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ABSTRACT

Objective Stroke is a major cause of disability and death
worldwide. People with diabetes are at a twofold to fivefold
increased risk for stroke compared with people without
diabetes. This study systematically reviews the literature on
available stroke prediction models specifically developed

or validated in patients with diabetes and assesses their
predictive performance through meta-analysis.

Design Systematic review and meta-analysis.

Data sources A detailed search was performed in MEDLINE,
PubMed and EMBASE (from inception to 22 April 2019) to
identify studies describing stroke prediction models.
Eligibility criteria All studies that developed stroke
prediction models in populations with diabetes were
included.

Data extraction and synthesis Two reviewers
independently identified eligible articles and extracted
data. Random effects meta-analysis was used to obtain a
pooled C-statistic.

Results Our search retrieved 26 202 relevant papers and
finally yielded 38 stroke prediction models, of which 34
were specifically developed for patients with diabetes and
4 were developed in general populations but validated in
patients with diabetes. Among the models developed in
those with diabetes, 9 reported their outcome as stroke,
23 reported their outcome as composite cardiovascular
disease (CVD) where stroke was a component of the
outcome and 2 did not report stroke initially as their
outcome but later were validated for stroke as the
outcome in other studies. C-statistics varied from 0.60 to
0.92 with a median C-statistic of 0.71 (for stroke as the
outcome) and 0.70 (for stroke as part of a composite CVD
outcome). Seventeen models were externally validated in
diabetes populations with a pooled C-statistic of 0.68.
Conclusions Overall, the performance of these diabetes-
specific stroke prediction models was not satisfactory.
Research is needed to identify and incorporate new risk
factors into the model to improve models’ predictive ability
and further external validation of the existing models in
diverse population to improve generalisability.

INTRODUCTION

Stroke, also known as a cerebrovascular acci-
dent, is the third leading cause of disability
and accounted for over 6million deaths

Strengths and limitations of this study

» The breadth of the comprehensive systematic litera-
ture search is a strength of this study.

» To our knowledge, this is the first study where a
meta-analysis and study quality assessment was
performed on stroke prediction models in patients
with diabetes.

» We were only able to use C-statistics to compare the
model performance, which might be insensitive to
identify differences in models’ ability to accurately
risk-stratify patients into clinically meaningful risk
groups.

worldwide in 2015.! %2 Diabetes mellitus, char-
acterised by chronic hyperglycaemia due to
an absolute or relative deficiency in insulin,
is a major risk factor for stroke. People with
diabetes are at a twofold- to fivefold increased
risk for stroke compared with people without
diabetes.”” Large clinical trials performed in
people with diabetes supports the need for
targeted cardiovascular risk reduction strat-
egies to prevent the onset, recurrence and
progression of acute stroke.®

Risk prediction models are statistical tools
to estimate the probability that an indi-
vidual with specific risk factors (eg, diabetes
mellitus) will develop a future condition,
such as stroke, within a certain time period
(eg, 5 years).” Such tools for the estimation
of stroke risk are frequently used to assist
in decisions about clinical management for
both individuals and populations. Accurate
risk prediction of stroke is thus necessary to
provide patients with accurate information
on the expected benefit from a therapy or
intervention. The importance of well-per-
forming prediction models is increasingly
being recognised and health researchers
continue to develop parsimonious risk
prediction models under different scenarios
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to meet this demand. Model performance statistics, such
as C-statistic or AUC (area under the receiver operating
characteristic curve) are indicators frequently used to
identify models with the best predictive ability. These
metrics can be compared and assessed through a formal
systematic review and meta-analysis. Performing a system-
atic review and meta-analysis can also provide a compre-
hensive quantitative summary of the predictive ability of
these models and evaluate their predictive performance
within the available literature.

Risk  factors for stroke include lifestyle-related
factors,'’ ' predisposing medical conditions," '* specific
genetic diseases," '* as well as sociodemographic factors.' 12
Over the past decade, a number of prediction models (or
risk scores) have been developed incorporating these risk
factors to predict a person’s risk of developing stroke.'”
Prediction of stroke is important for a number of reasons:
to detect or screen high-risk subjects to prevent devel-
oping stroke through early interventions, to facilitate
patient—doctor communication based on more objective
information and to help patients to make an informed
choice regarding their treatment. While multiple stroke
prediction models have been proposed in patients with
diabetes, little is known about which is the most accurate
one. There has also been a lack of consistency in estimating
risk across these different models. With this in mind, we
aimed to systematically identify all prediction models for
stroke that have been applied to patients with diabetes. We
characterised the study populations in which these models
were derived and validated. We also assessed the predictive
performance and generalisability of these stroke prediction
models so that the selection of models for clinical imple-
mentation can be informed.

METHODS

Data sources and searches

Similar to previously employed methodology,'® we
searched MEDLINE, EMBASE and PubMed (from data-
base inception to 22 April 2019) for studies predicting
the risk of stroke among patients with diabetes. We also
searched the reference lists of all identified relevant
publications. The search strategy focused on three key
elements: diabetes, risk prediction with specific names of
known risk scores and stroke. Only studies published in
English were considered. The detailed search strategy is
given in online supplemental table S1.

Study selection

Eligible articles were identified by two reviewers inde-
pendently using a two-step process. First, an initial screen
of titles and abstracts was performed. Abstract were
retained if they reported data from an original study
and reported on the development and/or validation of
a stroke risk prediction model for patients with type 2
diabetes. We defined a stroke risk prediction model as one
combining two or more independent variables to obtain
estimates of the predicted risk for developing stroke. We

considered any clinical-based or laboratory-based defini-
tion of stroke. Selected abstracts were further screened
based on a full-text review. We used broad inclusion
criteria to provide an extensive systematic review of the
topic. There were no restrictions on study design (eg,
cohort study, case—control study), geographic region or
age ranges. Studies that developed prediction models
for stroke in populations with type 2 diabetes and in the
general population were included; however, models that
were developed in the general population but did not
validate their model in a type 2 diabetes population or
models developed on a type 1 diabetes population were
excluded. A study was included if the outcome of the
prediction model was any type of stroke or stroke that
was part of a composite cardiovascular disease (CVD)
outcome, but excluded if the outcome was any other
cardiovascular conditions (eg, coronary heart disease
(CHD), coronary artery disease (CAD), heart failure).
We excluded studies that did not predict stroke. Studies
on recurrent stroke or other vascular conditions (eg,
patients with hypertension) were also excluded. Studies
that focused only on the added predictive value of new
risk factors to an existing prediction model without
reporting the performance of the existing model were
excluded. Studies on score-based tools, such as risk charts
were also excluded. Agreement between reviewers at the
full-text stage was quantified using the kappa statistic.
Any disagreement between reviewers was solved through
consensus.

Data extraction

Data were extracted from the finally selected studies using a
standardised form by two reviewers. Information collected
from each study included, outcome of the prediction
model, location where the model was developed, predictors
included in the model, age and gender of the study partic-
ipants, number of events, duration of follow-up, modelling
method used, measures of discrimination and calibration
of the prediction model and the external validation of
the prediction model. For the external validation studies,
a different data extraction sheet was used. The collected
information included specifics of the validation popula-
tion, number of events, type of outcome, statistical tests and
measures of discrimination, and calibration of the predic-
tion model. Study quality was assessed using the CHARMS
(Critical Appraisal and Data Extraction for Systematic
Reviews of Prediction Modelling Studies) Checklist.'” The
following items were evaluated for each study: Was inclu-
sion/exclusion criteria for study participants specified?;
Was there non-biased selection of study participants?; Did
the authors discuss or consider missing values/informa-
tion?; Was there blinded assessment of the outcome?; Was
duration of follow-up adequate?; Were modelling assump-
tions satisfied?; Was the model externally validated? and
Was the potential clinical utility of the model discussed in
light of study limitations?
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Data analysis

The selection process for this systematic review and
meta-analysis is summarised using the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Anal-
yses) flow diagram.'® Discrimination is defined as any
assessment of the ability of the model to differentiate
between subjects who will develop stroke from those who
will not. The discrimination of a prediction model is often
assessed using the concordance or C-statistic (also known
as AUC). Calibration is defined as any report of the agree-
ment between predicted probabilities and observed prob-
abilities. Calibration is assessed using goodness-of-fit tests
(eg, Hosmer-Lemeshow test), calibration slopes, tabular
or graphical comparisons of predicted versus observed
values within groupings of predicted risk or calibration
plots. In studies that only provided a C-statistic but no
measure of its variance, the SE and 95% CI of the AUC
(C-statistic) was calculated using the formula:

AUC[1—AUC]+[N] —1] x [AUC/ (2—AUC) —AUC2 |+ [Ny — 1] x [24UC2/ (14aUC) —AUC2]

SE (AUC) = \J

(N1 xNg)

where N; = the number of patients with stroke and
N, = the number of patients without stroke and the upper
95%CI = AUC+ [1.96 x SE (AUC)], and lower 95% CI
= AUC — [1.96 x SE (AUC)]."” The summary statistic
from the individual studies was the C- statistic or AUC. We

grouped studies based on the outcome of the risk predic-
tion models developed in diabetes populations, whether
stroke was the primary outcome of the model or stroke
was a part of composite CVD outcome. Random effects
meta-analysis was used to obtain the pooled weighted
average Cstatistic with 95% CIs for common groups of
models using the DerSimonian and Laird method.”
Heterogeneity was assessed using the Cochran Q) and the
I* statistic and was explored using meta-regression and
stratified analyses according to model outcomes. Small
study effects were examined using funnel plots and Begg’s
test. The analyses were performed using Stata version 13.1
(Stata, College Station, Texas, USA) using the metan,
metareg, metabias and metafunnel commands.

Patient and public involvement
There was no direct patient or public involvement in this
review.

RESULTS

The search retrieved 21797 citations (after duplicate
removal) with an additional 63 potentially relevant
papers retrieved from our grey literature search. After
title and abstract screening, 262 studies were selected
for full-text screening. After examining the full-text
papers, 56 studies remained (reasons for exclusion stated

Records identified through database searching
(n=26,202)

PubMed: 8,901, EMBASE: 7,912, MEDLINE: 9,389

Additional records identified through other
sources
(m=63)

Records after duplicates removed (n = 21,797)

A

Records screened (title & abstract) (n = 21,797)

A4

Records excluded (n =21,535)

Full-text articles assessed for eligibility (n=262)

\ 4

Studies included in systematic review (n = 56)

A 4

Studies included in quantitative synthesis
(Meta-analysis)
(n=46)

Full-text articles excluded (n = 206)
Review paper = 4
Letter to the editor/Comment/Correspondence
=11
Model developed/validated in non-diabetic
population (including simulation studies) = 48
Identify predictor/association with stroke = 26
Different outcome than stroke = 99
Mortality prediction =2
Risk charts/tables = 3
Duplicate =2
Language other than English =11

Figure 1

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram for systematic review of

studies presenting stroke prediction models developed or validated in individuals with diabetes.
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in figure 1), describing 38 models predicting stroke in
patients with diabetes. Agreement between reviewers on
the final articles eligible for inclusion in the systematic
review was good (k=0.83). Of these 38 models, 34 were
specifically developed in patients with diabetes and 4
were developed in the general population but later
externally validated in patients with diabetes. Among
the models developed in patients with diabetes, nine
models reported their outcome as stroke and presented a
corresponding performance measure (C-statistic) for the
models. Twenty-three models reported their outcome as
a composite CVD outcome where stroke was one of the
components and presented the model’s performance
measure (C-statistic) for the composite CVD outcome.
Among the models developed in the general popula-
tion, one model reported its outcome as stroke and
three models reported a composite CVD outcome, which
included stroke. Of these 38 prediction models, 17 were
validated by 33 studies (some studies validated more than
one model in the same study), of which 10 models had
multiple validations, 7 models had a single validation
and 21 models were not validated. Among the models
with multiple validations, eight models were developed
in a diabetes population (validated by 31 studies) and
two were developed in the general population (validated
by four studies). United Kingdom Prospective Diabetes
Study (UKPDS) Risk Engine for Stroke by Kothari et a*'
was the most validated risk score (validated by 12 studies).
Figure 1, describes the systematic selection process of
studies presenting a stroke prediction model applicable
to patients with diabetes.

Predicting the risk of stroke within models developed in
populations with diabetes

Table 1 describes the study characteristics of the nine risk
prediction models developed in diabetes populations and
presented a corresponding performance measure. The
number of participants ranged from 1748 to 26 140 in the
model development. The outcome of most models was
stroke regardless of type. Duration of follow-up (total/
median/mean) ranged from 501 days to 10.5 years with
six models having 25 years of follow-up (defined as long
duration) and three models with <5 years of follow-up.
Most of the prediction models were developed using Cox
proportional hazards modelling techniques. The number
of predictors included in the prediction models ranged
from 4 to 29 with an average of 11 predictors per model.
Several predictors were common to multiple models
including age, sex, duration of diagnosed diabetes,
systolic blood pressure and haemoglobin Alc (HbAlc).
Only two models were externally validated after their
development and four of them had never been validated
in an external population. Calibration of the predic-
tion model was reported by six studies (most commonly
using the Hosmer-Lemeshow test). Discrimination was
assessed using the C-statistic (or AUC) and reported by
six models with values ranging from 0.64 to 0.80. The
median C-statistic of the models was 0.71 with a large

amount of unexplained heterogeneity in the discrimina-
tive performance of these models (I°=94.6%; Cochran
Qs-statistic p<0.001; figure 2). Stratifying pooled results by
sample size (small vs large, p=0.19), follow-up time (short
vs long, p=0.60), variables included in the model (few vs
many, p=0.24) and geographic location (Asia vs others,
p=0.60) did not explain the observed heterogeneity in
the discriminative performance of these models. The
discriminative ability of the model by Kiadaliri et af* was
highest (C-statistic=0.80). The funnel plot and Begg’s test
(p>0.999) suggested the absence of small study effects,
with no correlation between studies of smaller cohorts
reporting higher C-statistics (online supplemental figure
S1).

A set of nine criteria was used to assess the quality of the
studies and was summarised in table 2. All the studies spec-
ified inclusion/exclusion criteria. Non-biased selection of
study participants was clear in all studies except the study by
Palmer et al* Handling of missing values was reported in
four (44%) studies, modelling assumptions was satisfied by
two studies and model external validation was performed
in two studies. Stevens ef al was the only study to mention
whether the outcome was assessed without knowledge of
the candidate predictors.** Duration of follow-up was long
(=5 years) in six models (67%). The clinical utility of the
models was discussed in six (67%) studies and almost all
studies reported their study limitations.

Predicting risk of stroke (as part of a composite CVD

outcome) in populations with diabetes

We identified 23 models developed in diabetes popula-
tions that reported their outcome as a composite of CVD.
A summary of the characteristics of these prediction
models is described in table 3. The number of partici-
pants considered in the model development ranged from
132 to 181619 with an average age of >50 years. Duration
of follow-up (mean, median, maximum) ranged from 11
months to 11.8 years with 14 models with 25 years and
nine models with <5 years of follow-up. The number of
predictors included in prediction models ranged from 4
to 18 with an average of 11 predictors per model. The
most common predictors included in the models were
age, sex, systolic blood pressure and HbAlc, smoking
and high-density lipoprotein-cholesterol. Four models
were externally validated after its development and 17 of
them had never been validated in an external population.
Calibration of the prediction models was reported by 13
studies while discrimination reported by almost all studies
with Csstatistics ranging from 0.60 to 0.92. The median
C-statistic of the models was 0.70 with a large amount of
unexplained heterogeneity in the discriminative perfor-
mance of these models (I°=93.7%; Cochran Q-statistic
p<0.001; figure 3). Sample size (small vs large, p=0.46),
models’ external validation (externally validated vs not
externally validated, p=0.71), variables included in the
model (few vs many, p=0.21) and geographic location
(Europe vs others, p=0.08) were not identified as signif-
icant sources of heterogeneity in the discriminative

4

Chowdhury MZI, et al. BMJ Open 2019;9:€025579. doi:10.1136/bmjopen-2018-025579


https://dx.doi.org/10.1136/bmjopen-2018-025579
https://dx.doi.org/10.1136/bmjopen-2018-025579

)
7
[
3]
3]
@
c
[
o

©)

panuiluo)

(vsvs e
-dININ pue Y 3-18s
‘33 -Vl "D
[opow  siesh |'|FZ'9 Jo o[ewsy pue siedh /| | FG 19 L -dOIN ‘“09/99 e2(Sdl)
ON YN YN  uoissaibal X0  dn-mojjo} ues|y 2812/801 alew yjog obe uesyy  9-7|) sedAjousb G 8Y0J3S [BlB}-UOU JO [BJe{ PUB[I0OS (B 18 Jawled

(|]epow
901G 40} JUNOD
wyyLoble 190 dUyMm ‘¥odls 4299
(j]opow ayons) uol1o9|es sieah , jodn a[ewsy pue sieah g9 snoinaid 4gs Ay[ere} oseo o30S sadyn ‘e
ON dN 8tz0=d 188} TH osIMdelS  -MOJ|0} UBIPBIN  Z0LS/¥ET :8M0NS 8lew yiog pue Gg usamieg ‘OLYgH ‘Xes) G pue Ayjeye;} oseo |\ MN  J8susAslS

(uoreiuqy euye

Jo @oussaid pue
oljel |0J19)S8|0YD
ureyosdodi| Aysusp
-ybiy o} |oss)s8I0YD

poyiaw uosydey |e10} ‘aunssaid
-UoIMaN 8y} poojq d1j03shs (20w Jo yyuow | Buise|
Buisn uonewse ‘Bujows ‘xas subis Jo swoydwAs
pooye| sieak g0l dn slewsy pue ‘obe ‘sejagelp Yum Joyep [edlbojoinau 2/®
SOA 4N dN WNWIXeN  -MOJ|0} UeIpBN 6757/881 olew ylog  siedh G9 0} G 4O uonelnp) / © Se paulep) exons MN 18 Ueyioy

uonepijlep (19 yum) uoneurwniosiqg uoneuqied poyiaw dn-mojjo}  (u) syuedionsed Japuan aby  sJo0joIpaid jJo ON awooInQ uoneoso Apnmig
Jeuwsaixgy BuijlepoN Jo uoneing |ejoy/(u) syuang

I
N~
5
re]
Y
e
=)
=
1S}
o
o
]
S
2
IS
2
)
™
-
-
S
-
S
S
o
N~
5]
e
N
S
L
3
&
=
S
I
g
S
S
xQ
K
-
T
N
=
=
>
=
S
=
3
=
(&



)
7
o
3]
3]
®©
c
[
o

©)

‘Apnig sejeqelq aAioadsold wopBuly peHun ‘SadyMnN ‘101e1sejoyo B30} ‘0] ‘einssaid poojq o1j0ishs ‘dgs ‘sejeqelq g odAL
10 suoljeoldwo) Joy suonenb3 ysiy ‘eq0DIY ‘perodas Jou ‘YN ‘uoioeyul [eIpsedoAw ‘||A ‘utejoidodi] Aysuep-mo| a7 (LIA3-r/SOAr @UL ‘Pr ‘el00s ysi Aojewweul ‘Sy| ‘O LY uigojBowaey ‘O LYaH ‘MoysawsT-lewsoH “TH ‘uiejoidod) Ayisusp
-ybIy “1gH ‘esess|p Je|noseAOIpIEd ‘gAD ‘esess|p Heay Aleuolod ‘gHO ‘einssaid poojq ‘dg ‘xepul ssew Apod ‘|INg ‘eAInD onsLieioeIeyD Bulyelado JeAieoes ey} Jopun ease ‘OOHNY ‘UONOIEIUI [BIPIED0AW 81NOE ‘||\Y ‘Ol}EJ BUIUINEIO-0}-UlWNd[e ‘HOY

(uoneoipaw
Je|N9oSenoIpIed pue
asn uoleoipaw
sejeqelphue
‘elweeoA|6odAy
‘Ayredounas
ssjeqelp
‘sisoquioiy} pue
wisijoquia [euape
‘uolyelien asoon|b
ewse|d Bunsey
‘aulunesld ‘olyel
71dH o1 |oJ8)s8j0Yd

(19s uonepien) [B301 ‘|9A8] O L YaH

/€6 ‘(10S ‘ainssaid poo|q

uoneALap) 052 ‘sejaqelp g

(s1eah g) 89'0=D04HNY |lepow uoissaibal g1 /(39S uonepien) adA} Jo uopeinp

{(sreakg) 1 2:0=004dNVY piezey sieak g Jo 9/01 ‘bos  eews) pue ‘Uqey Bupjows
OoN ‘(sreahg) 22'0=004NV YN [euoipodoid X0  dn-mojjo) US|\  UONEBALISP) 602 slew yiog sieak $8-0¢ ‘opuab ‘abe) | 9)0J}S OIWSBYDS|  Uemie| N -FERY
uonepiep (19 yum) uoneuiwnosig uoneuqied poyaw dn-mojjo}  (u) syuedionsed Japuen oby  si0)oIpaid Jo ON awo2InQ uoneso] Apmis

Jeusaixg BuijepoN Jo uoneing |ejoy/(u) syuang

Chowdhury MZI, et al. BMJ Open 2019;9:€025579. doi:10.1136/bmjopen-2018-025579



C-statistics for stroke prediction models for diabetes patients
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pooled Cstatistic for the model by Kothari et al*' was 0.72 = ez x B B
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C-statistics for stroke prediction models for diabetes patients
(Stroke is a part of composite cardiovascular disease outcome)

Study
ID

Selby et al. (2001)

Cederholm et al. (2008)

Davis et al. (2010)

Elley et al. NZ DCS Score (2010)

Kengne et al. (2011)

Paynter et al. (Men) (2011)

Paynter et al. (Women) (2011)

Zethelius etal. (2011)

Khalili et al. (Men) (2012)

Khalili et al. (Women) (2012)

Ofstad et al. (2013)

Mukamal et al. (2013)

Brownrigg et al. (2014)

Price etal. (2014)

Looker et al. (2015)

van der Leeuw et al. (Base Model SMART) (2016)
van der Leeuw et al. (Base Model EPIC-NL) (2016)
van der Leeuw et al. (Multimarker model SMART) (2016)
van der Leeuw et al. (Multimarker Model EPIC-NL) (2016)
Alshehry et al. (Base Model) (2016)

Alshehry et al. (Base Model + 7 lipid species) (2016)
Woodward et al. The AD-ON Risk Score (2016)
Parrinello et al. (Model 1) (2016)

Parrinello et al. (Model 2) (2016)

Parrinello et al. (Model 3) (2016)

Parrinello et al. (Model 4) (2016)

Price et al. (Basic Model) (2017)

Price et al. (Full Model) (2017)

Wan et al. (Model 1 Male) (2017)

Wan et al. (Model 2 Male) (2017)

Wan et al. (Model 1 Female) (2017)

Wan et al. (Model 2 Female) (2017)

Zarkogianni et al. (HWNN-based ensemble 4) (2018)
Zarkogianni et al. (SOM-based ensemble 4) (2018)
Zarkogianni et al. (Hybrid ensemble) (2018)

Young et al. (MACE) (2018)

Young et al. (MACE-plus) (2018)

Colombo et al. (Model with Framingham covariates alone) (2018)
Colombo et al. (Full Model) (2018)

C-statistic (95% Cl)

0.64 (0.63, 0.65)
0.70 (0.68, 0.72)
0.80 (0.76, 0.84)
0.68 (0.67, 0.70)
0.70 (0.68, 0.73)
0.60 (0.55, 0.65)
0.69 (0.64, 0.75)
0.71(0.70, 0.72)
0.64 (0.58, 0.70)
0.70 (0.65, 0.75)
0.79 (0.70, 0.89)
0.64 (0.60, 0.68)
0.66 (0.64, 0.69)
0.75 (0.69, 0.81)
0.72(0.70, 0.74)
0.70 (0.67, 0.74)
0.69 (0.64, 0.74)
0.73 (0.68, 0.79)
0.72 (0.64, 0.77)
0.68 (0.68, 0.68)
0.70 (0.70, 0.70)
0.67 (0.65, 0.69)
0.67 (0.64, 0.70)
0.68 (0.65, 0.71)
0.69 (0.66, 0.72)
0.72 (0.69, 0.74)
0.72 (0.68, 0.76)
0.74 (0.70, 0.78)
0.70 (0.69, 0.72)
0.69 (0.68, 0.70)
0.72(0.71,0.73)
0.71(0.70, 0.72)
0.68 (0.66, 0.69)
0.71 (0.69, 0.72)
0.71(0.70, 0.73)
0.70 (0.69, 0.71)
0.72(0.72,0.72)
0.66 (0.62, 0.71)
0.75 (0.70, 0.79)

+

thettes o2
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Better Discrimination

Figure 3 Forest plot of C-statistics, with 95% Cls of risk prediction models when stroke was reported as part of a composite
cardiovascular disease outcome. AD-ON, Action in Diabetes and Vascular Disease:Preterax and Diamicron Modified Release
Controlled Evaluation-Observational; EPIC-NL,European Prospective Investigation into Cancer and Nutrition-Netherlands;
HWNNSs,hybrid wavelet neural networks; MACE, major adverse cardiovascular event; NZDCS, New Zealand Diabetes Cohort
Study; SMART, second manifestations ofarterial disease; SOMs, self-organising maps.

(95% CI, 0.68 to 0.75), with high heterogeneity identified
(I’=95%; Cochran Q statistic p<0.001). Stratification by
sample size (small vs large, p=0.69), geographic location
(Asia vs others, p=0.09) and stroke type (fatal vs non-fatal,
p=0.07) did not explain the observed heterogeneity in the
discriminative performance of this model. UKPDS Risk
Engine by Stevens et al’® was the second most externally
validated model with five validation studies including
2826 patients. One study did not report the number of
participants and none of the studies reported C-statistics.
As a result, a pooled C-statistic and heterogeneity was not
possible to assess for this model. The UKPDS Outcomes
Model by Clarke et af’” was externally validated by four
studies including 65056 patients. The pooled C-statistic
was 0.66 (95% CI, 0.61 to 0.71) with high heterogeneity
between studies (1?=84.5%; Cochran Q statistic p=0.002).
Similar to the UKPDS Risk Engine for Stroke,21 stratifi-
cation across select study characteristics did not explain
the observed heterogeneity. The Framingham risk score
by Anderson et al’® was externally validated in two studies
including 8574 patients. The pooled C-statistic was 0.58
(95% CI, 0.54 to 0.61) with non-significant heterogeneity
between studies (1?=56.1%; Cochran Q statistic p=0.102).
The Framingham risk score by D’Agostino et al” was exter-
nally validated in two studies including 7604 patients.
One study (Ataoglu et al’) did not report the C-statistic

for the model and one study (Kengne et al’') reported
two C-statistic values, one for major events and one for
any event. The pooled C-statistic for these two values was
0.58 (95% CI, 0.55 to 0.60). Models by Mukamal et al.,”
Davis et al.,”® Kengne et al* and Zethelius et al” each were
externally validated by two studies with pooled C-statis-
tics of 0.67 (95% CI, 0.67 to 0.68), 0.75 (95% CI, 0.58 to
0.92), 0.67 (95% CI, 0.65 to 0.69) and 0.69 (95% CI, 0.63
to 0.75), respectively. Observed heterogeneity was high in
models by Davis et af® and Zethelius et al” while low in
models by Mukamal et af* and Kengne et al.>* The model
by Basu et al’® was externally validated by two studies in
three different population yielding a pooled C-statistic of
0.71 (95% CI, 0.67 to 0.76) with moderate heterogeneity
between studies (I°=56.8%; Cochran Q statistic p=0.099).

Separate models by D'Agostino et al (Framingham
Stroke Risk Score),37 Yang et al (Hong Kong Diabetes
Registry for Stroke),” Kiadaliri et al,” Stevens et al
(UKPDS 66),** Hippisley-Cox et al (QRISK2),” Elley et al
(New Zealand Diabetes Cohort Study)40 and Alrawahi et
al' were each validated in one external or separate cohort
with sample sizes ranging from 178 to 181399 patients.
For the studies that reported discrimination, C-statistics
ranged from 0.67 to 0.79. In addition, calibration assessed
by calibration plots and Hosmer-Lemeshow tests found
good calibration in most studies.
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Table 5 Continued

Events (n) /total

Gender participants (N)

No of

Discrimination (with CI)

Calibration

Age

Outcome

Location

Studies Validation study

Study name

=0.67

C-statistic for stroke:

157/4760 Calibration slope for
(0.63 t0 0.71)

Both

Mean age of
58.9 years

Microvascular: nephropathy, retinopathy,
neuropathy; cardiovascular: composite of

USA

Basu et al*®

=0.99, x°=8.2,
0.22

stroke

male
and

p value:

atherosclerotic CVD (first fatal or non-fatal

female

Ml or stroke), fatal or non-fatal M, fatal or
non-fatal stroke, CHF, or death from any

cardiovascular cause

AUC=0.73 (0.69 to 0.77)

=0.15

HL %2 p value
(derivation

126 (derivation
sample), 52

Both

55.3+11.0 years male

Mean age

Fatal and non-fatal CHD, stroke and

PAD

Oman

Alrawahi et a/®®

1

Alrawahi et al*!

(derivation sample);

AUC

0.70 (0.59 to 0.75)

(validation sample sample) and HL

and

(derivation

(validation sample)

=0.06

x? p value

/1314 (derivation
sample), 405
(validation

sample)

female

sample) and

(validation sample).

Satisfactory
calibration

52.3+11.4 years

(validation
sample)

ABI, ankle-brachial index;ADVANCE, Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; AMI, acute myocardial infarction; AUC, area under the curve;AUROC, area under the receiver

operating characteristic curve; CHD, coronary heart disease; CHF, congestive heart failure; CKD, chronic kidney disease; CRP, C reactive protein; CVD, cardiovascular disease; ESRD, end-stage renal disease; HL, Hosmer-Lemeshow; HL'C,

Hosmer-Lemeshow C-test; IHD, ischaemic heart disease;JHS, Jackson Heart Study; MESA, Multiethnic Study of Atherosclerosis; MI, myocardial infarction; NR, not reported;NZ DCS, New Zealand Diabetes Cohort Study; PAD, peripheral artery

disease; P/O, predicted over observed; RAMP-DM, Multidisciplinary Risk Assessment and Management Program for Patients with Diabetes Mellitus;RECODe, Risk Equations for Complications of Type 2 Diabetes; ROC, receiver operating

characteristic;UKPDS, United Kingdom Prospective Diabetes Study.

The overall pooled Cstatistic for all validation studies
was 0.68 (95% CI, 0.67 to 0.70) with high heterogeneity
between studies (12=95.3%; Cochran Q statistic p<0.001).
Models that were developed in diabetes population
showed significantly higher C-statistics than models devel-
oped in general populations (meta-regression p=0.001).
Models, where stroke was reported as the main outcome
as opposed to part of a composite CVD outcome, did show
borderline significantly higher C-statistics (meta-regres-
sion p=0.052), although the value of the C-statistic is still
low. This observed difference in the two models makes
sense as models that include stroke as part of a composite
outcome are expected to be different from models where
stroke is the only outcome. A summary describing the
characteristics of the studies where prediction models
were developed in general populations but validated in
patients with diabetes is presented in table 5.

DISCUSSION

This systematic review and meta-analysis provides an over-
view of all stroke prediction models that were specifically
developed for, or validated in patients with diabetes to
calculate future stroke risk. Thirty-four stroke prediction
models were identified that were specifically designed
for patients with diabetes and only 32% of these predic-
tion models have been externally validated, with varying
results. Overall, the pooled C-statistics were poor for most
models. Four of the prediction models identified were
originally developed in the general population but exter-
nally validated in diabetes populations. The most notable
prediction model was the UKPDS Risk Engine for Stroke®'
with 12 validation studies. Ten stroke prediction models
had multiple validations, seven models had single valida-
tions and twenty-one had no validations at all. Itis difficult
to assess model performance for those with no validation
or single validations. Additional validation studies on the
performance of stroke prediction models in different
diabetes populations are needed. Since stroke prediction
models developed in the general population may not
account for specific risk factors related to diabetes, using
risk scores developed specifically in the diabetes popula-
tion will help to estimate stroke risk among people with
diabetes more accurately.

None of the models showed good discriminative
performance consistently when externally validated. The
model by Kothari et al*' where the stroke was the primary
outcome showed moderate discriminative performance
(pooled C-statistic=0.72). Since this model was exter-
nally validated multiple times, the performance of this
model can be considered as consistent. The discrimina-
tive ability of stroke prediction models where stroke was
the primary outcome and models where stroke was a part
of composite CVD outcome were modest, with C-statis-
tics often less than 0.70.* Meta-analyses of the C- statistic
suggests that there is significant between-study heteroge-
neity in the models where stroke is reported as the primary
outcome and in those where stroke is reported as part of
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Meta-analysis of C-statistics
(Validation studies of stroke prediction models for diabetes patients)

Stud:
ID Y

%
C-statistic (95% Cl) Weight

Kothari et al. (UKPDS Risk Engine for Stroke) :
Yang et al. (2007) - 0.59 (0.55, 0.63 9.28
Davis et al. (fatal stroke) 82009 1 —— 0.88(0.81,0.96 6.95
Davis et al. (all stroke) (. | —— 0.86 (0.78,0.93 6.95
Kengne et al. (major eventésJ 010) oall 0.62 (0.58, 0.66 9.47
Kengne e(al ang event) (2010) = 0.61(0.57, 0.65 9.47
Tanaka et al —— 0.64 (0.57,0.71 7.11
Wells et al. (201 i 0.75(0.74,0.77, 10.27
Bannister et al. (stroke, female g2014 ‘& 0.73(0.72,0.75 10.33
annister et al. stroke male * 0.71(0.70,0.72 10.45
annister et al. (fatal stroke, emale ) (2014) | * 0.77 (0.74, 0.80 9.74
annister et al. (fatal stroke, male) (2014) * 0.78 (0.76, 0.81 9.97
Subtotal (I-squared = 95. 0%, p =0.000) :O 0.72 (0.68, 0.75; 100.00
Clarke et al. (éJKPDS Outcomes Model)
Leal et -+ 0.68 (0.65,0.71 36.47
Tao et aI (2013 —— 0.70(0.64,0.77, 24.76
McEwan et al. (2015) * 0.62 (0.60, 0.64, 38.77
Subtotal (I-squared = 84.5%, p = 0.002) < 0.66 (0.61,0.71 100.00
Anderson et al. (Frammgham% 1
Kengne et al. (major event) (2010) bl 0.57 (0.53, 0.60 39.52
Kengne et al. (an event) (2010) - 0.56 (0.52, 0.59 39.62
Herder et al. J —— 0.64 (0.57, 0.70, 0.87
Subtotal (I-square 56.1%, p = 0.102) | 058 (054, 0.61 100.00
D’ Agostino et al. (Frammghamg]
Kengne et al. (major event) 82 10) gl 0.59 (0.55, 0.62, 49.81
Kengne et al. anyevent)}z - 0.57 (0.53, 0.60 50.19
Subtotal (I-squared 0.0%, p= 042 L4 1 0.58 (0.55, 0.60 100.
Mukamal et
Mukamal etal 2013) 0.65 (0.58, 0.72 0.48
Read et al. (20 * 0.67 (0.67, 0.68 99.52
Subtotal (I- squared 0.0%, p=0.513) (] 0.67 (0.67, 0.68] 100.00
Davis et al. .
Davis et al. (2010 —— 0.84(0.76, 0.91 47.62
Read et al. (201 * 0.67 (0.66, 0.67 2.38
Subtotal (- squared 95.2%, p = 0.000) —_— 0.75(0.58, 0.92] 100.00
Kengne etal.
Kengne et al. (2011) - 0.69 (0.65, 0.72, 16.19
Read et al. (2018) * 0.67 (0.66, 0.67 3.81
Subtotal (I-squared = 30.1%, p = 0.232) o 0.67 (0.65, 0.69; 100.00
Zethelius et al.
Zethelius et al 2011) * 0.72(0.69, 0.75 47.46
Read et al. (20 * 0.66 (0.66, 0.67, 52.54
Subtotal (- squared 94.5%, p = 0.000) > 0.69 (0.63, 0.75; 100.00
Basu et al.
Basu et al. (2017) - 0.67 (0.62,0.72, 35.98
Basu et al. MESA£62018) —— 0.75(0.69, 0.81 29.10
Basu et al. (JHS) (2018) - 0.72 (0.67,0.77, 34.92
Subtotal (I-squared = 56.8%, p = 0.099) < 0.71(0.67, 0.76! 100.0!
Overall (I-squared = 95.4%, p = 0.000) 6 0.68 (0.67, 0.69)
NOTE: Weights are from random effects analysis .
I
15 1
—_—>
Better Discrimination

Figure 4 Forest plot of C-statistics, with 95% Cls, of stroke prediction models that are externally validated in two or more
independent cohorts. JHS, Jackson Heart Study; MESA,Multiethnic Study of Atherosclerosis; UKPDS, United Kingdom

ProspectiveDiabetes Study

composite CVD outcome. Further, the possible sources of
heterogeneity are unexplained. Perhaps the difference in
patient characteristics in the different cohorts could be
a potential source of heterogeneity; however, geographic
location, sample size, follow-up time, external validation
and variables included in the models were not significant
sources of heterogeneity in meta-regression.

The discrimination of the 17 models that were vali-
dated were generally comparable with those observed
in the development cohorts. However, the performance
of some models externally validated in multiple cohorts
was heterogeneous and possible source for this heteroge-
neity remains unexplained. There was also variability in
prediction model quality and the methodology used in
developing them. Our study findings suggest that, from
a large number of published models in patients with
diabetes, very few well-validated models are available for
stroke prediction. This is helpful to inform the determi-
nation of models for clinical uptake when risk stratifica-
tion approaches for stroke are implemented.

No evidence of small-study effects was detected,
which smaller studies reported better discrimination of
models for predicting stroke. Study quality assessment

shows many of the models failed to meet some key criteria:
consideration of missing values, modelling assumptions,
model validation and blinded outcome assessment, which
is a concern. Many studies lacked standard reporting.
This, to some extend, may be due to lack of guidelines for
standards of reporting for risk prediction studies during
that time. Many authors reported different aspects of
prediction models, and in varying ways created difficulty
in collecting information. The publication of new guide-
lines such as Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis
(TRIPOD)* has been introduced and may help improve
reporting standards in subsequent studies in this area.

In prior reviews examining risk prediction models in
adults with diabetes (Chamnan et al** van Dieren et al,®®
and Chowdhury et al'®), all components of cardiovascular
disease such as CHD, stroke, CAD, myocardial infarction,
heart failure were considered as outcomes of the predic-
tion model. Our review adds to knowledge on predicting
risk of stroke in persons with diabetes in the following
ways: (1) We only considered models where the primary
outcome of the model was stroke or when stroke was
part of a composite CVD outcome and corresponding

Chowdhury MZI, et al. BMJ Open 2019;9:€025579. doi:10.1136/bmjopen-2018-025579
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C-statistic were provided; (2) We did not consider
other components of CVD as outcomes of the model
and therefore our estimates of model performance
are more specific to stroke; (3) We have identified and
included several recently derived models and conducted
meta-analyses to explore reasons for variability in the
discriminative performance across models and (4) We
provide a detailed assessment of quality of studies among
models developed in diabetes populations. Only one
prior study'® in this area performed a meta-analysis of
model performance statistics across multiple studies or
assessed study quality.

One of the major strengths of our study is the breadth
of the systematic search, which included three different
databases and extensive use of reference lists of the iden-
tified studies. Therefore, it is unlikely that any stroke
prediction model-related studies have been missed. To
best of our knowledge, this is the first study, where a
meta-analysis and study quality assessment was performed
on stroke prediction models in patients with diabetes.
Nonetheless, there are few limitations in our study, which
need to be kept in mind. In this paper, we only consid-
ered studies that developed or validated stroke prediction
models within patients with diabetes. While prediction
models for stroke have been developed for patients with
other potential risk factors (eg, patients with hyperten-
sion), we felt that an exploration of a broad range of risk
factors was outside the scope of this review. Though the
inclusion of all stroke prediction models (regardless of
the underlying risk factor(s)) could potentially improve
the generalisability of our findings, it could have also
increased the between-study heterogeneity, making the
pooled estimates more difficult to interpret. We also did
not consider non-English publications. Although, the
English language is generally perceived to be the universal
language of science, selection of research findings in a
particular language can introduce language bias and may
lead to erroneous conclusions. With this in mind, readers
should to be cautious when interpreting the findings of
our results. Finally, we were only able to use C-statistics to
compare the model performance, which might be insen-
sitive to identify differences in the ability of models to
accurately risk-stratify patients into clinically meaningful
risk groups.”® In addition, meta-analysis of calibration
measures (eg, E/O ratio) along with C-statistics could
give a comprehensive summary of the performance of
these models.

Our findings suggest that there is no significant
difference between the discrimination of models where
stroke was the primary outcome and stroke was part of
composite CVD outcome. Models, particularly those
that have never been validated or validated once need to
undergo further external validation in which they will be
used with or without recalibration or model updating to
better understand the comparative performance of these
models.

CONCLUSIONS

In conclusion, we have identified many models for
predicting stroke in patients with diabetes and attempted
to compare these models. Only a small number of models
have undergone external validation and might provide
generalisable predictions that would support their use in
another clinical setting. It is difficult to choose one model
over another as none of these models exhibited superior
discriminative performance, and unfortunately, no single
model appears to perform consistently well. It could be
argued that risk prediction in patients with diabetes is not
essential. Persons with diabetes are generally perceived to
be at elevated risk of stroke and the current practice is to
treat to common HbAIC, blood pressure and low-density
lipoprotein targets based on diabetes status alone and not
on calculated risk. This non-risk based approach may be
leading to unnecessary overtreatment and the absence of
high-quality validated risk prediction models which limits
our ability to assess whether more targeted approaches
are possible. Further research is warranted to identify new
risk factors with high associated relative risk to improve
the currently available prediction models.
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