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Abstract: The surface plasmon resonance (SPR) technique is a remarkable tool, with applications in
almost every area of science and technology. Sensing is the foremost and majorly explored application
of SPR technique. The last few decades have seen a surge in SPR sensor research related to sensitivity
enhancement and innovative target materials for specificity. Nanotechnological advances have
augmented the SPR sensor research tremendously by employing nanomaterials in the design of
SPR-based sensors, owing to their manifold properties. Carbon-based nanomaterials, like graphene
and its derivatives (graphene oxide (GO)), (reduced graphene oxide (rGO)), carbon nanotubes
(CNTs), and their nanocomposites, have revolutionized the field of sensing due to their extraordinary
properties, such as large surface area, easy synthesis, tunable optical properties, and strong compatible
adsorption of biomolecules. In SPR based sensors carbon-based nanomaterials have been used to
act as a plasmonic layer, as the sensitivity enhancement material, and to provide the large surface
area and compatibility for immobilizing various biomolecules, such as enzymes, DNA, antibodies,
and antigens, in the design of the sensing layer. In this review, we report the role of carbon-based
nanomaterials in SPR-based sensors, their current developments, and challenges.
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1. Introduction

Sensors find applications in the monitoring of the environment, health, and food quality, in addition
to testing and optimization of the best performance of any technique. Various spectroscopic,
piezoelectric, optical, electrical, and chemical techniques have been reported in the literature for
the fabrication of sensors. For example, a modified broadband dielectric spectroscopic tool, along with
interdigitated electrodes, have been reported for the sensing of organic aerosols for environmental
applications [1]. Similarly, a biological sensor has been reported for the sensing of dopamine
(a neurotransmitter) using a photo-electrochemical method utilizing a TiO2 nanotube array deposited
with a CdSe semiconductor [2]. In recent years, a tremendous amount of work has been reported on
plasmonic sensors for the measurements of various physical, chemical, and biological parameters.
Plasmonic sensors are the most powerful tools to probe and quantify low molecular analytes at low
concentration levels due to their label free detection methodology, ease of operation, and high sensitivity.
They have detection applications in various areas, ranging from security, environmental monitoring,
food safety, pharmaceutics, and biosensing [3–7]. The growing research field of these sensors is now
concentrated on the improvement of sensitivity and detection limit, pertaining, especially, to low
concentration analytes in biological systems. The use of nanomaterials has brought considerable
improvement in the order of sensitivity of plasmonic sensors [8,9]. To realize these plasmonic sensors,
different types of materials have been used for their fabrication. The choice of material decides the
performance of the sensor. In recent years, carbon-based nanomaterials have attracted the attention of
the scientific community for the fabrication of plasmonic-based sensors. This is because of their unique
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electrical, mechanical, chemical, thermal, and optical properties. The present review is focused on
carbon-based nanomaterials (CBNs) for their applications in plasmonic sensors.

1.1. Plasmonics

It is known that the phenomenon of oscillations plays a crucial role in the universe and is
found in almost every object. The oscillations of electrons are responsible for all the interesting
phenomenon in electromagnetic theory. In the 19th century, Maxwell theoretically predicted the
existence of electromagnetic (EM) waves, which was later experimentally demonstrated by Hertz.
In 1902, Woods reported the uneven distribution of light in a diffraction grating spectrum, known as
Wood’s anomalies [10]. In 1928, Langmuir studied oscillations in ionized gas [11]. Later, Pines and
Bohm stated that the energy losses experienced by fast electrons in passing through foils are due to the
excitation of plasmons with the resonance frequency in bulk plasma, as [12–15]:

ω0 =

√
ne2

mε0

where n, e, and m are the density, charge, and mass of the electron, respectively, while ε0 is the
permittivity of the vacuum. In 1957, Ritchie found that anomalous energy loss occurs in a metal thin
film [16]. Later, Stern and Ferrell studied plasma oscillations and for the first time, in 1960, introduced
the name surface plasmons [17]. Thus, surface plasmons are the coherent oscillations of charges at
the surface of plasmonic materials. After a lot of research, it was found that the plasmons can be
excited by various quantized energies, such as photons, phonons, and electrons. The coupling between
the surface plasmons and photons is named surface plasmon polaritons. The solution of Maxwell’s
equations for a metal/dielectric interface under appropriate boundary conditions gives the following
dispersion relationship of surface plasmons [18–20]:

ksp = k0

√
εmεd
εm + εd

where εm and εd are the dielectric constants of metal and dielectric and k0 is the wave vector of light
in free space. Figure 1 shows the dispersion plots of surface plasmons and direct light. It may be
noted from these plots that the surface plasmons dispersion curve never intersects the dispersion
curve of direct light. This implies that no phase matching or momentum matching is possible between
these two wave vectors and, therefore, the surface plasmons cannot be excited by direct light. For the
excitation of surface plasmons an extra momentum is required. This can be achieved by using some
special structures, like prism or grating.
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In 1968, Otto gave a prism-based configuration where the excitation of the surface plasmons was
achieved by means of an evanescent wave. In this configuration, a high index prism is kept near
a metal surface, as shown in Figure 2a. The air gap between the prism base and metal surface is
maintained in nanometer range. When the light incident on the base of the prism is at an angle higher
than the critical angle, the total internal reflection takes place and an evanescent wave is generated at
the interface of prism and air. The evanescent wave excites the surface plasmons at the interface of
air and metal. In Figure 1, it can be seen that the dispersion curve of the evanescent wave intersects
the dispersion curve of the surface plasmons and, at the point of intersection, the wave vector of the
evanescent wave matches with the wave vector of the surface plasmon wave, resulting in the excitation
of the surface plasmons. This is called surface plasmon resonance. The resonance occurs at a particular
angle, called the resonance angle. At the resonance angle the reflected light intensity shows a minimum
value. The maintenance of the finite gap between the base of the prism and metal layer requires a
sophisticated and bulky setup. To avoid this, Kretschman and Reather modified the Otto configuration.
In this configuration, a thin metal film is coated over the base of the prism and placed in contact with
the dielectric medium, as shown in Figure 2b [21].
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The resonance condition of surface plasmons is highly susceptible to change in the dielectric
constant of the medium adjacent to the metal layer. This fact has been extensively utilised for the
design of highly sensitive plasmonic sensors. They are broadly classified as propagating surface
plasmon resonance (SPR) sensors or localized SPR sensors, depending on the utilization of thin film or
nanomaterials of metals [18,19].

Kretschmann–Reather Configuration in Optical Fiber

The prism-based Kretschmann configuration requires some sophisticated instrumentation and is
also bulky in size. For the compact design, the prism is replaced by the core of an optical fiber. The light
inside the optical fiber is guided through the total internal reflection and the field of the evanescent
wave generated decays exponentially in the cladding region. The principle for the excitation of surface
plasmons is the same as in the prism-based configuration. In the case of optical fiber, cladding is
removed from a small part of the fiber and the unclad core is coated with a thin metal layer. The incident
light from the polychromatic source is launched from one end of the fiber and the transmitted spectrum
is recorded at the other end of the fiber. A sharp dip in the spectrum is obtained at a particular
wavelength, called the resonance wavelength, depending on the refractive index of the dielectric
medium in contact of the metal layer [18].

1.2. Carbon Nanomaterials for Plasmonic Sensors

The advancement in nanotechnology during the last decade has renewed interest in every area
of science and technology. The nanotechnology-enabled restructuring of existing materials at the
nano-dimension has been exploited for the development of new novel materials. As mentioned in the
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beginning, amongst various types of nanomaterials, carbon-based nanomaterials (CBNs) have attracted
significant attention from the scientific community due to their unique electrical, mechanical, chemical,
thermal, and optical properties [22–25]. Carbon, with the atomic number 6, can be hybridized in sp,
sp2, and sp3 states, providing various allotropes such as graphite, amorphous carbon, and diamonds,
along with the newly developed superior materials like graphene, carbon nanotubes, fullerenes,
and quantum dots. Graphite is the oldest and most widely available form of carbon materials, which
can be given various forms with the continuously developing field of nanoscience and technology.
The structural confirmation and hybridization state of carbon determine its various chemical, physical,
and electronic properties in different carbonaceous materials. The basic structure in the newly
developed forms of carbon is the sp2 bonded carbon atoms layer, i.e., each carbon atom is bonded to
three other carbon atoms in same plane and a weakly delocalized π e- cloud in the perpendicular plane.
This configuration is responsible for the exceptional electrical conductivity, enhanced charge transfer
capability, and π-plasmon resonances in these materials. The exceptional properties of these materials
have embraced the technological developments in various areas, like high tensile strength materials,
catalysis, electronics and communications, biomedical applications, and sensing. The biomedical
field extensively utilizes CBNs for drug delivery, therapeutics and biosensing due to their inherently
favorable properties [26].

Amongst various carbonaceous materials, graphene and carbon nanotubes are the most widely
utilized CBNs for general sensing applications. Their unique optical properties, high conductivity,
which facilitates fast charge transfer reactions, high surface to volume ratio, enabling an enhancement
in sensitivity, the ease of functionalization with various biomolecules and polymers for ensuring
selectivity in different scenarios, chemical stability, and biocompatibility make them ideal candidates
for sensing applications. Various health or biomedical, environmental, and food testing systems
are reported to have utilized CBNs over the years [27,28]. There are numerous reports where
graphene has been used as/for biosensing material, environmental analysis, and food quality
assurance [29–33]. Similarly, carbon nanotubes have been extensively reviewed as an excellent
material for biomedical diagnosis, the detection of many harmful environmental gases, and checking
of food adulteration [34–37]. Many other carbon allotropes, such as carbon nanoparticles, carbon
nanofibers, and quantum dots, are also utilized, based on various operational parameters as per the
sensing application [28,29,38]. Substantial literature is available on the operational characteristics of
other carbon allotropes, and therefore is not included in the present review. The present article will be
focusing on carbon nanotubes and graphene-based plasmonic sensors.

CBNs, such as graphene and carbon nanotubes, are extensively used, particularly for plasmonic
sensors. Thus, this review focuses on the exploitation of properties of carbon-based nanomaterials in
plasmonic-based sensors [39–41]. Conventional noble metals, such as gold (Au), silver (Ag), copper
(Cu), chromium (Cr), and aluminium (Al), are extensively used, and have for a long time been regarded
as the best plasmonic materials in the fields of nanophotonics, metamaterials, and sensing. However,
these materials have some shortcomings, such as large energy losses (e.g., Ohmic loss and radiative
loss) and limited tunability [42,43]. Due to these shortcomings, there is a continuous surge of new
materials for plasmonic applications, which have low loss, good tunability, and provide improvement
in sensitivity for sensing. CBNs have emerged as the new choice of plasmonic materials, with the
fulfilment of all the above properties along, with remarkable sensing properties in all types of sensor
applications. In this review, the focus is mainly on graphene (and its derivatives) and carbon nanotubes
for their applications in plasmonic sensors [44–46].

Graphene is a one carbon atom thick layer with a hexagonal honeycomb structure. Recently,
graphene has emerged as an alternate plasmonic material in the terahertz (THz) to the mid-infrared
range. The area of graphene plasmonics is very interesting, but there is a large mismatch between the
graphene plasmons wavevector and free space light wavevector, therefore, the detection of graphene
plasmons remains a challenge [47,48]. The first study of graphene plasmon resonance was based on
electron spectroscopies. The electron in graphene behaves like a massless Dirac fermions, due to which
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it shows extraordinary properties, such as ultra-high-mobility carriers, gate-tunable carrier densities,
fine structure constant defined optical transmission, long mean free path, and quantum Hall effect [49].
The confinement of the surface plasmons in the graphene is much stronger than in conventional noble
metals [50]. Therefore, graphene plasmons have been used in biosensor, terahertz detector, terahertz
emitter, plasmonic metamaterial, and terahertz optoelectronics. The advantages of graphene plasmons
over conventional noble metals plasmons are that they have relatively low loss, high confinement, and
tunability. All these advantages make graphene plasmons promising materials for the future [51–54].

Another interesting carbon nanomaterial is the 1D form of rolled graphene sheets, i.e., carbon
nanotubes. Carbon nanotubes (CNTs) were discovered by Iijima in 1991, and since then they have
emerged as the most extensively utilized nanomaterials in various research areas due to their unique
properties. CNTs are graphene sheets rolled into a cylindrical structure, which are classified as single
walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), depending
on the number of rolled graphene sheets. Their properties are highly influenced by their atomic
structure (chirality), size, and morphological arrangement. They have remarkable mechanical strength,
extremely high electrical and thermal conductivity, exceptional physical and chemical properties,
ultrafast charge transfer properties, and distinct optical response in the whole EM spectrum [55].
The intrinsic relationship between their electrical, mechanical, and optical properties make them ideal
for future nanoscale sensors [56]. The ultrafast charge transfer reactions and the possibility of their
surface functionalization in numerous ways have made CNTs an ideal candidate for the designing of
specific sensors for a plethora of applications, along with the plasmonic properties endowed by the
graphitic structure [40,45,57,58]. There are numerous reports on the study of optical and plasmonic
properties of carbon nanotubes, but their direct use as plasmonic material for sensing is limited due to
the excitation regime in the UV or IR region.

In plasmonic sensors, either the surface plasmon phenomenon itself is employed for sensing, or it
contributes towards the enhancement of other spectroscopic methods, like surface enhanced Raman
spectroscopy (SERS) and surface plasmon enhanced fluorescence [52,59–64]. Carbon nanomaterials
have long been known for the enhancement of surface plasmons in several of these phenomena,
however, in this review the attention is on SPR-based sensors. The role played by CBNs is basically
divided in three categories for SPR sensors—plasmonic materials, sensitivity enhancement material of
plasmonic sensors, and as a sensing matrix for such sensors. They are used as plasmonic materials
because they are a superior substitute for noble metals, which suffer from some shortcomings, such
as high ohmic losses, less tunability, and chemical instability in harsh environments. CBNs fulfill
these limitations of noble metals, along with their high refractive index, which renders them with
highly sensitive plasmonic properties. Due to their high refractive index, conductivity, and high
surface to volume ratio, they are also utilised with noble metals for sensitivity enhancement tags in
plasmonic sensors. Furthermore, their ability of numerous surface functionalization with various
biomolecules, polymers, and other nanomaterials make them ideal candidates for sensing matrix in
plasmonic sensors.

2. Synthesis of Carbon Nanomaterials

2.1. Graphene and Its Derivatives

Although few-layer graphite was synthesized around 1958, the first graphene monolayer film was
prepared by Novoselov, Geim, and co-workers in 2004 by mechanical exfoliation of the highly oriented
pyrolytic graphite. In this technique, graphite crystal is repeatedly peeled with adhesive tape until
the monolayer is found [51]. Now, many techniques and methods, like chemical vapor deposition
(CVD), thermal reduction, and chemical, have been developed for this. The most popular method for
the preparation of the graphene oxide (GO) and reduced graphene oxide (rGO) was reported in 1958
by Hummers, in which graphite was oxidized by KMnO4 and NaNO3 in the presence of concentrated
H2SO4. Later, various modifications were made by the researchers of the Hummers method, and now
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it is known as the modified Hummers method. GO nanosheets are the oxidized form of graphene and
can be reduced by various methods [65,66].

In the CVD method, the substrate is exposed to one or more precursors, with certain conditions,
such as temperature and pressure, and the precursor reacts with the substrate and deposits the desired
film over the substrate. Various transition-metal substrates, like Ni, Cu, Pd, and Ru, have been used
for the preparation of graphene by the CVD process [67–70]. In most of the CVD growth of graphene,
Ni and Cu substrates have been used. Methane gas at 900 ◦C exposed over Ni forms thin graphite [71].
In 2006, the first experiment to prepare graphene via the CVD method was performed, in which the
precursor camphor was used on Ni foil [72]. Nowadays, various hydrocarbons, such as methane,
benzene, ethylene, and acetylene, are decomposed on various transition metals substrates, such as Ni,
Cu, Au, Co, and Ru, for the preparation of graphene [69].

2.2. Carbon Nanotubes

Three main commercially recognized production techniques for CNTs are arc discharge, laser
ablation, and chemical vapor deposition (CVD) [55,73]. The arc discharge method takes place at low
pressure (30–150 torr), where two high purity graphite electrodes (diameter 6–12 mm) separated
by 1–2 mm are utilized as carbon sources in a chamber generally filled with helium (hydrogen and
methane atmospheres are also used). The anode is sometimes mixed with metals such as Fe, Y, Mo,
Co, and Ni to produce variable nature CNTs, such as graphitic, SWCNTs, metal filled CNTs, and
metal nanoparticles decorated CNTs. A direct current is passed through the chamber to produce
arching, where the temperature reaches up to 4000 K. Under these conditions, carbon sublimes from
the anode solidify on the cathode, where a soot is formed at a typical rate of 1 mm/min. The cathode
soot, chamber soot, and inner core generally consist of single and multi-walled carbon nanotubes,
depending on the use of a catalyst in the anode or pure anode. Various parameters, such as reaction
environment, gas pressure inside the chamber, and the type of arc discharge, control the properties of
synthesized tubes. The arc discharge method is good for the large-scale production of CNTs, however
it provides a very little control over its chirality [55]. The second method employed for the synthesis of
CNTs is laser ablation, which can be divided into classical laser ablation and ultrafast laser ablation.
Here, a metal-graphite composite rod is placed in a high temperature furnace and scanned through
a high-power laser. The soot produced due to target vaporization by the laser is swept by Ar gas
in the chamber and is deposited on a cooled copper target outside the furnace. The properties of
the produced tubes are governed by target compositional ratio, furnace temperature, the nature of
ambient gas in the furnace, and laser parameters. Laser ablation produces high purity and better
graphitized CNTs than the arc discharge method, however, the mass production is limited in this
technique [55]. The most important and standard method for the large-scale production of high purity
carbon nanotubes is the chemical vapor deposition (CVD) method. Various modifications have been
made in the standard CVD technique to produce CNTs with desired properties, such as catalytic CVD
(CCVD), plasma enhanced CVD, microwave plasma assisted CVD, water assisted CVD, and radio
frequency CVD. CCVD is the most extensively utilized method for the production of CNTs. Here,
a catalyst is placed in a quartz boat, typically, in a horizontal flow furnace at atmospheric pressure.
The reaction mixture, consisting of a hydrocarbon and an inert gas, is passed over the bed of the
catalyst at temperatures ranging from 500–1100 ◦C. The CNT growth in such a procedure involves the
dissociation of hydrocarbon in the presence of transition metal catalysts and the saturation of carbon
atoms in metal particles in an sp2 structure in a tubular carbon state. The properties depend on various
parameters, like temperature, pressure, type and concentration of hydrocarbons and metal catalysts,
and the reaction time [73]. Some other less popular methods also employed for the production of CNTs
involve the hydrothermal method and electrolysis.
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3. Carbon Nanomaterials-Based Plasmonic Sensors

In plasmonic sensors, carbon nanomaterials have been used (i) to act as a plasmonic material,
(ii) as the sensitivity enhancement material, and (iii) as a sensing matrix. We shall discuss, below,
all the three major roles one by one.

3.1. Carbon Nanomaterial as Plasmonic Material

3.1.1. Graphene

Recently, a graphene-based plasmonic refractive index sensor has been theoretically investigated.
The sensor works in the mid-infrared region at room temperature and graphene plasmon frequency
shifts for a small change in the refractive index around the graphene sheet have been observed.
The resonance wavelength was found to increase with an increasing refractive index of the medium
around the graphene [74]. The sensor possesses a sensitivity of 2.5 µm/RIU, which means the resonance
wavelength shifts by 2.5 µm for every unit change in refractive index. Here, RIU means refractive index
unit. The figure of merit (FOM) of the sensor was reported to be around 10.7. Similar to this, various
graphene-based plasmonic sensors have been reported in the literature for different applications [5,74].

3.1.2. Carbon Nanotubes

Carbon nanotubes have also been explored as plasmonic materials for sensing in numerous
applications. In a localized surface plasmon resonance (LSPR)based gas sensor, CNTs are utilized
as plasmons, as well as an affinity material for the detection of carbon dioxide (CO2) gas [75].
CNTs are believed to show a change in their electrical properties, which alters their optical properties
upon chemical interaction with CO2. This property is exploited to fabricate an optical fiber Bragg
grating-based LSPR sensor. The authors successfully showed a sensitive response with the observation
of a direct change in optical response of CNTs upon chemical interaction with a molecule. A refractive
index sensitivity (∆λ/∆n) of 6200 nm/RIU in the gaseous regime was observed, which contributes to a
detection limit of 150 ppm at atmospheric pressure, making the approach highly suitable for practical
CO2 sensor application. The response of the probe was tested for other similar hydrocarbon gases,
such as methane and ethane, for the specificity of the approach and the results were found to be highly
satisfactory, with a change in SPR response only in the case of CO2 [75].

In another approach, the π plasmon absorption of carbon-based nanomaterials in the UV-region
was utilized for SWCNTs for a sensitive and selective binding of ions [76]. It was observed that the
strong π plasmon absorption of SWCNTs in the UV region is far more sensitive to plasmonic properties
in visible and NIR regimes. The method, based on UV-Vis absorption, was found to be simple and
effective as compared to previously reported field effect transistor (FETs) and fluorescence-based
methods, which require complex device fabrication, NIR source, and the separation of semiconducting
and metallic CNTs. It was also found to be highly specific for the detection of metal ions by tailoring
the surface modification of CNTs through molecular legends specific to ion attachment. The model was
tested to detect Fe3+ ions in an approach based on the surface modification of SWCNTs by a natural
bacterial siderophore, Deferoxamine (DFO), for the specific attachment.

The CNT surfaces were first modified with carboxyl terminated phospholipid-polyethylene
glycol (PL-PEG-COOHs) for stable aqueous dispersions and further attachment of siderophore.
These PL-PEG-COOHs modified CNTs show two absorption peaks in the UV region, at 246 and 275 nm,
due to the π-plasmon absorption by the graphitic structure, as shown in Figure 3. The detection limit
reaches the pM range, with the sensing mechanism based on the charge transfer between Fe-DFO
complex and SWNTs, as obtained from resonant Raman scattering study. The UV-Vis sensing results
are shown in Figure 4. The testing was performed in aqueous and rain water samples, with a specific
response towards Fe3+ ions, as tested in an interfering environment from other ions, such as Al3+,
Zn2+, Ni2+, and Cu2+ (Figure 4D).
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Figure 4. (A) UV-Visible spectra of Deferoxamine (DFO) only, Fe3+ only, Al3+ only, DFO + Fe3+, and
DFO + Al3+ solution in nitric acid (pH = 2). (B,C) UV-Vis spectra of SWNT/PL-PEG-DFO in the presence



Sensors 2019, 19, 3536 9 of 25

of (black) 0 pM, (red) 10 pM, (green) 30 pM, (blue) 50 pM, (cyan) 70 pM, and (magenta) 90 pM Fe3+

and Al3+ standard solutions, respectively. (D) The decrease in the absorption of SWNT/PL-PEG-DFOs
at 270 nm as a function of the increase in the concentration of Fe3+ and Al3+. UV-Vis-NIR spectrum.
Reprinted with permission from [76]. Copyright 2016 Royal Society of Chemistry.

3.2. As Sensitivity Enhancement Material

Carbon-based nanomaterials, specifically graphene and carbon nanotubes, are widely known to be
sensitivity enhancement materials for plasmonic sensors [77,78]. Therefore, they are extensively reported
in SERS signal enhancement substrates due to plasmon coupling with metal nanoparticles [61,63].
However, we have constrained ourselves here to discussing only the SPR-based biosensors for sensitivity
enhancement due to these carbonaceous materials.

3.2.1. Graphene and Its derivatives

In recent years, a number of plasmonic sensors have been proposed using graphene and its
derivatives, with plasmonic metal layers for the purpose of sensitivity enhancement. A theoretical
study of surface plasmon resonance-based biomolecules sensors using a graphene layer has also
been reported. In this study, the graphene layer was used over the gold and silicon layer to enhance
the sensitivity of the sensor [77]. The schematic of a prism-based SPR sensor is shown in Figure 5.
The sensor model consisted of coatings of gold, silicon, graphene, and biomolecule layers over the
base of the prism. The gold was used as a plasmonic layer, while the silicon and graphene layers
were used for sensitivity enhancement. Apart from sensitivity enhancement, the graphene layer also
helps in the enhancement of the immobilization of the biomolecules. The thicknesses of gold, silicon,
and graphene layers were optimized via simulation. The best sensitivity of the sensor was achieved
for a 40 nm thick gold layer, 7 nm thick silicon layer, and two layers of graphene at 633 nm wavelength
of the light source.
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Another experimental and theoretical study utilizing graphene layer over the gold layer has been
reported for the sensitivity enhancement of an SPR biosensor. In this study, the prism was coated
with a 50 nm thick gold layer, followed by coatings of graphene and biomolecules (DNA) layers [79].
The layer configuration is shown in Figure 6a. For the simulation of a graphene-based SPR sensor,
an N-layer model was used and the results were compared with the experiments. In the simulations,
the complex refractive index of the graphene (n) was taken as:

n = 3 + i
c
3
λ
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where λ is the wavelength of light and c is a constant. The thickness of a single graphene was taken as
0.34 nm.
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Figure 6. (a) The N-Layer model for surface plasmon resonance (SPR) biosensor: prism|Au
(50 nm)|graphene (L× 0.34 nm)|sensing medium, and (b) simulated transmittance of light at λo = 633 nm
(crosses) and measured transmittance of white light (squares) as a function of the number of graphene
layers. Reprinted with permission from [79]. Copyright 2010 The Optical Society.

Figure 6b shows the percentage of transmitted light with the number of graphene layers. From this
graph, it is clear that the light transmitted through the monolayer graphene is around 97.7% and
the transmittance decreases with the increasing graphene thickness. The experimental data shows
good agreement with simulated data. Figure 7a shows the surface plasmon resonance curve for the
conventional biosensor and monolayer graphene biosensor. From the figure, it is clear that the SPR
angle shifts more in the case of the monolayer graphene biosensor. Figure 7b shows the sensitivity
enhancement with the number of graphene layers.
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The improvement in sensitivity was due to two reasons. First, the graphene strongly absorbs
the biomolecules with a carbon-based ring structure, which enhances the absorption efficiency of the
biomolecules, and second, the optical properties of the graphene modify the SPR curves and provide
a large shift for the refractive index change. In summary, this study shows that a graphene-based
biosensor enhances the sensitivity 2.5 times in comparison to a conventional biosensor.

An experimental study on the enhancement of sensitivity of an SPR-based sensor using graphene
oxide and biomolecules attachments has also been reported. In this study, the sensitivity of an
SPR-based photonic crystal fiber (PCF) refractive index sensor was compared with an immunosensor
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with and without a graphene oxide layer. The probe was designed by splicing the PCF fiber between
the two multimode fibers [80]. To fabricate the sensor, the 5 mm sensing length of the PCF fiber
was first coated with a 5 nm thin chrome layer and then with a 50 nm thin film of gold. After this,
an over-layer of graphene oxide was deposited over the gold layer through various steps, as shown in
the Figure 8a–d. For the immunosensor, the staphylococcal protein A (SPA) was attached over the GO
surface, as shown in Figure 8e–g.
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The SPR spectra for the gold coated PCF fiber (Au-PCF) and gold and graphene oxide coated PCF
fiber (Au/GO-PCF) are shown in Figure 9a,c, for the refractive index range from 1.33 to 1.37. The shift
in the resonance wavelength corresponding to Au-PCF and Au/GO-PCF sensors for the change in the
refractive index are shown in Figure 9b,d.
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The change in the resonance wavelength for the Au-PCF and Au/GO-PCF sensors were reported
to be 114 nm and 181 nm for the refractive index range from 1.33 to 1.37, respectively. For the case
of the Au-PCF and Au/GO-PCF sensors, the values of sensitivity obtained were 2761.7 nm/RIU and
4649.8 nm/RIU, respectively. Here, the graphene oxide film enhances the interaction between the Au
film and analyte which increases the refractive index sensitivity.

For the SPR immunosensor, the attachment steps of SPA are represented in Figure 10. Figure 10
shows the wavelength shift curve of anti-human IgG immobilized on the Au/GO-SPA and Au-SPA
sensor. When the IgG sample comes in contact with the sensor surface, the refractive index changes
and a red shift is observed. The change in the resonance wavelength for the Au-SPA sensor is around
7.4 nm, while for the Au/GO-SPA sensor it is 15.2 nm. This enhancement shows that due to the large
surface area and biocompatibility, GO allows for more immobilization of the antibody than the gold
surface, which leads to the larger resonance wavelength shift. This study shows that GO has a great
potential in sensitivity enhancement for SPR-based refractive index sensors or biosensors.
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Figure 10. Goat anti-human IgG immobilized on the sensor surface. Reprinted with permission
from [80]. Copyright 2018 Elsevier.

In another study, an SPR-based fiber optic cholesterol sensor with three different approaches was
discussed [81]. In this study, three different types of probes were fabricated, as shown in Figure 11.
In probe I, the gel entrapment method was used for the detection of cholesterol, while in probe
II, the enzyme cholesterol oxidase (Chox) was immobilized over the graphene oxide nanosheets,
and in probe III, polyvinyl alcohol (PVA) embedded silver nanoparticles were decorated over the GO
nanosheets. For the synthesis of GO, the modified Hummer’s method was used. In probe I, the probe
was fabricated by coating a thin silver layer over the core of an optical fiber, followed by the enzyme
entrapped hydrogel. Probe II consisted of a GO layer over the silver coated unclad core of the fiber,
and a Chox enzyme was immobilized over it. Finally, probe III consisted of layers of silver and GO over
the core of an optical fiber, followed by layers of PVA embedded silver nanoparticles and enzyme Chox.
The SPR curves for probe I for a cholesterol concentration range of 0 to 10 mM shifted by around 18 nm,
which gave 1.789 nm/mM as the sensitivity of the sensor. The reason behind the shift in resonance
wavelength is that when the cholesterol sample interacts with the cholesterol oxidase, the enzymatic
reaction takes place and it gets converted into Cholest-4en-3-one and hydrogen peroxide. Due to this
enzymatic reaction, the effective refractive index of the sensing layer changes, which results in the
shift in resonance wavelength. For probe II, the total shift in the resonance wavelength was around
32 nm, which was greater than that in the case of probe I. In probe II, GO provided a large surface
area, and therefore the available surface area for the enzyme was increased and the shift in resonance
wavelength was increased.
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Figure 11. Schematic diagram of three different fiber optic probes, named (a) Probe I, (b) Probe II, and
(c) Probe III.

Apart from their large surface area, GO nanosheets have various oxygen functional groups, such as
-OH, -COOH, which help to bind the enzyme. The total shift in resonance wavelength and sensitivity
for probe III were around 50 nm and 5.06 nm/mM, respectively, which were the maximums among all
three probes. In probe III, the shift was due to an enzymatic reaction, as well as the silver nanoparticles,
which decompose the hydrogen peroxide, due to which the effective refractive index changes more in
comparison to the probe I and II, which results in the maximum shift and sensitivity. From all three
probe configurations, it was concluded that GO enhances the sensitivity of the biosensor.

3.2.2. Carbon Nanotubes

Carbon nanotubes have also been used to enhance the sensitivity of a biosensor. In a sensitivity
enhancement approach, a CNT-antibody conjugate was employed to amplify the SPR signal for
a biosensing platform [82]. Human erythropoietin (EPO) and human granulocyte macrophage
colony-stimulating factor (GM–CSF) were tested as model systems to see the role of CNTs in the
enhancement of SPR signal. Biocompatibility, fast electron transfer, and large molecular mass were
reported to be key factors for sensitivity enhancement for the detection of very low levels of EPO
and GM-CSF in real systems. All SPR measurements were performed on the commercially available
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BIAcore X SPR biosensor system (GE Healthcare, Sweden) at a flow rate of 5 µl/min, at 25 ◦C. Gold
chips were modified with a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) and
then activated by ethyl (dimethylaminopropyl) carbodiimide /N-hydroxysuccinimide (EDC/NHS)
chemistry for the capture of respective antibodies. A schematic of the detailed mechanisms of CNT
assisted and without CNTs SPR detection is shown in Figure 12.
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Figure 12. Schematic diagram of SPR immunoassay to enhance sensitivity with the CNT-antibody
complex. Reprinted with permission from [82]. Copyright 2011 Elsevier.

The enhancement in SPR signal with the CNT assisted approach can be seen in Figure 13, through
the real-time SPR response and the SPR angle shift in the case of direct and CNT assisted detection.
The CNT-based amplification method was reported to be sensitive for a wide dynamic range, from 0.1 to
1000 ng/mL, with the detection limit reaching 0.1 ng/mL, enabling its application in real scenarios.
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Figure 13. SPR sensorgrams of the (A) EPO (1 µg/mL) immunoassay with the antibody,
(B) CNT–antibody complex, and (C) SPR signal shift by direct and CNT-mediated detections. Reprinted
with permission from [82]. Copyright 2011 Elsevier.

In a similar approach, a photonic crystal fiber (PCF)-based SPR sensor was reported with enhanced
refractive index sensitivity, due to CNTs deposited on the Au and Ag film as compared to a bare
Ag/Au thin film [83]. The sensitivity of the CNT-Au film PCF SPR sensor was reported to increase
by 1016 nm/RIU as compared to the conventional Au film PCF SPR sensor, whereas the sensitivity
of the CNT-Ag film PCF SPR sensor increased by 709 nm/RIU compared to the Ag film SPR sensors.
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The experimental results were found to be in accordance with simulated data for such sensors, clarifying
the role of CNTs in the sensitivity enhancement of SPR sensors. The results are shown in Figure 14.
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A gold nanoparticle-decorated CNTs platform was developed recently for the LSPR based sensing
of bovine growth hormone [84]. Due to the high surface to volume ratio and favorable electron transfer
reactions, CNTs were augmented with Au nanoparticles to provide synergistic effects to LSPR sensing.
The properties of the unique nanocomposite were explored to absorb and sense the biomolecular
interaction with increased sensitivity, as compared to individual material. A concentration as low as
1 ng/mL of rbST was detected with the composite based LSPR platform, providing a new window for
ultrasensitive plasmonic detection of polypeptides and proteins.

3.3. As sensing Matrix Material

3.3.1. Graphene and Its Derivatives

In recent years graphene, GO, reduced graphene oxide (rGO), and their nanocomposites have
been extensively exploited for various biosensors, gas sensors, and chemical sensors. Graphene and
its nanocomposites act as a sensing layer in various sensors, including plasmonic sensors. Since the
plasmonic sensors are very sensitive to the change in the refractive index of the surrounding medium,
if there is a possibility of an interaction between graphene and analyte there will be a possibility of its
sensing. In such a case, one can develop a sensor using graphene and its nanocomposites. Based on this
approach, a pH sensor was reported utilizing rGO and polyaniline (PANI) as sensing layers [85]. As is
known, pH is a very important parameter and it plays a vital role in biological processes, drinking water,
environment, food quality control, biochemistry, and chemical reactions. The study has utilized surface
plasmon resonance on optical fibers. The rGO-Pani nanocomposite was prepared by an in situ method.
Figure 15a shows the scanning electron microscope (SEM) image of Pani, in which the chain-like
porous structure of Pani can be seen. Figure 15b represents the transmission electron microscope (TEM)
image of rGO which depicts a very thin sheet of rGO. Figure 15c shows the SEM image of the rGO-Pani
nanocomposite and Figure 15d shows the TEM image of the rGO-Pani nanocomposite. In this figure,
the lighter portion in the image represents the rGO nanosheets and the darker part represents Pani.
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nanosheets, the rGO nanosheets get converted to the n-doped material, which alters the band gap of 
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and, therefore, the change in the effective refractive index of the nanocomposite is the result of 
change in both the materials, and hence one obtains a cumulative effect on the red shift in resonance 
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of change in the pH of the sample. For the acidic range, the maximum sensitivity of the sensor was 
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2019 Elsevier.

The design of the sensor probe is shown in Figure 16. The unclad core of an optical fiber, in the
middle, was coated with a thin silver film by the thermal evaporation method, over which another
coating of rGO-Pani was done by the dip coating method.
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Figure 17a shows the SPR spectra for the acidic region from pH 7 to pH 2.4. As one moves
towards the acidic region from pH 7, a red shift is observed in resonance wavelength. The reason
behind the red shift is the chemical interaction between the rGO-Pani nanocomposite with the acidic
pH samples. When an acidic sample comes into contact with polyaniline, the emeraldine form of Pani
changes to pernigraniline base through an oxidation process, which changes the refractive index of
Pani. Since an acidic sample has an excess of H+ ions, when it comes in contact with rGO nanosheets,
the rGO nanosheets get converted to the n-doped material, which alters the band gap of the rGO
nanosheets. Thus, both the materials in the nanocomposite are sensitive to the acidic sample and,
therefore, the change in the effective refractive index of the nanocomposite is the result of change in
both the materials, and hence one obtains a cumulative effect on the red shift in resonance wavelength.
The sensitivity of the sensor is defined as the change in resonance wavelength per unit of change in
the pH of the sample. For the acidic range, the maximum sensitivity of the sensor was found to be
24.93 nm/pH, which means the resonance wavelength shifts around 24.93 nm, when the pH of the
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sample is changed by unity. As reported, the exponential nature of the sensitivity plot is due to the H+

ions, which increase exponentially with the decrease in pH of the sample.
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Figure 17b shows the SPR curves corresponding to the basic region from 7 pH to 11.35, and in
this case also a red shift in the resonance wavelength was observed with the increase in pH of the
sample (increase in alkanity). Again, the reason for the red shift is the interaction between the pH
sample and rGO-Pani nanocompoite. The emeraldine form of Pani changes to a leucoemeraldine
base after the interaction with the basic sample through the reduction process. The samples with pH
from 7 to 11 have an excess of OH− ions. The rGO nanosheets get converted to p-doped material via
OH− ions. Therefore, the overall band gap of the nanocomposite changes, which results in a change in
the effective refractive index of the sensing layer. The maximum sensitivity was found to be around
75.09 nm/pH at the pH value 11.35. In this study, the behavior of rGO nanosheets changed when they
came in contact with acidic/basic samples, resulting in a change in the effective refractive index. Thus,
rGO nanosheets act as a sensing matrix for the measurement of the pH.

3.3.2. Carbon Nanotubes

The last way of utilizing CNTs in plasmonic sensors is as sensing material. The ease and variety of
possible functionalization on CNTs side walls and edges make them suitable for the sensing of various
species [86–89]. A 2,4,6-trinitrotoluene (TNT) SPR sensor was reported, with peptide modified SWCNTs
as sensing material over Au-coated SPR chips. The standard gold coated chips were firstly modified
with APTES (3-aminopropyltriethoxysilane) to generate amine groups for the attachment of carboxyl
terminated CNTs [90]. After this, TNTHCDR3 peptide was immobilized non-covalently on CNTs
through a π-π interaction. The SPR measurements were carried out on a standard Biacore system. TNT
samples were tested for a wide dynamic concentration range, from 0.8 ppm to 100 ppm. The real-time
SPR response of peptide modified SWCNTs based SPR sensors for various concentrations of TNTs
is shown in Figure 18a. The response was compared with a conventional dextran chip (CM7) and it
was revealed that CNTs offer promising properties for the detection of low molecular weight analytes
at low concentration levels in SPR sensors, with a significantly improved response (Figure 18b,c).
The response of the CNT modified chip is shown in Figure 18d for various concentrations of TNT.
The specificity of the chip was tested for various analytes, which can interfere or are analogous to
TNTs, such as DNP-glycine, 2,6-DNT, RDX, and 4-nitrobenzoyl-glycyl-glycine, showing a negligible
response from all the other analytes (Figure 18e). The stability and reversibility of surface reactions on
CNTs and the chemical stability of the gold chip are visible through the stable response of the sensor
over 20–30 days (Figure 18f).
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In another study, an optical fiber-based SPR sensor was reported, where MWCNTs were 
utilized as sensing material for the detection of sulfamethaxazole (SMX), opening the potential 
sensing applications of CNTs in pharmaceuticals [91]. The response of the sensor was compared 
with a similar approach based on enzyme entrapped gel as a sensing layer for a 0 to 200 µM 
concentration range of SMX. The CNT-based platform offers an improved sensitivity over the 
desired concentration range, along with long time stability and cost effectiveness as compared to the 
enzymatic approach. The CNT-based probes were prepared by depositing Ag thin film on the fiber 
core surface, functionalizing the Ag surface with APTES, and then attaching carboxylic acid 
functionalized CNTs on amino group-modified fiber substrate. The other enzyme-based probes 
were also prepared by the coating of polyacrylamide gel entrapped with tyrosinase enzyme for the 
sensing of SMX. The interaction mechanism governing the SPR response due to physicochemical 
interaction of SMX with CNTs and tyrosinase is shown in Figure 19. 

Figure 18. The real-time sensorgrams of (a) peptide-SWCNT hybrids corresponding to TNT
concentrations; (b) two kinds of sensor chips corresponding to TNT explosives at a concentration
of 501.5 ppm; (c) a comparison of the responses of two kinds of sensor chips; (d) the responses
of the SWCNT–peptide chip and CM7 chip to TNT; (e) the response of the TNTHCDR3-anchored
SWCNT sensor chip to 100 ppm solutions of TNT, RDX, 2,6-DNT, 4-nitrobenzoyl-glycyl-glycine,
and DNP-glycine. (f) The stability of the sensor chip over a duration of one month. Reprinted with
permission from [90]. Copyright 2018 MDPI.

In another study, an optical fiber-based SPR sensor was reported, where MWCNTs were utilized as
sensing material for the detection of sulfamethaxazole (SMX), opening the potential sensing applications
of CNTs in pharmaceuticals [91]. The response of the sensor was compared with a similar approach
based on enzyme entrapped gel as a sensing layer for a 0 to 200 µM concentration range of SMX.
The CNT-based platform offers an improved sensitivity over the desired concentration range, along
with long time stability and cost effectiveness as compared to the enzymatic approach. The CNT-based
probes were prepared by depositing Ag thin film on the fiber core surface, functionalizing the Ag
surface with APTES, and then attaching carboxylic acid functionalized CNTs on amino group-modified
fiber substrate. The other enzyme-based probes were also prepared by the coating of polyacrylamide
gel entrapped with tyrosinase enzyme for the sensing of SMX. The interaction mechanism governing
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the SPR response due to physicochemical interaction of SMX with CNTs and tyrosinase is shown in
Figure 19.Sensors 2019, 19, x FOR PEER REVIEW 19 of 25 
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sensing layer to 0.8918 µM in the non-enzymatic CNT-based approach. The corresponding response 
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In another biosensor development, CNTs are employed as a matrix for the molecular 
imprinting (MIP) of dopamine (DA), providing a generic platform for the sensing of 
neurotransmitters [92]. The MIP on the surface of CNTs encompasses the advantages of high 
sensitivity and selectivity due to the easy removal and uptake of the analyte during sensing, large 
surface to volume ratio providing increased sensing hotspots, and a stable composite with 
imprinting conducting polymer (polypyrrole; PPy) due to binding in a de-localized π-electron cloud 

Figure 19. Interaction mechanism of (a) Tyrosinase and SMX, (b) functionalized CNTs and SMX.
Reprinted with permission from [91]. Copyright 2018 Springer.

The detection limit improved from 1.137 µM in the case of the enzyme entrapped gel as a
sensing layer to 0.8918 µM in the non-enzymatic CNT-based approach. The corresponding response
in the two cases, with sensitivity variation along with the desired concentration range, is shown in
Figure 20. The maximum sensitivity at the lowest concentration also increased from 0.29 nm/µM for
the enzyme-based platform to 0.37 nm/µM for CNTs as sensing material.
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Figure 20. (a) SPR spectra, (b) sensitivity of the tyrosinase enzyme-based probe, and (c) SPR spectra,
(d) sensitivity of the functionalized CNT-based probe for different concentrations of SMX. Reprinted
with permission from [91]. Copyright 2018 Springer.

In another biosensor development, CNTs are employed as a matrix for the molecular imprinting
(MIP) of dopamine (DA), providing a generic platform for the sensing of neurotransmitters [92].
The MIP on the surface of CNTs encompasses the advantages of high sensitivity and selectivity due to
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the easy removal and uptake of the analyte during sensing, large surface to volume ratio providing
increased sensing hotspots, and a stable composite with imprinting conducting polymer (polypyrrole;
PPy) due to binding in a de-localized π-electron cloud of CNTs and PPy. Polypyrrole/CNTs composites
were used in the development of several SPR-based sensors due to their unique conductivity, making
them favorable for sensitivity enhancement of SPR sensors [86,87]. A permselective nafion membrane
was also employed over an MIP layer to minimize the cross-signaling from interfering anions, such as
ascorbic acid and uric acid. The morphological characterization of the nanocomposite was confirmed
through SEM and TEM images, as shown in Figure 21a–d. The removal of DA for the formation of
imprinted sites in MIP layer over MWCNTs was confirmed by UV-Vis spectroscopy, as shown in
Figure 21e.
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The SPR response was recorded after optimizing various probe parameters for 0 to 10−5 M DA 
concentration in artificial cerebrospinal fluid, as shown in Figure 22a. A red shift of 69 nm was 
observed for the whole concentration range, with a non-linear response of the resonance wavelength 
with DA concentration (Figure 22b). 

Figure 21. SEM images of (a) as obtained MWCNTs, (b) DA embedded MWCNTs-PPy matrix, (c) DA
imprinted MWCNTs-PPy matrix, (d) Nafion/MWCNTs-PPy MIP nanocomposite, and (e) UV-vis spectra
of the MWCNTs-PPy MIP nanocomposite during seven elution steps. Reprinted with permission
from [92]. Copyright 2019 Elsevier.

The SPR response was recorded after optimizing various probe parameters for 0 to 10−5 M DA
concentration in artificial cerebrospinal fluid, as shown in Figure 22a. A red shift of 69 nm was observed
for the whole concentration range, with a non-linear response of the resonance wavelength with DA
concentration (Figure 22b).
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A similar MIP and SPR-based platform was also reported for the sensing of complex structures, 
like proteins (BSA). The surface imprinting on CNTs provides an improved platform as compared to 
bulk imprinting methodologies, where the removal of such complex molecules is cumbersome [93]. 
Moreover, the catalytic properties of MWCNTs/Cu nanoparticles have been employed in a fiber 
optic SPR sensor for the effective and fast detection of nitrates in real samples, like soil and river 
water analysis [94]. The sensing methodology was based on the reduction of nitrate ions to 
ammonium ions by the catalytic properties of copper nanoparticles and the adsorption of 
ammonium ions on the CNT surface, bringing a change in SPR response for 10−6 M to 5 × 10−3 M 
nitrate concentration. 

4. Summary 

Carbon-based nanomaterials have attracted the attention of the scientific community for the 
fabrication of plasmonic-based sensors. This is because of their unique electrical, mechanical, 
chemical, thermal, and optical properties. The role of carbon-based nanomaterials in SPR-based 
sensors, their current developments, and challenges have been reviewed in this article. In 
plasmonic-based sensors, carbon-based nanomaterials play various types of roles, such as plasmonic 
layers, sensitivity enhancement material, and sensing matrix material. In this review, the roles of 
graphene and its derivatives and carbon nanotubes in sensors have been discussed.  
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A similar MIP and SPR-based platform was also reported for the sensing of complex structures,
like proteins (BSA). The surface imprinting on CNTs provides an improved platform as compared to
bulk imprinting methodologies, where the removal of such complex molecules is cumbersome [93].
Moreover, the catalytic properties of MWCNTs/Cu nanoparticles have been employed in a fiber optic
SPR sensor for the effective and fast detection of nitrates in real samples, like soil and river water
analysis [94]. The sensing methodology was based on the reduction of nitrate ions to ammonium ions
by the catalytic properties of copper nanoparticles and the adsorption of ammonium ions on the CNT
surface, bringing a change in SPR response for 10−6 M to 5 × 10−3 M nitrate concentration.

4. Summary

Carbon-based nanomaterials have attracted the attention of the scientific community for the
fabrication of plasmonic-based sensors. This is because of their unique electrical, mechanical, chemical,
thermal, and optical properties. The role of carbon-based nanomaterials in SPR-based sensors,
their current developments, and challenges have been reviewed in this article. In plasmonic-based
sensors, carbon-based nanomaterials play various types of roles, such as plasmonic layers, sensitivity
enhancement material, and sensing matrix material. In this review, the roles of graphene and its
derivatives and carbon nanotubes in sensors have been discussed.
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