Skip to main content
. 2019 Aug 14;19(16):3547. doi: 10.3390/s19163547
Algorithm 2 The Convex-based Data Recovery (CDR) Algorithm
Input: Collected traffic state matrix Xmc, indication matrix Bm, regularization coefficient λ, rank factor r, and learning rating lr
Output: Estimation matrix X^m
  •   1:

    P^ a m×r matrix generated by standard normal distribution

  •   2:

    Q^ a m×r matrix generated by standard normal distribution

  •   3:

    Compute Ωm based on Equation (15)

  •   4:

    Compute Cm based on Equation (16)

  •   5:

    Initialize e_diff=2

  •   6:

    pre_e=0

  •   7:

    whilee_diff>ρ3do

  •   8:

    for i from 1 to Rm do

  •   9:

      for j from 1 to T do

  • 10:

       q^i=q^i+lr·(e·p^jλq^i)

  • 11:

       p^j=p^j+lr·(e·q^iλp^j)

  • 12:

      end for

  • 13:

    end for

  • 14:

    e=λ(P^2+Q^2)+Bm.×(P^QT^)Xmc2

  • 15:

    if pre_e>e and index>0 then

  • 16:

      e_diff=pre_ee

  • 17:

      P^P^

  • 18:

      Q^Q^

  • 19:

      pre_ee

  • 20:

    end if

  • 21:

    end while

  • 22:

    X^mP^Q^T

  • 23:

    fori from 1 to Rm do

  • 24:

    for j from 1 to T do

  • 25:

      x^i,j=x^i,j+Ωm·Cm

  • 26:

    end for

  • 27:

    end for

  • 28:

    Output X^m