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Abstract
The NMDA subtype of ionotropic glutamate receptor is a sophisticated
integrator and transducer of information. NMDAR-mediated signals control
diverse processes across the life course, including synaptogenesis and
synaptic plasticity, as well as contribute to excitotoxic processes in
neurological disorders. At the basic biophysical level, the NMDAR is a
coincidence detector, requiring the co-presence of agonist, co-agonist, and
membrane depolarization in order to open. However, the NMDAR is not
merely a conduit for ions to flow through; it is linked on the cytoplasmic side
to a large network of signaling and scaffolding proteins, primarily via the
C-terminal domain of NMDAR GluN2 subunits. These physical interactions
help to organize the signaling cascades downstream of NMDAR activation.
Notably, the NMDAR does not come in a single form: the subunit
composition of the NMDAR, particularly the GluN2 subunit subtype
(GluN2A–D), influences the biophysical properties of the channel.
Moreover, a growing number of studies have illuminated the extent to which
GluN2 C-terminal interactions vary according to GluN2 subtype and how
this impacts on the processes that NMDAR activity controls. We will review
recent advances, controversies, and outstanding questions in this active
area of research.
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Introduction
NMDARs (N-methyl-D-aspartate [NMDA] receptors) are 
glutamate-gated cation-passing channels that play a major 
role in the CNS1,2. They are permeant to Ca2+, which medi-
ates many of the consequences of NMDAR activity, includ-
ing synaptic modification, activity-dependent development, and 
neuroprotective signaling. Moreover, inappropriate NMDAR 
activity contributes to neurotoxicity and synaptotoxicity in a 
variety of acute and chronic pathological situations3–5. Most  
NMDARs contain two obligate GluN1 subunits, plus two 
GluN2 subunits, of which there are four types (2A–D), with 
GluN2A and GluN2B predominant in the forebrain, GluN2C 
prevalent in the cerebellum, and GluN2D found mainly in 
the midbrain. The GluN2 subtype dictates many biophysical 
properties of the NMDAR, including agonist affinity, open prob-
ability, and deactivation kinetics, and so influences synaptic  
NMDAR-evoked currents and downstream signaling2. During 
forebrain development, there is a shift in the subunit composi-
tion of NMDARs, from near-exclusively GluN2B-containing 
NMDARs to populations of NMDARs containing GluN2A 
representation––both GluN1

2
–GluN2A

2
 diheteromeric recep-

tors as well as GluN1
2
–GluN2A–GluN2B triheteromeric  

receptors2.

NMDARs do not exist in isolation on the plasma membrane, and 
so the consequences of their activation do not merely depend 
on the profile of ionic flux upon their activation. The cyto-
plasmic C-terminal domains (CTDs) of NMDAR subunits are 
linked to a signaling complex––a network of signaling and  
scaffolding molecules6. In the case of GluN2 subunits, the CTDs 
are very large in vertebrate animals––around 600 amino acids  
(GluN2A and 2B) or 400 amino acids (GluN2C and 2D) com-
pared to around 100 amino acids in invertebrate orthologs7. 
As will be discussed in this review, CTD-associated proteins 
influence the events downstream of NMDAR activation, and 
differential association with different NMDAR subunits con-
tributes to the functional diversity of NMDAR signaling. There 
will be an emphasis on the cellular and molecular consequences 
of NMDAR activity rather than behavioral outputs. Moreover, 
while a small number of studies have probed the role of pro-
tein interactions with GluN2C and GluN2D CTDs in receptor 
trafficking and degradation8–11, the overwhelming majority 
are centered on the CTDs of GluN2A and 2B, which will be  
the focus of this review.

NMDAR interactions with cytoplasmic proteins 
depend on subunit composition
Members of the membrane-associated guanylate kinase 
(MAGUK) family of scaffold proteins, including post-synaptic 
density (PSD) protein 95 (PSD-95), PSD-93, and SAP102, were 
the first proteins to be identified as associated with NMDAR 
subunit CTDs12, but comprehensive proteomic studies quickly  
identified many more13. The existence of NMDAR signal-
ing complexes recruited by the subunit CTDs also has impli-
cations for NMDAR signaling diversity. The large CTDs of 
GluN2A and GluN2B have diverged during evolution7, raising the  
possibility that the CTD subtype influences the composition 
of the NMDAR signaling complex and downstream conse-
quences of NMDAR activity. An early difference identified was 
a high-affinity binding site for CaMKII present on the GluN2B 

CTD (CTD2B) but absent on the GluN2A CTD (CTD2A)14. More 
recently, the generation of knock-in mice with targeted altera-
tions to CTD2B and CTD2A has enabled a more comprehensive 
analysis of the roles of specific CTDs in endogenous NMDAR  
complex assembly. For example, the GluN2A2B(CTR) mouse was 
created that expresses GluN2A with its CTD replaced with that 
of GluN2B, while the GluN2B2A(CTR) mouse has the recipro-
cal swap15. Thus, regardless of the GluN2A:2B ratio in fore-
brain neurons, the CTDs are all of the 2B type in GluN2A2B(CTR) 
mice or the 2A type in GluN2B2A(CTR) mice. From analysis 
of these mice, it was found that there was a preferential  
association of MAGUK proteins with CTD2B over CTD2A15,16. 
However, isolation of native NMDAR supercomplexes  
(protein complexes associated with the NMDAR channel  
complex itself17) revealed something more fundamental18. These  
supercomplexes were found to exist in two broad size ranges, 
0.85 MDa and 1.5M Da, and, by analyzing complexes from 
wild-type, GluN2A2B(CTR), and GluN2B2A(CTR) mice, the authors 
found that CTD2B was essential for the recruitment of the 
large 1.5 MDa complex (or group of complexes) containing a 
number of scaffolding and signaling proteins, suggesting that  
components of the 1.5 MDa complex may play a role in CTD2B-
specific signaling. Also of note, there is likely to be a degree 
of heterogeneity in these complexes, as the cumulative mass 
of all the proteins identified in each complex exceeds the 
size of them in both cases18, and families of MAGUK super-
complexes have recently been identified19. Moreover, there is  
evidence that GluN2 CTDs are intrinsically disordered but 
may undergo conformational switching in response to sig-
nals, influencing their interactions with other proteins, provid-
ing further scope for diversity in complexes7,20,21. Thus, it is 
clear that the divergence of GluN2 CTDs through evolution has  
caused a corresponding divergence in their protein-binding  
partners.

NMDAR mobility and surface dynamics play important roles 
in regulating synaptic NMDAR currents and plasticity and are 
composition sensitive22,23. The recruitment of the NMDAR into 
the large 1.5 MDa supramolecular complex by CTD2B18 raises  
the question of how this affects mobility. Paradoxically, quan-
tum dot-based studies in cultured hippocampal neurons have 
indicated that GluN2B-containing NMDARs are more mobile 
than GluN2A-containing NMDARs and have a lower dwell  
time at the synapse24. However, there is significant overlap 
between the distributions of membrane diffusion rate of  
2A- and 2B-containing NMDARs, which is not surpris-
ing, since many endogenous hippocampal NMDARs are  
triheteromeric, containing one each of GluN2A and GluN2B25,26. 
Given the range of diffusion rates observed in 2B-containing 
NMDARs, it remains a possibility that those NMDARs with 
CTD2B-recruited supramolecular complexes are a subpopulation 
of low-mobility 2B-containing NMDARs. Note, however, that 
NMDAR mobility is controlled by interactions with extracel-
lular matrix proteins23,27, so cytoplasmic protein interactions  
are not the only determinant.

The role of GluN2 CTD subtypes in forebrain 
synaptogenesis
The first few weeks of rodent forebrain development are char-
acterized by a burst of synaptogenesis, as well as a gradual 
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incorporation of GluN2A into previously GluN2B-dominated 
NMDARs. This led to hypotheses that the changing NMDAR 
subunit composition may play a role in regulating synap-
togenesis. Indeed, it was shown that CTD2B was important 
for hippocampal excitatory synaptogenesis and that excessive 
GluN2A CTDs impaired synaptogenesis (measured by mEPSC  
frequency28). These conclusions were based on over-expression 
of wild-type and chimeric subunits based on GluN2A and 
GluN2B with their CTDs reciprocally exchanged28. Moreover, 
the critical domain was identified as the GluN2B CTD-specific 
CaMKII interaction site28. Furthermore, a recent study employ-
ing hippocampal slice cultures reported that GluN2B’s  
CaMKIIα interaction site is important for correct basal AMPA 
receptor-mediated synaptic transmission29, based on viral/
CRISPR deletion of the endogenous GluN2B gene in the  
culture and ectopic expression of mutant versus wild-type 
subunits. In contrast, studies on hippocampal slices from  
knock-in GluN2B2A(CTR) and GluN2A2B(CTR) mice revealed normal 
synaptogenesis, AMPA receptor currents, and mEPSC  
frequency15, suggesting that the development of these aspects 
of synaptic physiology are not sensitive to GluN2 CTD  
subtype. Moreover, two independently generated knock-in 
mice harboring a mutation specifically in the GluN2B CTD  
CaMKII interaction site (hereafter GluN2B∆CaMKII mice) were also 
found to have normal hippocampal excitatory synaptogenesis30,31.  
These differences in observations between ectopic expression 
of mutant subunits and knock-in mouse mutants may reflect 
over-expressed subunits being trafficked and signaling dif-
ferently to endogenously expressed subunits. For example, 
one difference between over-expression of GluN2B mutants  
and knock-in models is that the former may have the effect of 
altering the relative stoichiometry of GluN2B and CaMKIIα, 
which could influence CaMKIIα interactions in the PSD. Quan-
titative mass spectrometry has shown that in the PSD, CaMKIIα 
is 30–50 times more abundant than NMDARs32,33. Thus,  
altering the CaMKIIα interaction domain of GluN2B in a knock-
in model may not strongly influence the interactions that the 
majority of CaMKIIα molecules have within the PSD. How-
ever, over-expression of GluN2B could more strongly perturb 
total synaptic CaMKIIα interactions and consequently have a  
stronger physiological effect. Another possibility is that 
a germline mutation in place since the very beginning of  
development causes other adaptive processes to compensate for  
the absence of the GluN2B–CaMKIIα interaction domain.

In contrast to the numerous studies on the role of GluN2 
CTDs in synaptogenesis, their role in another aspect of neu-
ronal development, dendritic outgrowth and arborization, is 
less studied, despite the involvement of synaptic NMDAR 
activity in this process34. Interestingly, a recent study employ-
ing transgenic mice over-expressing the GluN2A2B(CTR) and  
GluN2B2A(CTR) alleles found that GluN2A2B(CTR) over-expression, 
but not GluN2B2A(CTR) over-expression, drove enhanced CA1  
dendritic outgrowth without affecting branching or other  
morphological indices35. It will be of interest in the future to link 
the potential role of CTD2B in promoting dendritic outgrowth  
and its ability to organize large signaling supercomplexes18.

The role of GluN2 CTD subtypes in controlling 
NMDAR subunit composition
NMDAR subunit composition strongly influences the kinet-
ics of ion flux1,2, with important functional consequences. For 
example, in the visual cortex, there is a developmental and 
experience-dependent incorporation of GluN2A into synaptic  
NMDARs. The resulting increase in 2A:2B ratio is believed 
to be causally linked to shifts in the stimulus threshold for 
frequency-dependent transition between LTD and LTP36,  
so-called meta-plasticity. The basis for this is the slower deac-
tivation kinetics of GluN2B-containing NMDARs leading to a 
greater capacity for signal integration at low frequencies and  
thus a lower minimum frequency for the induction of LTP.

Given the functional importance of forebrain NMDAR  
composition, the mechanism by which GluN2A becomes 
incorporated into NMDARs at the expense of GluN2B during  
development is of importance. One recent model proposes that 
the switch is driven by a series of phosphorylation events cen-
tered on the CTD of GluN2B (CTD2B), initiated by CaMKIIα 
binding to its 2B-specific interaction site37–39. CaMKIIα has 
been proposed to recruit casein kinase 2 (CK2) to the GluN2B 
CTD, which in turn phosphorylates CTD2B at serine-1480, 
leading to dissociation of the MAGUK–Fyn complex and  
reduction in CTD2B tyrosine-1472 phosphorylation38,39. It has been  
suggested that these events destabilize GluN2B’s presence at the 
synapse and ultimately trigger endocytosis via AP-2-mediated  
endocytosis38–40. However, this sequence of events was arrived 
at following in vitro experiments involving the ectopic over-
expression of mutant subunits. Thus, the role of this pathway 
in the developmental switch of endogenous NMDAR subunits  
both in vitro and in vivo remained unclear. Analysis of 
the developmental change in 2A:2B ratio in neurons from  
GluN2B∆CaMKII and GluN2A2B(CTR) knock-in mice in vitro and 
in vivo showed that the GluN2B–CaMKIIα interaction site 
was not needed for the developmental shift in 2A:2B ratio and  
indeed proceeded normally when both GluN2A and GluN2B  
possessed identical CTDs (the GluN2A2B[CTR] mouse)31.

However, the developmental shift in NMDAR subunit com-
position is thought to have two components: one an intrinsic  
process, and one regulated in a bidirectional manner by sensory  
experience41,42. Since CK2 inhibition blocks the acute activity- 
dependent increase in the 2A:2B ratio in hippocampal slices39, 
it is possible that the experience-dependent regulation of 
NMDAR subunit composition in vivo (exemplified by studies in  
the visual cortex) does indeed require the GluN2B CaMKII site 
and the CaMKIIα–CK2 signaling axis. The dynamic and spe-
cific removal of GluN2A from the synapse in the visual cortex 
after sensory deprivation, and its delivery back to the synapse 
upon sensory stimulation36, suggests that there must be some  
way that GluN2 subunits are differentially recognized by the  
activity-dependent machinery responsible for changing the  
2A:2B ratio. Study of experience-dependent changes in 
NMDAR composition in the visual cortex of GluN2A2B(CTR), 
GluN2B2A(CTR), and GluN2B∆CaMKII knock-in mice will illuminate 
the roles of CTD subtype-specific sequences in this process. It 
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should be noted, though, that other determinants of the differen-
tial activity dependency of GluN2A and GluN2B insertion have 
been proposed. In particular, ectopic expression of a range of 
2A/2B chimeric subunits identified a GluN2B-specific putative  
N-glycosylation site in the extracellular loop between M3 and 
M4 transmembrane domains as being necessary for enabling 
activity-independent insertion of GluN2B, with the correspond-
ing sequence in GluN2A conferring an activity dependency 
on insertion43. However, given differences in results obtained 
by ectopic expression of mutant subunits, compared to the  
corresponding mutant knock-in mouse, demonstration of the  
importance of this site would benefit from its germline mutation.

GluN2 C-terminal domains and synaptic plasticity
NMDAR activation mediates several forms of synaptic plastic-
ity, both potentiation and depression, as well as homeostatic 
forms44–46. Shortly after the distinct GluN2 subunits were iden-
tified, there began conjecture as to whether specific subunits 
mediate specific types of potentiation or depression1,2. Stud-
ies have primarily focused on GluN2A-deficient mice and the 
use of pharmacological tools specific for 2B- or 2A-containing  
NMDARs1,2. While the specificity of the 2A-preferring 
NMDAR antagonists has been questioned47, recent ones are 
more effective48. A role for a specific GluN2 subtype in a 
plasticity paradigm can conceivably be due to the particular  
biophysical properties of those channels (e.g. with regard to  
frequency-dependent signal integration) or even simply that 
a specific subunit is predominant at a synapse at the develop-
mental stage under study. However, another alternative is that  
GluN2 subtype-specific CTD interactions and signaling are  
important for specific types of plasticity. Helpfully, the GluN2  
CTD subtype does not influence the channel gating proper-
ties of the NMDAR49,50, so CTD manipulations can be made  
without impacting on ionic flux.

An early study using slice cultures employed biolistic siRNA 
knock-down of endogenous GluN2B, followed by over- 
expression of siRNA-resistant forms of wild-type GluN2B, 
GluN2B with its CTD replaced by that of GluN2A (i.e. the 
GluN2B2A[CTR] protein), and GluN2A with its CTD replaced 
by that of GluN2B (i.e. the GluN2A2B[CTR] protein). The study 
concluded  that CTD2B was essential for LTP and that CTD2A 
potentially even inhibited LTP51. However, analysis of more physi-
ological systems painted a far less dramatic picture. Studies on 
hippocampal slices from GluN2B2A(CTR) and GluN2A2B(CTR) 
knock-in mice suggest that there is no absolute requirement for 
a specific CTD for LTP induction but that their relative impor-
tance may depend on the stimulation paradigm employed15. For 
example, NMDAR-dependent theta burst (TBS)-induced LTP 
of CA3–CA1 connections is normal in GluN2A2B(CTR) mice, 
compared to wild-type15, and was modestly (but significantly) 
enhanced in GluN2B2A(CTR) mice. Thus, despite the importance of  
CTD2B in organizing supramolecular complexes17, TBS-LTP was 
not compromised. In contrast, GluN2B2A(CTR) mice did show a  
deficit in LTP induced by theta-pulse stimulation15, suggest-
ing that the roles of CTDs may be activity pattern depend-
ent. Note that even a synaptic NMDAR with a disrupted local  

supramolecular complex (e.g. in GluN2B2A[CTR] mice) is still 
embedded within the wider network of signaling and scaffold-
ing proteins which make up the PSD. Given this, the signal-
ing machinery that the NMDAR ordinarily recruits directly may 
still be functionally accessible within the wider PSD. In separate  
studies, transgenic mice over-expressing the GluN2A2B(CTR) and 
GluN2B2A(CTR) alleles both exhibited enhanced LTP52, a slightly 
different observation to the studies on the equivalent knock-in  
mice that may be due to the altered NMDAR expression levels  
in the transgenic lines.

In the context of CTD roles in synaptic plasticity, the role of 
the GluN2B-specific high-affinity CaMKII site has been a par-
ticular focus of research. In an early study, ectopic expression 
of GluN2B with its CaMKII site mutated was found to abol-
ish LTP53. Study of a GluN2B∆CaMKII knock-in mouse harbor-
ing mutations in the site (L1298A/R1300Q) revealed a more 
modest LTP deficit30, even though the authors confirmed that 
the potentiation was completely CaMKII dependent regardless 
of genotype. Other sources of CaMKII signaling may be due to  
CaMKIIα association with GluN1 within the NMDAR54 or 
activation of the large quantity of CaMKIIα elsewhere in the 
PSD32,33. In contrast, an LTP deficit was not observed in a dif-
ferent GluN2B∆CaMKII knock-in mouse line harboring a L1298A/
R1300Q/S1303D mutation31, consistent with studies showing that 
the entire CTD2B can be dispensed with and LTP not inhibited15.  
Aside from the additional mutation at serine-1303 (designed 
to maximize disruption to the CaMKII site14), the strategy 
and experimental paradigms of the two studies were simi-
lar and the basis for the differing results unclear. Nevertheless,  
neither study supports the notion of complete dependence on  
the site as previously thought53. To conclude, while GluN2 
CTD subtypes can influence synaptic plasticity, it is likely to be 
both activity pattern and potentially even pathway dependent.  
Moreover, much remains to be uncovered regarding the domains 
and interactions involved.

GluN2 C-terminal domains, excitotoxicity, and 
neurodegeneration
During the 1980s, it was established that excessive Ca2+ influx 
through NMDARs is a major mediator of excitotoxic neuronal 
death induced by glutamate exposure and contributes to excito-
toxic disorders including stroke and traumatic brain injury55,56.  
Soon after, it was observed that Ca2+ influx specifically through 
the NMDAR was more effective at promoting neuronal death 
than influx through other routes57,58, implicating a functional 
or physical coupling of the NMDAR to a Ca2+-responsive  
effector of neuronal death. One such effector is neuronal nitric 
oxide synthase (nNOS), physically tethered to GluN2 subunits  
via a bridging scaffold protein (PSD-95), which interacts 
with both nNOS and the extreme C-terminal PDZ ligand of  
GluN2 subunit CTDs59. nNOS is a Ca2+-dependent enzyme 
which, if overactivated, contributes to NMDAR-dependent  
excitotoxicity60,61. A cell-permeable peptide mimetic of the 
GluN2B PSD-95 interaction domain (a PDZ ligand) designed  
to reduce NMDAR–nNOS coupling via PSD-95 is neuro-
protective in stroke models in rodents and monkeys62,63 and  
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successfully completed a phase II trial for safety and efficacy for  
iatrogenic micro-strokes during cerebral aneurysm repair64. This  
peptide, latterly named NA-1, is in clinical trials for stroke65.

While stroke trials for conventional NMDAR antagonists  
uniformly failed66, there is reason to be more hopeful in the 
case of NA-1. Physiological synaptic NMDAR activity is essen-
tial for brain function and cognition, so antagonists are poorly  
tolerated66. Moreover, physiological synaptic NMDAR activity 
promotes a variety of protective effects67–71, and so targeting 
the NMDAR downstream of the channel may avoid transla-
tional issues that beset stroke trials with conventional NMDAR  
antagonists72. Conventional antagonists also may suppress pro-
tective reconditioning-type responses in marginal brain areas 
after stroke, such as the induction of antioxidant responses72–74.  
Notably, there is evidence that NA-1 neither interferes with 
NMDAR channel function nor inhibits the pro-survival path-
ways that are triggered by physiological patterns of synaptic  
NMDAR activity62,75. As a caveat, however, others have reported 
a reduction in surface expression of GluN2B after NA-1  
treatment, an effect also observed with positively charged  
poly-arginine peptides76.

Regardless, the signaling pathways that lead to NMDAR-
dependent excitotoxic neuronal death are numerous, and not 
all rely on the GluN2B–PSD-95–nNOS pathway77,78. In a study 
designed to assess the relative roles of CTD2B versus CTD2A, 
it was observed that forebrain neurons in the GluN2B2A(CTR) 
mouse were resistant to NMDAR-dependent excitotoxic injury 
in vitro and in vivo16. However, not all of the protective effects  
of replacing CTD2B with CTD2A were due to a reduction in 
nNOS activation, pointing to other mechanisms or key domains 
involved in the pro-death effects of CTD2B. One possibility con-
sidered was whether the GluN2 CTD subtype influenced the 
localization (synaptic versus extrasynaptic) of NMDARs, since 
extrasynaptic NMDARs couple preferentially to pro-death  
signaling cascades and pro-death gene expression3,5,79,80. How-
ever, no influence of GluN2 CTD subtype on synaptic versus  
extrasynaptic location was observed16.

In further searching for CTD2B determinants of pro-death signal-
ing, Vieira et al.81 took GluN2B-deficient neurons and ectopi-
cally expressed GluN2B subunits with modified C-termini81 and 
studied vulnerability to excitotoxic oxygen–glucose depriva-
tion. In agreement with the previous study16, the authors found 
that expressing GluN2B with its C-terminus replaced by that 
of GluN2A reduced NMDAR-dependent excitotoxicity and  
also confirmed a role for the GluN2B PDZ ligand. However, 
they also found that introducing a CaMKII-binding site dou-
ble mutation (R1300Q/S1303D) reduced toxicity, implicating 
this domain as a contributor to pro-death NMDAR signaling81. 
Interestingly, the CTD2B CaMKII site was also implicated in a 
separate study82 but as a site that recruited Dapk1 rather than  
CaMKIIα. The authors proposed that, in response to excitotoxic 
insults, Dapk1 causes serine-1303 phosphorylation on CTD2B, 
increasing extrasynaptic NMDAR currents82. Consistent with  
this, Dapk1–/– neurons were reported to be resistant to excito-
toxicity, and a cell-permeable peptide mimetic of the CTD2B 

region around serine-1303 disrupted serine-1303 phosphoryla-
tion and was neuroprotective82. However, a recent study failed 
to observe any protection in vitro or in vivo in an independently 
generated Dapk1–/– mouse, and the peptide mimetic was found 
to directly antagonize the NMDAR by virtue of its high positive  
charge83, casting doubt on CTD2B–Dapk1 signaling being 
involved in excitotoxicity. Further studies in rodent or human  
systems84 may resolve this controversy.

Other signaling pathways involved in excitotoxic signaling, 
aside from NO production, include NADPH oxidase activa-
tion, oxidative stress, calpain activation, and mitochondrial 
Ca2+ overload3,5,85–89. Might any of these be preferentially acti-
vated by signaling reliant on CTB2B? Mitochondrial Ca2+  
overload via the mitochondrial calcium uniporter (Mcu) is a 
major contributor to excitotoxicity90. Moreover, imaging data 
have shown that NMDAR-dependent Ca2+ influx is preferentially  
coupled to mitochondrial uptake and depolarization com-
pared to other Ca2+ entry routes91,92. However, the molecular 
basis for this is unknown. Interestingly, the 1.5 MDa supramo-
lecular complex recruited by CTD2B17 contains several mito-
chondrial proteins, including outer mitochondrial membrane  
proteins VDAC1–3 and VDAC-associated inner mitochondrial  
proteins ANT1 and ANT2. VDACs allow cytoplasmic Ca2+ to 
flow into the mitochondrial intermembrane space, which is 
taken up into the matrix via Mcu. The presence of VDAC and 
ANT proteins is suggestive of a physical link between certain  
NMDARs and mitochondria (potentially via CTD2B) which may 
facilitate Ca2+ transfer.

Another area of interest in the context of pathological GluN2 
CTD signaling is in chronic neurodegenerative disease, par-
ticularly Alzheimer’s disease (AD). In the AD brain, circum-
stances can conspire to elevate the level of ambient glutamate, 
which may be due to a combination of factors, including bioen-
ergetic deficits impairing glutamate homeostasis, inflammatory 
cells and astrocytes releasing glutamate, as well as reduced  
astrocytic glutamate transporter expression93–95. This can lead to 
a chronic, low-level form of excitotoxicity, progressively impair-
ing synaptic integrity and contributing to neuronal death94. 
Tonic NMDAR activity acting on extrasynaptic NMDARs also 
exacerbates the situation by promoting amyloidogenic APP 
processing96,97. As such, NMDAR activity is thought to be a 
mediator of synapse loss induced by amyloid-β, though not  
by direct binding to the NMDAR94,98.

While the role for CTD2B in promoting NMDAR excitotoxic-
ity suggests that it may contribute to any neurological disor-
der where glutamate homeostasis is disrupted, there is also 
some evidence that it may act as a specific point of integration 
for tau and amyloid-β neurotoxicity. A study showed that tau, 
known to be required for amyloid-β  neurotoxicity99, is required  
for dendritic recruitment of the tyrosine kinase Fyn, which 
phosphorylates CTD2B on tyrosine-1472, enhancing CTD2B 
association with PSD-95 and potentiating the CTD2B–PSD-
95–nNOS neurotoxic cascade100. A separate study implicated  
amyloid-β–prion protein interactions, rather than tau, in Fyn  
activation and CTD2B phosphorylation101. Regardless, a direct 
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testing of the role for CTD2B in amyloidopathy-associated 
synapse loss could potentially be provided by crossing AD 
models onto the GluN2B2A(CTR) line to determine whether  
CTD2B is a potential therapeutic target for AD.

Concluding remarks
Studies are beginning to tease apart the roles of the NMDAR 
CTDs in organizing signaling complexes and mediating the 
downstream effects of NMDAR activation, though many ques-
tions remain. An emerging area of NMDAR research is the 
potential of an activated receptor to signal in an ion flux- 
independent, metabotropic way (reviewed thoroughly else-
where102). The role of specific CTD sequences in sensing 
NMDAR activation and moving in an ion flux-independent man-
ner to alter interactions with proteins102,103 awaits further investi-
gation. Moreover, the previously under-appreciated diversity in 
synapse morphology and composition104 suggests comparable 
diversity in NMDAR CTD-recruited signaling complexes, the 

functional consequences of which will require study. Moreover, 
owing to the sheer size of GluN2 CTDs, it is likely that further  
functionally important domains will be discovered in the coming 
years.
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