Skip to main content
. 2019 Aug 21;2019:1374748. doi: 10.1155/2019/1374748

Table 5.

The posterior estimation of four models using the TB data under conditional independence situation.

Situation Method Model Knot Mean SD Median 95% Bayesian CI
(P2.5-P97.5)
No prior constraints Bayesian probabilistic constraint model NP Se 1 0.660 0.243 0.762 0.503-0.841
Sp 1 0.418 0.251 0.426 0.203-0.584
Se 2 0.511 0.251 0.568 0.302-0.688
Sp 2 0.569 0.249 0.631 0.377-0.759
p 0.512 0.194 0.515 0.361-0.667
Conditional
Covariance
Bayesian model
NC Se 1 0.618 0.250 0.631 0.071-0.974
Sp 1 0.377 0.250 0.295 0.025-0.929
Se 2 0.468 0.255 0.435 0.036-0.947
Sp 2 0.526 0.253 0.480 0.055-0.962
p 0.498 0.194 0.497 0.148-0.850

Prior constraints Bayesian probabilistic constraint model PP Se 1 0.738 0.036 0.739 0.714-0.762
Sp 1 0.454 0.051 0.453 0.419-0.487
Se 2 0.585 0.031 0.585 0.563-0.606
Sp 2 0.525 0.028 0.525 0.506-0.544
p 0.534 0.042 0.534 0.506-0.562
Conditional
Covariance
Bayesian model
PC Se 1 0.898 0.039 0.910 0.814-0.963
Sp 1 0.765 0.125 0.775 0.515-0.968
Se 2 0.594 0.048 0.586 0.523-0.712
Sp 2 0.679 0.048 0.676 0.592-0.780
p 0.636 0.086 0.650 0.435-0.773

Se 1: sensitivity of T-SPOT; Sp1: specificity of T-SPOT; Se2: sensitivity of KD38; Sp2: specificity of KD38;  p: prevalence within the patients in the study; SD: standard deviation; CI: confidence interval.