran (Schleicher and Schucll, Keene, NH). The blot was 

hybridized with a [32P] random prime labelled probe derived from the coding region of the 

human CCKB receptor cDNA, and washed at high stringency (3 × 20′ washes with 0.1 X 

SSC/0.l% SDS @ 42°C). The blot was exposed for 48 hours and processed using a 

phosphorimager (Molecular Dynamics).

EXPRESSION of HUMAN CCKB RECEPTOR cDNA IN MAMMALIAN CELLS:

The product cloned by PCR amplification from human stomach fundus cDNA described 

above was digested with Xba I and ligated into the vector pCDL-SRα (22) at the Xba I site 

in the sense orientation. Two micrograms of vector plus insert were transfected into COS-7 

cells (≈1×106 cells per 100 mm tissue culture plate) using the DEAE/dextran method as 

described (23). Approximately 48 hours after transfection, the cells were washed in 

phosphate buffered saline (PBS; pH 7.4) containing bovine serum albumin (BSA) 1mg/ml at 

4 ° C, scraped from the culture plate and suspended in Dulbecco’s Modified Eagle Medium 

(DMEM) containing BSA 1 mg/ml, centrifiged (400X g), and suspended in the same 

medium at 4°C(≈300,000 cells/ml). Suspended cells (500 μl) were incubated for 60 minutes 

at 37° C with 50 pM of [125 I]Bolton-Hunter-CCK-8 (2200 Ci/mmol) either with or without 

the indicated concentrations of unlabelled agonist or antagonist. Cells were subsequently 

washed three times at 4° C with 2 ml PBS containing BSA 1 mg/ml at 4 ° C and filtered on 

glass fibers filters (Wbatman GF/A) using a suction manifold (Millipore, Bedford, MA). The 

filters were subsequently assayed for gamma radioactivity (Packard, Auto-Gamma).

CHROMOSOMAL MAPPING:

Human chromosomal localization was Performed using a somatic cell hybrid panel of 

human-hamster DNAs (BIOS Laboratories, New Haven, CT). Southern hybridization filters 

were generated from 25 specific hybrid DNA’s (5μg each) digested with the restriction 

endonuclease Bam Hl. The CCKB receptor probe was then hybridized to these filters using a 

standard protocol at 65° C with 3 X SSC. The final wash stringency was at 65° C with 1 X 

SSC.

RESULTS AND DISCUSSION

Screening approximately 7.5 X 10 5 cDNA clones from a human frontal cortex cDNA 

library in the Lambda ZAP II vector resulted in the isolation of 44 clones that hybridized 

under low stringency to the rat CCKB receptor probe. The longest plaque purified clone, 2.1 

Kb, contained a nucleotide sequence that was 85% homologous to the rat CCKB receptor 

cDNA. However, the clone contained an intron at the 5′ end and did not contain the first 82 

bases of the 5′ cooing region. The remaining sequence was obtained by PCR cloning from 

Pisegna et al. Page 3

Biochem Biophys Res Commun. Author manuscript; available in PMC 2019 September 03.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



the human stomach fundus cDNA. Using the rat (19) and guinea pig (unpublished data) 

CCKB receptor cDNA sequences a highly homologous 5′ flanking sequence was identified 

for the design of a 64-fold degenerate sense primer with the following sequence: 5′-

GGA(G/C)(C/T)TC(A/G)(G/C)(A/T)GG(A/G)GCCATGGA-3′. The 3′ antisense primer, 

(5′-CAGGAAACCAACACCCAAAGC-3′) was obtained from the 3′ noncoding region of 

the clone isolated from the human frontal cortex cDNA library. PCR cloning from the 

human stomach fundus cDNA resulted in an ≈ 1.45 Kb product with an identical nucleotide 

sequence to the coding region of the clone isolated from the human frontal cortex cDNA and 

an additional 82 bp comprising the 5′ coding sequence. This nucleotide sequence plus the 

3′ noncoding region of the human frontal cortex clone is 1969 bp in length (Fig. 1). The 

coding region sequence has approximately an 85% and 87% homology with the rat (19) 

CCKB receptors and the canine parietal cell gastrin receptor (24) nucleotide coding region, 

respectively. This high degree of homology is in the expected range for interspecies variation 

in the same gene. This high degree of sequence homology between the rat and human CCKB 

receptor and the canine gastrin receptor and the fact that the same CCKB receptor cDNA has 

been cloned from human brain and stomach as well as the dog brain (unpublished data) and 

parietal cell (24) suggest that the CCKB receptor and gastrin receptor are identical.

The nucleotide sequence contains a single long open reading frame which encodes for a 

unique 447 amino acid protein with a calculated molecular mass of ≈48.5 kDa. The receptor 

is 5 and 6 amino acids less than the rat CCK receptor and canine parietal cell gastrin 

receptor (24) respectively, principally, because of a loss of a block of 5 amino acids in the 

third intracellular loop (Fig. 2). The sequence allows for three potential N-linked 

glycosylation sites, all in the amino terminus (Fig. 1). The number of potential N-linked 

glycosylation sites is similar to that published for dog (24) and is less than that reported for 

the rat (19). There are two potential sites for protein kinase C phosphorylation (25) on 

serines in the first and third intracellular loop (residues 82 and 300, Fig. 1) and three 

potential sites for protein kinase A phosphorylation on serines in the second intracellular 

loop and amino terminus (residues 154 and 437) and on threonine in the third intracellular 

loop (residue 321; Fig. 1) (25). A comparison of the amino acid sequence of the human 

CCKB receptor with rat CCKB receptor (19) and canine gastrin receptor (24) shows an ≈ 
90% identity, with the highest degree of homology in the transmembrane domains and the 

least degree of homology in the amino and carboxy termini and the third intracellular loop 

(Fig. 2). Similar to the rat CCKn receptor (19) and the canine gastrin receptor (24), there are 

conserved cysteines in the first and second extracellular loops which may form a disulfide 

bridge (residues 107, 157; Fig. 2) required for stabilization of the tertiary structure as 

demonstrated for rhodopsin(26), ß-adrenergic (27), and muscarinic receptors (28). A 

cysteine in the carboxy-terminus (residue 408; Fig. 2) may be a membrane anchoring 

palmitoylation site similar to rhodopsin and the ß-adrenergic receptors (29,30).

A hydropathy plot (data not shown) using the criteria of Kyte and Doolittle (31) and 

homology with other G-protein-coupled receptor superfamily members identifies seven 

regions of hydrophobic residues corresponding to putative transmembrane domains expected 

for members of the G-protein-coupled superfamily of receptors (32,33).
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High stringency northern blot analysis of 2 μg of organ specific polyadenylated mRNA 

reveals that the CCKB receptor cDNA full-coding-region probe hybridizes to predominantly 

a 2.8 Kb transcript and to a lesser degree to a 3.3 Kb transcript in stomach fundus, pancreas, 

and gallbladder. However, in the brain, the probe hybridizes equally to both transcripts (Fig. 

3). This transcript size is similar in size to the 2.7 Kb size reported in rats (19), and is larger 

than the canine gastrin transcript (approximately 2.1 Kb) (24). Both bands were present in 

all of the tissues expressing transcripts after high stringency washing suggesting that they are 

probably transcripts from the same gene. The presence of a strongly hybridizing band in 

human gallbladder is not suprising given that the guinea pig gallbladder has been shown 

previously to possess CCKB receptors (12).

We used the CCKB receptor cDNA as a [32P]random prime labelled probe to hybridize to a 

blot of human-hamster chromosomal hybrid DNA’s cut with Bam Hl. The presence of an 11 

Kb hybridizing fragment in both the hybrid 1049 and the parental human control indicates 

that the CCKB receptor maps to chromosome 11. Further localization studies will allow 

more specific mapping of the CCKB receptor gene on chromosome 11.

To confirm that the CCKB receptor clone isolated from both human brain and stomach 

encodes for a functional CCKB receptor, and to demonstrate for the first time, the precise 

pharmacology of a pure human CCKB receptor, ligand binding dose-inhibition studies were 

performed. The human CCKB receptor cDNA obtained from PCR cloning (1.45 Kb insert) 

was cloned into the Xba I site of the mammalian expression vector, pCDL-SRα, and 

transfected into COS-7 cells using DEAE/dextran. Radioligand binding studies using [125I]-

BH-CCK-8 alone or in the presence of increasing concentrations of either unlabelled CCK 

receptor agonists or antagonists were performed. These studies showed that [125I]-BH-

CCK-8 binding inhibition by CCK-8 (EC50 = 3 × 10−9 nM) was 2-fold more potent than 

gastrin-17-I (EC50 = 6.4 × 10−9 nM) and inhibition by the CCKB receptor antagonist, 

L-365,260 (EC50 =l × 10−8 nM) was 50-fold more potent than the CCKB receptor specific 

antagonist L-364,718 (EC50 =5 × 10−7 nM)(Fig. 4). These findings are similar to that 

reported previously for native rat CCKB receptors (34), in the transformed human T-

lymphocyte, JURKAT cells (15), and in a human small cell carcinoma cell line (14). These 

results differ significantly from the results reported for the canine gastrin receptor (24). The 

canine parietal cell gastrin receptor has almost a 7-fold greater affinity for the CCKA 

receptor antagonist L-364,718 than for the gastrin receptor antagonist L-365,260 (24). This 

divergence in canine gastrin receptor reversal in affinity for the antagonist L-364,718 and 

L-365,260 (6).

In the present study we have, using the previously cloned rat CCKB receptor DNA sequence 

as a probe, cloned from both a human brain cDNA library and from human gastric fundus 

the human CCKB receptor DNA. The DNA sequence is 90 percent homologous to the rat 

and dog sequences. Expression of the cloned DNA gives binding characteristics similar to 

the rat CCKB but different to the dog. Furthermore, we show that the brain and stomach 

CCKB receptors are identical. These results will enhance our understanding of the central 

nervous system and gastrointestinal CCKB receptor and permit the introduction of specific 

agonists and antagonists to this receptor. This will be useful for the elucidation of the 
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mechanisms of various neuropsychiatric diseases and will hasten the treatment of disorders 

such as anxiety, and panic disorders as well as schizophrenia.
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FIG. 1. 
Nucleotide and deduced amino acid sequences of the human brain and stomach CCKB 

receptor cDNA clone. The solid lines labelled with Roman numerals I-VII delineate the 

putative transmembrane domains predicted by the Kyte-Doolittle criteria (31) and homology 

with the rat CCKB as well as other G-protein-coupled receptor superfamily members. The 

solid triangles indicate three potential sites for N-linked glycosylation. The solid underlines 

indicate potential sites for serine and threonine phosphorylation (25). The AATAAA 

cleavage and polyadenyalation sequence is underlined. Solid circles indicate cysteine 

residues which are potential sites for either disulfide bridge formation (26,27,28) (residues 

127 and 205) or palmitoylation (29,30) (residue 408).
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FIG. 2. 
Alignment of the human CCKB receptor (HUCCKBR), rat CCKB receptor (RATCCKBR) 

and canine gastrin receptor (CANGASR) deduced protein sequences. Using the “Pileup” 

program sequence analysis package of the Genetics Computer Group (21) the human CCKB 

receptor was aligned for maximal homology with the rat CCKB receptor and the canine 

gastrin receptor. Shown here using amino acid acid letter symbols is the result of this 

alignment with solid lines indicating putative transmembrane domains and boxed letters 

indicating amino acids from rat and dog not conserved in the human receptor sequence.
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FIG. 3. 
Northern blot analysis of poly (A)+ RNA from the human organs. Two micrograms of poly 

(A)+ RNA from human brain, stomach, pancreas, and gallbladder were separated on a 1.5% 

denaturing/formaldehyde agarose gel and probed under conditions of high stringency with 

the coding region of the CCKB receptor cDNA labelled with [32P] by random primer 

extension. The blot was exposed for 48 hours and scanned with a phosphorimager 

(Molecular Dynamics). The lines on the left correspond to the migration Positions of the 28S 

and 18S ribosomal RNA.
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FIG. 4. 
Ability of CCK receptor agonists and antagonists to inhibit binding of [125I]BH-CCK-8 to 

COS-7 cells expressing the human CCKB receptor. COS-7 cells were transfected with the 

mammalian expression vector, pCDL-SRα, containing the human CCKB receptor cDNA. 

Transfected COS-7 cells were incubated with either the tracer alone or increasing 

concentrations of agonists CCK-8 or gastrin-17-I (left panel) or antagonists L-365,260 and 

L-364,718 (right panel). Data are presented as percent saturable binding (total binding in the 

presence of labelled hormone alone minus binding in the presence of 1 μM CCK-8).
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