Skip to main content
. 2019 Aug 21;2019:1374748. doi: 10.1155/2019/1374748

Table 7.

The posterior estimation of four models using the TB data under conditional dependence situation.

Situation Method Model Knot Mean SD Median 95% Bayesian CI
(P25-P75)
No prior constraints Bayesian probabilistic constraint model NP Se 1 0.626 0.218 0.665 0.516-0.773
Sp 1 0.369 0.217 0.330 0.222-0.476
Se 2 0.490 0.167 0.495 0.391-0.585
Sp 2 0.508 0.167 0.503 0.414-0.616
p 0.498 0.248 0.497 0.305-0.692
Conditional
Covariance
Bayesian model
NC Se 1 0.690 0.183 0.708 0.622-0.807
Sp 1 0.435 0.226 0.390 0.287-0.568
Se 2 0.547 0.197 0.535 0.455-0.657
Sp 2 0.571 0.213 0.562 0.444-0.722
p 0.553 0.254 0.578 0.366-0.755

Prior constraints Bayesian probabilistic constraint model PP Se 1 0.713 0.036 0.714 0.689-0.738
Sp 1 0.423 0.051 0.421 0.387-0.456
Se 2 0.535 0.025 0.535 0.518-0.552
Sp 2 0.537 0.022 0.537 0.522-0.552
p 0.538 0.042 0.539 0.510-0.567
Conditional
Covariance
Bayesian model
PC Se 1 0.904 0.037 0.907 0.881-0.931
Sp 1 0.796 0.119 0.814 0.715-0.892
Se 2 0.588 0.055 0.580 0.551-0.614
Sp 2 0.677 0.068 0.677 0.631-0.723
p 0.649 0.076 0.662 0.608-0.701

Se 1: sensitivity of T-SPOT; Sp1: specificity of T-SPOT; Se2: sensitivity of KD38; Sp2: specificity of KD38;  p: prevalence within the patients in the study; SD: standard deviation; CI: confidence interval.