Skip to main content
. 2019 Aug 29;10:1789–1801. doi: 10.3762/bjnano.10.174

Table 5.

Dimensional characteristics, agglomeration and encapsulation parameters of antioxidant-containing NLCs.

NLC preparation Z-average, Dz (nm) Polydispersity index Agglomeratea (%) Encapsulation efficiencyb Loading capacityc

NLC T5-TOC 104.5 ± 32.0 0.33 ± 0.11 1.22 ± 0.02 90.96 ± 1.3 7.27 ± 0.1
NLC T10-TOC 82.8 ± 10.7 0.36 ± 0.05 1.24 ± 0.01 90.69 ± 2.8 7.25 ± 0.2
NLC C5-TOC 149.4 ± 36.9 0.22 ± 0.03 2.25 ± 0.01 95.61 ± 1.5 7.64 ± 0.2
NLC C10-TOC 132.7 ± 51.3 0.34 ± 0.05 3.17 ± 0.02 79.15 ± 2.5 6.33 ± 0.1
NLC P5-TOC 149.5 ± 30.3 0.30 ± 0.02 1.11 ± 0.01 93.58 ± 1.7 7.48 ± 0.1
NLC P10-TOC 118.5 ± 31.9 0.30 ± 0.05 1.12 ± 0.02 90.99 ± 2.2 7.27 ± 0.2
NLC S5-TOC 164.6 ± 21.7 0.29 ± 0.06 0.00 ± 0.01 88.16 ± 1.3 7.05 ± 0.1
NLC S10-TOC 106.1 ± 24.2 0.29 ± 0.07 0.00 ± 0.01 60.72 ± 2.1 4.85 ± 0.1

NLC T10-RA 98.4 ± 20.2 0.27 ± 0.12 2.52 ± 0.01 67.24 ± 0.8 0.16 ± 0.0

aLoss of lipids (lipid phase) due to the partial coalescence of the lipid phase during the formation of the O/W emulsion. After cooling the coalesced lipid phase appeared as a small flake floating on the surface of the NLC dispersion. bPercentage (w/w) of drug in the whole dispersion with respect to the total amount used for the preparation. cPercentage (w/w) of drug within nanoparticles as compared to the amount of lipid used for the preparation. Data represent the mean ± S.D. of 6 independent experiments.