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Abstract: TASK-3 is a two-pore domain potassium (K2P) channel highly expressed in the hippocampus,
cerebellum, and cortex. TASK-3 has been identified as an oncogenic potassium channel and it is
overexpressed in different cancer types. For this reason, the development of new TASK-3 blockers
could influence the pharmacological treatment of cancer and several neurological conditions. In the
present work, we searched for novel TASK-3 blockers by using a virtual screening protocol that
includes pharmacophore modeling, molecular docking, and free energy calculations. With this
protocol, 19 potential TASK-3 blockers were identified. These molecules were tested in TASK-3
using patch clamp, and one blocker (DR16) was identified with an IC50 = 56.8 ± 3.9 µM. Using
DR16 as a scaffold, we designed DR16.1, a novel TASK-3 inhibitor, with an IC50 = 14.2 ± 3.4 µM.
Our finding takes on greater relevance considering that not many inhibitory TASK-3 modulators
have been reported in the scientific literature until today. These two novel TASK-3 channel inhibitors
(DR16 and DR16.1) are the first compounds found using a pharmacophore-based virtual screening
and rational drug design protocol.

Keywords: TASK-3 channel; drug design; TASK channels blockers; pharmacophore-based virtual
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1. Introduction

Two-pore domain potassium (K2P) channels have a major role in the regulation of cell excitability
and membrane potential in excitable and non-excitable cells [1]. K2P channels contain two pore-forming
loops and four transmembrane domains per subunit, creating dimeric channels [2]. The TASK (tandem
of pore domains in a weak inwardly rectifying K+ channel [TWIK]-related acid-sensitive K+ channel)
subfamily is integrated by TASK-1 [3], TASK-3 [4] (sharing 58.9% of aminoacidic (aa) sequence
identity [5]), and TASK-5 (sharing 51.4 % and 55.1% of aa sequence identity with TASK-1 and TASK-3,
respectively) [6]. Some studies have demonstrated that TASK channels participate in the chemical
control of breathing due to their intrinsic pH and O2 sensitivity [7–9]. These channels are expressed in
the nervous, cardiovascular, genitourinary, and gastrointestinal systems [10]. They are involved in
chemosensation [11] and also have a role in the regulation of the immune system [12]. TASK channels
are acid-sensitive and anesthetic-activated members of the K2P family. They contribute to the effects of
general anesthetics due to the activation of background K+ currents causing a decrease of excitability
by neuronal hyperpolarization [13], which makes these channels prominent molecular targets for
these drugs.

K2P channels exhibit a different topology and 3D-structure in relation with other K+ channels.
The recently released crystallographic structures of some K2P channels, such as TRAAK (PDBs:3UM7 [5]
and 4I9W [14]), TREK-1 (PDB:4TWK, 6CQ6 and 6CQ8 [15]), TREK-2 (PDBs:4BW5, 4XDJ, 4XDK
and 4DKL [16]), and TWIK-1 (PDB:3UKM [17]), show that these proteins exhibit some features
that characterize their unique gating and ion permeation properties. For example, close to the
membrane center, the TM2 helix bends approximately 20◦. This structural change generates two
side-cavities named fenestrations, connecting the pore to the hydrophobic core of the membrane [5,17].
These fenestrations have a key role in the modulation of K2P channels [18], providing binding pockets
for drugs like norfluoxetine in TREK-2 [16] and bupivacaine in TASK-1 [19]. It has been proven by
molecular dynamic simulations that drugs like A1899 and PK-THPP bind preferentially to TASK-1 and
TASK-3 channels with open fenestrations, respectively [18,20]. Thus, these hydrophobic cavities are
potential drug-binding sites, and also might provide new pathways that could guide blockers into
their binding site.

TASK-3 is highly expressed in the hippocampus, cerebellum, and cortex [21], and some previous
studies have described that TASK-3 regulates neurotransmitter function [22]. The development of new
selective TASK-3 modulators could influence the pharmacological treatment of several neurological
conditions, such as sleep disorders, neurodegeneration, cognitive impairment, Huntington’s disease,
Parkinson’s disease, or major depressive disorder [23].

Not many promising inhibitory TASK-3 modulators have been reported in the scientific
literature [24]. One of the few reports in this context was made by Coburn et al. [25]; they informed the
use of aminopyrimidine derivatives as potent TASK-3 blockers. Noriega-Navarro et al. [26] reported
the application of dihydropyrrolo[2,1-a]isoquinoline derivatives (DPIs) as novel TASK inhibitors.
In this sense, the use of fused heterocyclic-compounds has attracted attention as new TASK modulators.
Therefore, the development of simple theoretical/experimental methodologies is necessary to find new
compounds with a different chemical nature with potential usefulness as TASK-3 modulators.

In this study, we developed a systematic pipeline (Scheme 1) to search novel TASK-3 blockers
that includes a pharmacophore-based virtual screening (e-PBVS). The 19 putative blockers found were
screened against human TASK-3 by a patch clamp, obtaining one active ligand that exhibited inhibitory
activity against TASK-3 in the µM range. The active ligand was used as a scaffold and a new compound
was designed, synthetized, and tested against TASK-3, exhibiting a four-fold higher activity.
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Scheme 1. Representation of the systematic workflow to identify TASK-3 modulators.

2. Results

2.1. TASK-3 Modeling

The TASK-3 aminoacidic sequence shares 27.2% identity with TWIK-1, 23.7% with TRAAK, and
26.2% with TREK-2 [5]; hence, all three K2P channels 3D-structures are acceptable as templates to
build homology models [27]. TASK-3 models (Table 1) were inserted in a biological membrane and
subjected to 10 ns MD simulations. Models were stabilized before 5 ns, which is analyzed from the
RMSDs (Root Mean Square Deviation) of the backbone atoms as a function of the simulation time
for the models using their initial configurations as references (Figure S1A). The stabilized models
were validated using Procheck and ProSA. Both validations showed that TASK-3 homology models
have a good quality. They exhibit more than 90% of the residues in the most favored regions of the
Ramachandran plots [28] (Figure S2), and the z-score in the same range that experimentally determined
structure proteins of the Protein Data Bank (PDB) [29] (Figure S3).

Table 1. Nomenclature of the TASK-3 homology models.

Template TASK-3 Homology Model Name

TREK-2 (PDB:4BW5) T3-treCC

TWIK-1 (PDB:3UKM) T3-twiOO

TRAAK (PDB:4I9W) T3-trCO

TRAAK (PDB:3UM7) T3-trOO

The different fenestration states were further analyzed in the T3-trCO model because it has the
close-open fenestration state. Some residues identified by Streit et al. [30] and our group as key residues
for the interaction of drugs, such as A1899 and PK-THPP, with TASK-1 and TASK-3 channels [18,20] are
shown in Figure S1B (these residues are surrounded by a transparent surface to detail the closed and
open fenestrations, at the left and the right, respectively). The TM4 segment of chain A is further to the
TM2 segment of chain B, resulting in the opening of the fenestration as described by Aryal et al. [31].
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It can be seen in Figure S1B how the hydrophobic side chain of Leu239 (yellow) at the TM4 segment is
oriented to the hydrophobic fenestration cavity interacting with Leu197 (green) at the TM2 segment.
Ile235 (purple) at the TM4 segment and Val115 (white) of the inner helix 1 are also establishing
non-bonding interactions.

2.2. e-Pharmacophore Modeling

Twelve TASK-3 blockers were selected to build an energy-optimized pharmacophore
(e-Pharmacophore). They have an IC50 range of 0.035 to 160 µM (Table 2). Ensembles that contain
three pharmacophore points were identified, with hydrogen bond acceptors (A), hydrophobic groups
(H), and aromatic rings (R). The e-Pharmacophore hypotheses were scored using the phase scoring
function (Table 3). The top scored pharmacophore hypothesis was a three-point pharmacophore
ensemble with two hydrogen bond acceptors (features A1 and A2) and one aromatic ring (feature R).
The score measures how well the vectors from the pharmacophore features are aligned in the structures
that contribute to the hypothesis, when the structures themselves are aligned to the pharmacophore.
On the other hand, the selectivity value estimates the rarity of the hypothesis, based on the World
Drug Index; this term is the negative logarithm of the fraction of molecules in the index that matches
the hypothesis. Thus, the lower the selectivity value, the less molecules exhibit the pharmacophore.
A three-dimensional (3D) representation of the pharmacophore hypothesis number one is shown in
Figure 1, with six TASK-3 blockers—12f (cyan), 23 (green), 17e (orange), A1899 (yellow), GW2974
(pink), and Loratadine (gray)—adopting the conformations that fit in the model. It can be seen how
the geometry of hypothesis number one is conserved in the blockers. For compounds 12f, 17e, and 23,
the A1 feature is the carbonyl oxygen, A2 is the N3 of the 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine,
and R is the phenyl moiety bound to the carbonyl group. For A1899, A1 and A2 correspond to carbonyl
oxygens and R is the phenyl group of the methoxyphenyl substituent. For GW2974, R is the phenyl
of the 1H-indazole and A1 and A2 correspond to N3 and N7 of the pyrido[3,4-d]pyrimidine group.
For loratadine, A1 is the nitrogen of the pyridine, A2 is the ether oxygen of the carboxylate group,
and R is the chlorophenyl group. We analyzed the local charges of atoms of the A1 and A2 groups and
we observed that they have highly negative Mulliken atomic charges. The general site measurements
of the e-Pharmacophore model (distances and angles between the features) are given in Table S1.

Table 2. TASK-3 modulators with different chemical characteristics were used for the generation of the
energy-optimized pharmacophore.

Blocker ID TASK-3 IC50 (µM) Reference
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Table 3. e-Pharmacophore hypotheses identified by e-Pharmacophore modeling.

e-Pharmacophore Hypotheses
Phase Scoring Function Selectivity

ID Pharmacophore Features

1 AAR 0.71 0.870

2 AHR 0.65 0.985

3 AHR 0.55 0.973

4 AAR 0.44 0.878

Hydrogen bond acceptor (A), hydrophobic group (H), and aromatic ring (R).

2.3. Virtual Screening

The e-Pharmacophore hypothesis in conjunction with the four TASK-3 models were used as
input for e-PBVS using ZINCPharmer pharmacophore search software [33]. The search explored more
than 200 million conformations from more than 22 million compounds of the ZINC (purchasable)
database [34]. Database hits were ranked according to RMSD (see Section 4.3), resulting in 5000 hits for
each TASK-3 model, with a total of 20,000 hits.

After the ‘Molecular docking 4’ re-docking process (Scheme 1) with Glide XP and the
implementation of stage two of the protocol shown in Scheme 1, the predicted hit ligands from
the ZINC database were identified. The 19 ligands (DR1–DR19) with the lowest MM-GBSA (Molecular
Mechanics combined with the Generalized Born and Surface Area) binding free energies are listed in
Table 4. The hit ligands interact with at least two of the four TASK-3 models developed in this study,
with different ∆GBind energies. These hits share several chemical features among them, such as amide
moieties, aromatic rings, and heterocycles, and hydrogen bond acceptor groups, such as oxygen and
nitrogen atoms (Figure S4). These chemical features are also found in the TASK-3 blockers reported in
the literature.

Table 4. Ligands hits interacting with TASK-3 homology models.

ID ZINC ID
T3-treCC T3-trOO T3-twiOO T3-trCO

∆GBind ∆GBind ∆GBind ∆GBind

DR1 ZINC03556155 −59.55 −58.78
DR2 ZINC09367111 −64.27 −55.03
DR3 ZINC10950931 −59.94 −48.84 −51.23
DR4 ZINC11147234 −68.54 −54.96
DR5 ZINC16278437 −67.62 −95.92
DR6 ZINC17053289 −54.66 −70.88
DR7 ZINC68916649 –66.25 −67.73
DR8 ZINC72040642 −49.75 −52.58
DR9 ZINC78792039 −50.67 −78.33

DR10 ZINC94819975 −50.77 −70.57
DR11 ZINC00246887 −57.27 −53.86
DR12 ZINC05269754 −52.79 −53.97
DR13 ZINC32460999 −69.21 −54.29
DR14 ZINC70728711 −64.84 −57.97
DR15 ZINC09315946 −55.17 −51.02
DR16 ZINC95468976 −31.65 −55.89
DR17 ZINC00183531 −47.41 −53.68
DR18 ZINC02943852 −65.75 –53.41 −76.95
DR19 ZINC71279984 −38.27 −53.06

∆GBind: MM-GBSA ∆GBind term in kcal * mol−1.
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2.4. Biological Activities of Identified Hits

The 19 hits were screened against TASK-3 using patch-clamp. The results of these evaluations
were no activity for the majority of compounds, but compound DR16 was identified as an active
ligand, with an IC50 = 56.8 ± 3.9 µM. In Figure 2A, the conserved pharmacophore among the reported
TASK-3 blockers (Figure 1) is illustrated in DR16, along with its dose–response curve against TASK-3
(Figure 2B) and TASK-1 (Figure 2C) channels. The hit compounds identified from the ZINC database
and selected for the experimental activity evaluations were acquired from the following suppliers:
AKos Consulting & Solutions Deutschland GmbH (Steinen, Germany): DR1-DR10; Ambinter c/o
Greenpharma (Orléans, France): DR11 and DR12; EnamineStore Ltd. (Kyiv, Ukraine): DR13-DR16;
and Vitas-M Limited (Hong Kong, China): DR17-DR19. All compounds were solubilized in DMSO
(dimethyl sulfoxide) 10 mM stock.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 22 
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2.5. Binding Model of DR16

The proposed binding modes of DR16 in the TASK-3 channels with different fenestration states
predicted by our protocol are shown in Figure 3. It is noticeable that different orientations were predicted
for DR16 in the T3-treCC and T3-twiOO models. We found two possible binding sites for DR16, one at
the inner cavity in T3-treCC (Figure 3A,B) and the other at the fenestration in T3-twiOO (Figure 3C,D).
However, according to the ∆GBind energies of DR16 in both models (Table 4), the binding between
DR16 and the fenestration at the T3-twiOO model is more favorable (∆GBind = −55.89 kcal/mol).

The binding mode of DR16 inside the T3-treCC model is characterized by the presence of two
hydrogen bonds between the carbonyl oxygen of the amide group of the ligand and the side chain OH
groups of the residues, Thr93 (chain B) and Thr199 (chain A) (Figure 3A,B). DR16 also presents, in the
obtained conformation inside the T3-treCC model a hydrogen bond between the OH of the ligand
and backbone of the residue Leu197, and a π–π stacking interaction with the Phe125 (Figure 3A,B).
It is important to notice that the interactions established by DR16 with T3-treCC involve two of the
three pharmacophoric descriptors found for TASK-3 channel blockers (Figure 3A,B), the aromatic ring
and a H-bond acceptor (Figure 2A). The OH moiety is interacting as an H-bond donor. Phe125 was
reported as a putative false positive binding residue for A1899 because the docking pose of A1899
predicted this residue as part of the binding site, but the experimental data did not fit with those results
in TASK-1 [30].



Int. J. Mol. Sci. 2019, 20, 4014 9 of 22

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 22 

 

 
Figure 2. Lead ligand DR16 blocks human TASK channels. (A) DR16 chemical structure with the 
conserved common pharmacophore identified among the reported blockers. R: aromatic ring, A1 and 
A2: H-Bond acceptors. (B–C) Dose–response curve of DR16 on human TASK channels. 

2.5. Binding Model of DR16  

The proposed binding modes of DR16 in the TASK-3 channels with different fenestration states 
predicted by our protocol are shown in Figure 3. It is noticeable that different orientations were 
predicted for DR16 in the T3-treCC and T3-twiOO models. We found two possible binding sites for 
DR16, one at the inner cavity in T3-treCC (Figure 3A,B) and the other at the fenestration in T3-twiOO 
(Figure 3C,D). However, according to the ∆𝐺ௗ  energies of DR16 in both models (Table 4), the 
binding between DR16 and the fenestration at the T3-twiOO model is more favorable (∆𝐺ௗ  = 
−55.89 kcal/mol). 

 
Figure 3. DR16 binding mode in TASK-3. Lead ligand DR16 interaction with T3-treCC (A,B) and T3-
twiOO (C,D) models. For better representation, 2D diagrams are shown. H-bonds are represented as 
purple lines, and π–π stacking interactions as green lines. In the 2D diagrams (B,C), polar and 
hydrophobic residues are colored in cyan and green, respectively. 

The binding mode of DR16 inside the T3-treCC model is characterized by the presence of two 
hydrogen bonds between the carbonyl oxygen of the amide group of the ligand and the side chain 

Figure 3. DR16 binding mode in TASK-3. Lead ligand DR16 interaction with T3-treCC (A,B) and
T3-twiOO (C,D) models. For better representation, 2D diagrams are shown. H-bonds are represented
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hydrophobic residues are colored in cyan and green, respectively.

In the T3-twiOO–DR16 complex, the ligand is located inside the fenestration and the OH of the
ligand is oriented towards the central cavity, interacting through a hydrogen bond with the backbone
CO of the Leu232 (Figure 3C,D). The NH of the ligand also establishes a hydrogen bond with the
backbone CO of the Leu197. Besides, the benzofuran of the ligand forms a π–π stacking interaction
with the residue Phe194 (Figure 3C,D). Finally, it can be seen in the T3-twiOO–DR16 complex that
hydrophobic interactions between the ligand and the residues Val115, Ile118, Pro119, Leu122, Leu171,
Ile235, and Leu239 (Figure 3C,D) located at the fenestrations occur. In this complex, only the aromatic
ring pharmacophoric feature of DR16 is interacting with the channel, and the two hydrogen bonds
interactions do not fit with the pharmacophore described previously. However, these interactions are
present between the TASK-3 channel and the two moieties, which can behave like an H-bond acceptor
or donor, making the interaction possibilities of this blocker versatile.

The different binding modes of DR16 in the two different models of TASK-3 with the fenestration
in the closed (T3-treCC) and open state (T3-twiOO) allow us to suggest that the hydrophobic moieties
could interact with the fenestration hydrophobic residues when TASK-3 has the fenestrations in the
open state, just like A1899 [18] or bupivacaine [19] interacts with TASK-1 channels.

2.6. Drug Design of Novel TASK-3 Blockers Using DR16 As a Scaffold

A novel compound was designed by using the knowledge of the TASK blockers reported in the
literature, specially A1899 [18,30,35]. We used the structure of DR16 as the starting point. DR16 was
expanded by adding a 4-hydroxybenzamide group at position four of the benzofurane. With this
modification, we added an aromatic ring and hydrogen bond donor/acceptors, and we obtained the
novel compound DR16.1, which is similar to the distal anisole moiety linked by an amide group in the
A1899 blocker.

The computational model of the compound DR16.1 forming a complex with TASK-3 was
constructed by docking (Figure 4). The binding affinity of the novel compound against the T3-twiOO
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model by MM-GBSA was evaluated. The docking energy obtained for DR16.1 was −8.137 kcal/mol,
and the MM/GBSA ∆GBind energy was −89.02 kcal/mol, with a remarkable increase in the predicted
binding energy compared with DR16 (−55.89 kcal/mol). The binding mode of DR16.1 inside T3-twiOO
is presented in Figure 4B,C. DR16.1 establishes a hydrogen bond between the NH at the 3-F-phenol of
the ligand and the backbone CO of Thr198. A π–π stacking interaction was identified between the
benzofuran of the ligand and the residue Phe125 of TASK-3 (Figure 4B,C), an interaction that was
previously identified for DR16 (Figure 3A,B). The 3-F-phenol group of DR16.1 is oriented towards the
fenestration, establishing hydrophobic contacts with the residues at the entrance of this cavity, and the
4-hydroxybenzamide is oriented to the central cavity.
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Subsequently, we outsourced the synthesis of compound DR16.1 to AKos Consulting and
Solutions GmbH (http://www.akosgmbh.de/akosgmbh.html). DR16.1 was obtained as a white solid;
m.p: (146.0–148.9) ◦C; IR-FT (KBr, cm−1): 3345, 1648, 1626, 1429; 1H NMR (400 MHz, DMSO) δ 10.12 (s,
1H), 9.99 (s, 1H), 9.78 (s, 1H), 9.67 (s, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.43 (s, J = 6.7 Hz, 1H), 7.41 (d, J = 1.8
Hz, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.20 (t, J = 7.7 Hz, 1H), 6.87 (d, J = 8.7 Hz, 1H), 6.77 (s, 1H), 6.59 (dd,
J = 12.2, 2.5 Hz, 1H), 6.54 (dd, J = 8.6, 2.6 Hz, 1H), 4.24 – 4.02 (m, 1H), 1.53 (d, J = 7.1 Hz, 1H); 13C NMR
(100 MHz, DMSO) δ 170.36, 165.44, 161.11, 158.56, 157.19, 156.37, 156.26, 154.76, 148.20, 130.33, 129.73,
127.29, 125.24, 123.25, 120.55, 118.06, 117.24, 117.12, 115.42, 111.36, 103.59, 103.29, 103.07, 49.07, 16.51;

http://www.akosgmbh.de/akosgmbh.html
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(ESI, m/z): calculated for C24H19FN2O5
+ [M]+ 434.1278 found [M + Na]+ 456.0063. In Figures S5–S13,

all spectrum for the characterization of DR16.1, as well as the assignment for protons and carbons
signals, are shown.

The biological activity of this novel compound against TASK channels was determined (Figure 5),
presenting IC50 values of 14.17 ± 3.4 and 21.21 ± 5.5 µM against TASK-3 and TASK-1, respectively.
DR16.1 is four-fold more active against TASK-3 than DR16, while the activity against TASK-1 is almost
the same.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 11 of 22 

 

 

Figure 5. The novel blocker DR16.1 inhibits TASK channels. Biological activity of DR16.1 against 
TASK-3 and TASK-1. 

2.7. ADME Prediction  

Physicochemical descriptors were calculated for DR16 and DR16.1, including molecular weight 
(MW), total number of hydrogen bond donors (HB-D), total number of hydrogen bond acceptors 
(HB-A), rotatable bonds, total solvent accessible surface area (SASA), total solvent-accessible volume 
(MV), and van der Waals surface area of polar nitrogen and oxygen atoms (PSA). In addition, 
pharmacokinetics properties for both inhibitors, such as logP (octanol/water), logKp for skin 
permeability, percentage of human oral absorption in the gastrointestinal system, and violations 
according to Lipinski’s rule of five [36,37], were also determined. The predicted properties are listed 
in Tables 5 and 6. Both compounds have an MW < 500 g/mol, which is optimal for a potential drug, 
and all the calculated physicochemical descriptors and pharmacokinetics properties are in the 
defined acceptable range to evaluate drug-likeness. The theoretical findings presented here together 
with the biological activity measurements indicate that our reported compounds have a specific 
pharmacological activity and have properties that would likely make them orally appropriate for 
humans. 

Table 5. Physicochemical descriptor calculated by QikProp simulation. 

Lead Ligands MW (g/mol) a HB-D b HB-A c Rotable Bonds Total SASA d MV (Å3) e PSA f 
DR16 299.301 2.00 3.75 4 572.656 962.958 64.577 

DR16.1 434.423 4.00 7.00 7 766.121 1329.078 121.927 
a Molecular Weight. Range 95% of drugs (130.0–725.0). b Estimated number of H-bond that would be 
donated by the solute to water molecules in an aqueous solution. Values are averages over a number 
of conformations, so they can be non-integer. Range 95% of drugs (0.0–6.0). c Estimated number of H-
bond that would be accepted by the solute to water molecules in an aqueous solution. Values are 
averages over a number of conformations, so they can be non-integer. Range 95% of drugs (2.0–20.0). 
d Total Solvent Accessible Surface Area (SASA). Range 95% of drugs (300.0–1000.0). e Total solvent-
accessible volume in cubic Å3 using in a probe with radius of 1.4 Å. Range 95% of drugs (500.0–2000.0). 
f Van de Waals surface area of polar nitrogen and oxygen atoms. Range 95% of drugs (7.0–200.0). All 
predictions are based in a data set of 1712 drugs. 

Table 6. Pharmacokinetics properties predicted by QikProp simulation. 

Lead 
Ligands 

QP log P 
(o/w) a QP log S b QP log 

Kp c 
% HOA in 

GI d 
Qual HOA 

Model e 
Lipinski’s Rule of 5 

Violations f 
DR16 3.496 −4.611 −1.500 100 HIGH 0 

DR16.1 3.527 −6.277 −2.656 88 HIGH 0 

10-2 10-1 100 101 102 103
0.0

0.2

0.4

0.6

0.8

1.0

DR16.1 (µM)

N
or

m
al

iz
ed

 cu
rr

en
t

IC50 = 14.17 ± 3.4 μM

10-2 10-1 100 101 102 103
0.0

0.2

0.4

0.6

0.8

1.0

DR16.1 (µM)

N
or

m
al

ize
d 

cu
rr

en
t

IC50 = 21.21 ± 5.5 μM

TASK-3 TASK-1

Figure 5. The novel blocker DR16.1 inhibits TASK channels. Biological activity of DR16.1 against
TASK-3 and TASK-1.

2.7. ADME Prediction

Physicochemical descriptors were calculated for DR16 and DR16.1, including molecular weight
(MW), total number of hydrogen bond donors (HB-D), total number of hydrogen bond acceptors (HB-A),
rotatable bonds, total solvent accessible surface area (SASA), total solvent-accessible volume (MV),
and van der Waals surface area of polar nitrogen and oxygen atoms (PSA). In addition, pharmacokinetics
properties for both inhibitors, such as logP (octanol/water), logKp for skin permeability, percentage
of human oral absorption in the gastrointestinal system, and violations according to Lipinski’s
rule of five [36,37], were also determined. The predicted properties are listed in Tables 5 and 6.
Both compounds have an MW < 500 g/mol, which is optimal for a potential drug, and all the calculated
physicochemical descriptors and pharmacokinetics properties are in the defined acceptable range to
evaluate drug-likeness. The theoretical findings presented here together with the biological activity
measurements indicate that our reported compounds have a specific pharmacological activity and
have properties that would likely make them orally appropriate for humans.

Table 5. Physicochemical descriptor calculated by QikProp simulation.

Lead
Ligands

MW
(g/mol) a HB-D b HB-A c Rotable

Bonds
Total

SASA d MV (Å3) e PSA f

DR16 299.301 2.00 3.75 4 572.656 962.958 64.577

DR16.1 434.423 4.00 7.00 7 766.121 1329.078 121.927
a Molecular Weight. Range 95% of drugs (130.0–725.0). b Estimated number of H-bond that would be donated by
the solute to water molecules in an aqueous solution. Values are averages over a number of conformations, so they
can be non-integer. Range 95% of drugs (0.0–6.0). c Estimated number of H-bond that would be accepted by the
solute to water molecules in an aqueous solution. Values are averages over a number of conformations, so they
can be non-integer. Range 95% of drugs (2.0–20.0). d Total Solvent Accessible Surface Area (SASA). Range 95% of
drugs (300.0–1000.0). e Total solvent-accessible volume in cubic Å3 using in a probe with radius of 1.4 Å. Range
95% of drugs (500.0–2000.0). f Van de Waals surface area of polar nitrogen and oxygen atoms. Range 95% of drugs
(7.0–200.0). All predictions are based in a data set of 1712 drugs.
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Table 6. Pharmacokinetics properties predicted by QikProp simulation.

Lead
Ligands

QP log P
(o/w) a QP log S b QP log Kp

c
% HOA in

GI d
Qual HOA

Model e
Lipinski’s Rule
of 5 Violations f

DR16 3.496 −4.611 −1.500 100 HIGH 0

DR16.1 3.527 −6.277 −2.656 88 HIGH 0
a QP log P for octanol/water. Range 95% of drugs (−2.0 – 6.5). b Predicted aqueous solubility. Log S, S in dm3

is the concentration of the solute in a saturated solution that is in equilibrium with the crystalline solid. (−6.5 to
−0.5). c QP log Kp for skin permeability. Kp in cm/h (−8.0 to −1.0). d % model for Human Oral Absorption in
Gastro Intestinal System. < 20% is poor. e Quality of model for Human Oral Absorption in Gastrointestinal System.
> 80% in high. f Maximum is 4.

3. Discussion

There has been no information of computational screening targeting the central cavity and/or
fenestrations of K2P channels. Recently, Luo et. al. developed a virtual screening but in the
extracellular cap of K2P channels to identify inhibitors targeting this site [38]. Nevertheless, due to
their pharmacological potential as protein targets in diverse diseases, much evidence has been recently
accumulated regarding the molecular characteristics underlying the interactions between different
compounds and K2P channels [39].

In the current work, we proposed a protocol that includes pharmacophore-based virtual screening,
docking-based high throughput virtual screening, re-docking to refine poses, and binding free energy
calculations to find new inhibitors for TASK-3 channels. The success in the finding of hit compounds
(DR1 to DR19) indicates that our assumptions in the ‘e-Pharmacophore hypothesis in conjunction with
the binding in our four TASK-3 models’ (derived by using information of the known blockers) were
correct and useful for the identification of novel active compounds (e.g., DR16), whose activity can be
further optimized (e.g., DR16.1).

We also identified the putative residues involved in the binding site of the studied compounds
and our results contain some residues of the previously identified A1899 [18,30,35] and PK-THPP
(compound 23 in this study) [20,40] binding sites. DR16 and DR16.1 share 11 residues in their putative
binding site in TASK-3 channels and 63.6% of these residues belong to the binding site of A1899. Within
this 63.6%, three residues are also part of the PK-THPP binding site (Table S2). However, a mutagenesis
study is mandatory to confirm the binding site of these new drugs.

Since it is not possible to know a priori the preferred conformation for including TASK-3
modulators, both closed and opened states of the channel, in the different TASK-3 homology models
generated (Table 1, Figure S1A), were considered. Analysis of the different fenestration states in T3-trCO
(Figure S1B) shows how the hydrophobic interactions between Leu239 (TM4 segment) with Leu197
(TM2 segment) and Val115 (inner helix 1), as well as between Ile235 (TM4 segment) with Leu197 and
Val115, modulate the fenestration opening–closing mechanism. These interactions are in concordance
with the results presented by Brohawn et al. [14], where the residues Leu151, Leu236, Ile279, and Leu283
of TRAAK are implicated in the opening–closing mechanism of the TRAAK fenestration [41] (TASK-3
residues Val115, Leu197, Ile235, and Leu239 are equivalent to TRAAK residues Leu151, Leu236,
Ile279, and Leu283, respectively). As observed on previously reported structures of K2P channels,
TASK-3 fenestrations are cavities formed by hydrophobic residues [41–43], and the hydrophobic
regions of the ligands can be included in these cavities. In our report, ligands DR16 and DR16.1
establish hydrophobic interactions with Leu239 and Ile235 at the fenestrations. Also, DR16 interacts
hydrophobically with Val115 and through a hydrogen bond with Leu 197 (Figure 3D). With Leu197,
DR16.1 established hydrophobic interactions (Figure 4B). The mutagenesis study previously suggested
could reveal whether these new drugs interfere with the opening/closed mechanism at the fenestrations
of TASK channels in a similar way as bupivacaine could do it in TASK-1 [19].

The e-Pharmacophore model derived from the 12 blockers of Table 2 presents two hydrogen
bond acceptors (A1 and A2) and one aromatic ring (R) (Figure 1). These results are in concordance
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with those previously reported by our group [35] since the common pharmacophore identified for
TASK-1 and Kv1.5 blockers is similar to our model. However, it differs in the position of the aromatic
ring (Figure 6A,B). Also, A1 and R groups are contained in the shared seven-point pharmacophore
RRAHRHA of the 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine derivatives (Figure 6B,C). Comparing the
three pharmacophores, they will differ because they define the interaction patterns of three different
groups of bioactive molecules that interact with TASK channels: Those that interact simultaneously
with TASK-1 and KV1.5 channels (Figure 6A) [34], those that interact with high affinity with TASK-3
channels (Figure 6C) [20,24], and the pharmacophore reported and used here for TASK-3 blockers
with different affinities (Figure 6B). This comparison reflects that a pharmacophore is, definitely,
a quantitative measure of molecular similarity. However, some features must be shared between
these three groups of molecules, for example, the hydrogen bond acceptor groups that can establish
interactions with the threonines of the selectivity filter of TASK channels [20,30].
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After pharmacophore identification, e-Pharmacophore-based virtual screening (e-PBVS) was
performed to select which compounds of the ZINC database (>22 million) fitted the model requirements;
then, a docking-based HTVS following by a re-docking process with a more precise function and
binding free energy calculations (MM-GBSA) were done to finally obtain 19 ligands (DR1–DR19 in
Table 4 and Figure S4). These hits contain at least two rigid aromatic units connected by amide or ester
groups (except DR7), which act as linkers. They also have H-bond acceptor groups and hydrophobic
groups that could interact with the hydrophobic residues of the TASK-3 binding site. These common
chemical features between the obtained hits and the previously reported blockers allowed us to perform
the experimental evaluation of the identified compounds.

The experimental activity evaluation was performed using patch clamp. We obtained one lead
ligand from the 19 tested: DR16 (IC50 = 56.8 ± 3.9 µM); this compound binds TASK-3 with a 1000-fold
lower affinity with respect to the most active compounds of the THPP series (compound 23) [20,25],
the most active compound reported to date. However, its activity is in the same IC50 range with respect
to other reported blockers, such as dihyro-β-erythromidine, doxapram, GW2974, L-703,606, loratadine,
mevastatin, mibefradil, and octoclothepin (Table 2). Our results are in concordance with those reported
by several authors where novel modulators have been identified through virtual screening and/or
molecular docking simulations [25,44–51], with a successful result in the prediction of compounds with
the same biological activity range of the reported modulators used to construct the pharmacophore



Int. J. Mol. Sci. 2019, 20, 4014 14 of 22

model. Using DR16, we designed a derivative (DR16.1) converging the common pharmacophore
identified in TASK-3 blockers (Figure 1) and present in DR16 (Figure 2) as well. This novel inhibitor
has an IC50 = 14.17 ± 3.4 and 21.21 ± 5.5 µM against TASK-3 and TASK-1, respectively. Both inhibitors,
DR16 and DR16.1, presented ADME/tox (Administration, Distribution, Metabolism, Excretion and
Toxicity) properties in accepted ranges for druggability, which suggests that scaffold modifications of
these molecules can lead to drug-like compounds. Thus, these two compounds are part of the reduced
number of K2P channel modulators reported until today and they are novel scaffolds that could be
chemically optimized in the future to get more potent TASK modulators. DR16.1 activity is four times
better than DR16 activity. The putative binding site of DR16.1 (Figure 4B) exhibits 11 different residues
from the putative binding site of DR16. Within them, more than 50% are residues of the binding
site of high affinity compounds, A1899 and PK-THPP (Table S2). Another factor that could increase
the activity of DR16.1 in TASK-3 could be the hydrogen bond established with Thr198, which is not
present in DR16. Thr198 is at the S4 site of the selectivity filter and we observed recently that the
marked difference in the potency of compounds of THPP series (blocking TASK-3 in the nanomolar
range), with respect to some less potent compounds of the series (inhibiting TASK-3 channels in the
micromolar range), is due to the presence of a hydrogen bond interaction with a threonine of the
selectivity filter [20]. Hydrogen bond interactions with threonines of the selectivity filter are also
essential for A1899 binding in the TASK-1 channel [18].

The experimental activity also reveals that DR16.1 increased its activity four times in TASK-3 but
not in TASK-1 with respect to DR16. We hypothesize that this is due to the interactions that appear
in DR16.1 with residues of the binding site of high-affinity TASK-3 compounds, such as PK-THPP,
that are not present in DR16 (i.e., Gln126, Ala237, Table S2).

The results presented in this work allow us to conclude that interactions of the identified
compounds could be established in the TASK-3 inner cavity and the fenestrations. However,
a mutagenesis approach is certainly needed to discern the role of both cavities in the binding
sites. DR16 shows a binding similar to norfluoxetine and bupivacaine, which are located in the
fenestrations of TREK-2 [16] and TASK-1 [19], respectively. DR16.1 orientation is similar to THPP in
TASK-3 [20] or A1899 in TASK-1 [18].

4. Materials and Methods

4.1. TASK-3 Modeling

Since the structure of TASK-3 has not been solved, four homology models were developed using
the following crystal structures as templates: TRAAK (PDBs:4I9W and 3UM7), TREK-2 (PDB:4BW5),
and TWIK-1 (PDB:3UKM). These structures have differences in the fenestration states (they could be
open or closed); therefore, different TASK-3 models were used to study the interactions between the
lead ligands and TASK-3 with diverse fenestrations characteristics. The steps of the TASK-3 modeling
are represented in stage 1 of the general flowchart (Scheme 1). The TASK-3 homology models were built
and optimized using ICM software v3.8 [52]. A multiple alignment was used [5] to align the template
sequences with the TASK-3 sequence. The four models were named according to the template and the
fenestration state (Table 1). In this sense, the model names are: T3-treCC (TASK-3 built from TREK-2
in Close-Close fenestration state), T3-twiOO (TASK-3 built from TWIK-1 in Open-Open fenestration
state), T3-trCO (TASK-3 built from TRAAK in Close-Open fenestration state), and T3-trOO (TASK-3
built from TRAAK in Open-Open fenestration state).

Maestro v.9.2 software (Schrödinger, LLC, New York, NY, USA, 2011) was used to prepare the
systems, specifically for the addition of hydrogen atoms and for assignment of the bond order and partial
charges to the homology models. Then, they were embedded into a pre-equilibrated phosphatidyl
oleoyl phosphatidylcholine (POPC) bilayer in a periodic boundary condition box (15 × 15 × 15 Å3)
with pre-equilibrated single point charge (SPC) water molecules. Two K+ ions were associated to the
models at positions S2 and S4, and two water molecules at sites S1 and S3 of the selectivity filter. Finally,
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the systems were neutralized by adding K+ counter ions to balance the net charge of the systems
and KCl at a concentration of 0.096 M was added to simulate physiological conditions of the channel.
An excluded region for counter ions was set at 5 Å from the selectivity filter of the models.

The constructed models were subjected to molecular dynamics (MD) simulations to reduce
any close contacts resulting from the inclusion of new residues. All the MD calculations were
performed using the OPLS-AA force field [53] within the Desmond package v2.0 [54] contained in
the Maestro 9.2 suite. The simulation was set in 10 ns and an isothermal-isobaric ensemble, with the
temperature (300 K), pressure (1 atm) and number of atoms constant using the Nosé–Hoover method
with a relaxation time of 1 ps applying the MTK algorithm. The SHAKE algorithm [55] was employed
for every hydrogen atom and the cutoff for van der Waals forces was set at 9 Å and the long-range
electrostatic forces were modeled using the particle mesh Ewald method. A restriction was applied on
the backbone atoms of the protein and K+ ions in the selectivity filter with a spring constant of 0.5 kcal
× mol−1

× Å−2. Data were collected every 2 fs during the MDs. The stability of the models during
the MDs was validated by calculating the RMSD, and the quality (after MDs) was validated using
PROCHECK [28] and ProSA [29].

4.2. e-Pharmacophore Modeling

Twelve diverse TASK-3 modulators (Table 2) were taken for hypothesis generation using an
energy-optimized pharmacophore (e-Pharmacophore). e-Pharmacophore is an approach to generate
structure-based pharmacophores [56], which utilizes a scoring function to accurately characterize
protein–ligand interactions, resulting in improved database screening. The structures were sketched
and processed using LigPrep with the force field OPLS-2005 [57]; possible states of ionization at
pH 7.0 ± 2.0 were generated with Epik.

e-Pharmacophore and ligand mapping were generated from TASK-3 modulators selected for the
present study (Table 2) with the software Phase [58], using six pharmacophore features: Hydrogen
bond acceptor (A), hydrogen bond donor (D), hydrophobic group (H), negatively charged group (N),
positively charged group (P), and aromatic ring (R). The most active and least active ligands were
defined randomly by Phase to develop the e-Pharmacophore model. Stereochemical properties as the
isomerism were preserved according with the data reported in the literature (Table 2).

In the scoring hypotheses process, all common pharmacophores were examined. From the data set,
we chose as active ligands those that have an IC50 value under 70 µM (12f, 17e, 23, A1899, Doxapram,
GW2974, L-703,606, Loratadine, and Mibefradil); these ligands were aligned to the hypotheses and
Phase calculated the score for the actives. Keeping that in mind, the model was subjected to a scoring
and rescoring of the less active ligands (Dihydro-beta-erythrodine, Mevastatin, and Octoclothepin).
Then, several generated hypotheses were clustered, with the average linkage method [59] producing
clusters when the distance between them was the average distance between all pairs of objects in the
two clusters.

Finally, the e-Pharmacophore features were correlated with the most active TASK-3 modulator
(compound 23, Table 2), and a molecular docking using Glide software [60] was done in each TASK-3
model to localize the conserved e-Pharmacophore into the inner cavity and fenestrations, where blockers,
such as compounds 23 and A1899 (Table 2), interact with TASK-3 [40] and TASK-1 [18,30] respectively,
obtaining four complexes, corresponding to each TASK-3 model with the e-Pharmacophore (molecular
docking 1 process in Scheme 1).

4.3. Virtual Screening

The hypothesis generated in the e-Pharmacophore mapping step, docked into the last frame of
each TASK-3 model MDs, was used as a query for screening within the ZINCPharmer pharmacophore
software [33]. This software searches a database of conformations calculated from the purchasable
compounds of ZINC database [34]. In total, 215,407,196 conformations from 22,723,923 compounds
were subjected to an e-Pharmacophore-based virtual screening (e-PBVS) process using ZINCPharmer
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(molecular docking 2 process in Scheme 1). Hits were filtered by setting 1 as the maximum limit of
hits per conformation, 1 as a maximum hits per molecule, 1 as the number of varied orientations of
different conformations returned for each molecule, and the best 5000 hits were considered. The hits
were also filtered by setting 1 Å as the maximum RMSD to restrict the hits to those that have the best
overall geometric match to the e-Pharmacophore hypothesis [61]. The e-PBVS was performed for each
model (the four models described above), resulting in 5000 hits for each TASK-3 model, with a total of
20,000 hits derived from the e-PBVS.

The 5000 hits were re-screened by high-throughput virtual screening (HTVS) (molecular docking
3 process in Scheme 1) using the virtual screening workflow implemented in Maestro version 9.2.
All molecules were prepared using LigPrep. The pre-filtering process was done by Lipinski’s rules [37]
and the filtering process was done using QikProp [62] as described elsewhere [63,64]. The four
constructed TASK-3 models were employed as receptors of the docking steps. The grid box was center
in the inner cavity under the selectivity filter; the dimensions in each model were 35 × 35 × 35 Å3 to
cover the inner cavity and the fenestrations (Figure S13). The residues L122 and L239, identified as part
of compound 23’s binding site [40], were included in the grid. The HTVS was done with Glide [60]
using the HTVS scoring function to estimate protein–ligand interaction affinities. The results of the
HTVS were filtered according to the Glide score; post-docking minimization was done with OPLS-2005
force field to optimize the ligands’ geometries. A total of 2000 hits were obtained with this protocol,
500 hits for each TASK-3 model.

The 500 hits for each TASK-3 model (2000 hits in total) were then subjected to the re-docking
process (molecular docking 4 process in Scheme 1) with Glide XP (extra-precision algorithm) [60].
In total, 400 hits were obtained with the re-docking protocol, 100 hits for each TASK-3 model.

4.4. Binding Free Energy Calculations

The computational method of Molecular Mechanics-Generalized Born Surface Area (MM-GBSA),
which combines molecular mechanics energy and implicit solvation models [65], was employed using
Prime [53] after the re-docking process to rescore and analyze the 100 hits from the ZINC database
corresponding to each TASK-3 model. In MM-GBSA, the binding free energies between ligands and
receptors (TASK-3 models), used to generate the complexes, were calculated as:

∆Gbind = ∆H − T∆S ≈ ∆EMM + ∆Gsol − T∆S, (1)

∆EMM = ∆Einternal + ∆Eelectrostatic + ∆Evdw; ∆Gsol = ∆GPB/GB + ∆GSA, (2)

where ∆EMM, ∆Gsol, and −T∆S are the changes in the molecular mechanics energy, solvation-free
energy, and conformational entropy upon binding, respectively. ∆EMM includes ∆Einternal (bond,
angle and dihedral energies), electrostatic, and van der Waals energies. ∆Gsol is the sum of the
electrostatic solvation energy, ∆GPB/GB (polar contribution), and non-electrostatic solvation component,
∆GSA(non-polar contribution). The polar contribution was calculated by using the generalized born
model, while the non-polar energy was calculated by the solvent accessible surface area (SASA) [66,67].

The VSGB solvation model [68] and OPLS-2005 force field were employed to accomplish the
calculations. Residues located at 5 Å from the ligands were included in the flexible region, and all
other protein atoms were kept frozen.

4.5. ADME Prediction

The absorption, distribution, metabolism, and excretion (ADME) properties of DR16 and
DR16.1 were predicted by using the program QikProp [62,69]. With this software, some significant
physicochemical descriptors and pharmaceutical properties were also predicted. The program was
processed with the default parameters, and predicted 44 properties for each lead ligand, such as
the number of hydrogen bond (H-bond) donors and acceptors, molecular weight, and calculated
LogP (octanol/water), among others. The program also evaluated, with the calculated descriptors,
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the acceptability of the compounds based on Lipinski’s rule of five, which predicts that poor absorption
or permeation is more likely when the compound has more than 5 H-bond donors, more than 10 H-bond
acceptors, a molecular weight greater than 500 g/mol, and a calculated LogP greater than 5 [36].

4.6. Heterologous TASK-3 Expression and Electrophysiological Screening (Patch-Clamp)

HEK-293 cells were maintained in DMEM-F12 media supplemented with 10% FBS and 1%
penicillin/streptomycin. Transient transfections (1 µg plasmid) were done with a DNA ratio of 3:1
(plasmid encoding TASK-3 channel (GenBank accession NP_057685.1): Plasmid encoding for green
fluorescent protein as marker) using XfectTM polymer (Takara Bio Company, Kanagawa, Japan). Whole
cell recordings were performed at room temperature 24 h post-transfection using a PC-501A patch
clamp amplifier (Warner Instruments, LLC, Hamden, CT, USA) and borosilicate pipettes as described
elsewhere [70,71]. Recording pipettes were filled with an intracellular solution contained (in mM):
145 KCl, 5 EGTA, 2 MgCl2, 10 HEPES, adjusted to pH 7.4 with KOH. Recording solution containing
(in mM): 135 NaCl, 5 KCl, 1 MgCl2, 1 CaCl2, 10 HEPES, 10 Sucrose, adjusted to pH 7.4 with NaOH.
Ion channel currents were measured with a voltage protocol (400-ms steps from –100 mV to 100 mV
with an increment of 10 mV and a holding potential of –80 mV). The TASK-3 blockade was analyzed at
+80 mV test pulse.

The hit compounds identified from the ZINC database and selected for the experimental activity
evaluations were acquired from the following suppliers: AKos Consulting & Solutions Deutschland
GmbH (Steinen, Germany), Ambinter c/o Greenpharma (Orléans, France), EnamineStore Ltd. (Kyiv,
Ukraine), and Vitas-M Limited (Hong Kong, China). All the compounds were prepared by directly
dissolving them in external bath solution (recording solution) to obtain the desired final concentrations.

4.7. Chemical Characterization of New TASK-3 Blockers

The new molecules designed in this work were characterized by spectral data (IR, 1H, and 13C
NMR mono and two-dimensional, MS). 1H and 13C NMR spectra (400 MHz for 1H and 100 MHz for
13C) were recorded on an AM-400 spectrometer (Bruker, Rheinstetten, Germany), using DMSO-d6

as solvents. The chemical shift (δ) of solvent is reported at 2.5 for 1H-NMR and 40.09 for 13C-NMR,
δ and J values are reported in ppm and Hz, respectively. The signals are represented as follow: Singlet
(s), doublet (d), triplet (t), and multiplet (m). IR spectra (KBr pellets, 500–4000 cm−1) were obtained
from a NEXUS 670 FT-IR spectrometer (Thermo Nicolet, Madison, WI, USA). High-resolution mass
spectra (HRMS-ESI) were obtained from a Thermo Fisher Scientific Exactive Plus mass spectrometer.
The analysis was performed at a heater temperature of 50 ◦C, sheath gas flow of 5, sweep gas flow rate
of 0, and spray voltage of 3.0 kV in positive mode. The accurate mass measurements were performed
at a resolution of 140,000. Melting points (uncorrected) were determined on an Electrothermal IA9100
melting point apparatus (Stone, Staffs, UK).

5. Conclusions

The successful identification of new TASK-3 modulators through pharmacophore modeling,
virtual screening protocol, and rational design confirms the usefulness of the identified pharmacophore
hypothesis for the design of TASK-3 blockers. We found a simple pattern, which was combined with
models derived from X-ray crystallographic structures. It is known in the literature that homology
models are imprecise by definition; however, we found useful information from them because four
variants of models were considered. These variants considered relevant different conformations,
which were described well for K2P channels, which influence the size and electrostatic properties of the
studied biding sites. We believe that this consideration was essential for the success of our protocol.

An additional point is that our report proposes the binding mode of the studied compounds at
the fenestrations (DR16) and the inner cavity and the fenestration (DR16.1) of the channel. These are
relevant insights into the binding mode of new TASK-3 modulators that must be checked by site-directed
mutagenesis. Although the identified ligand DR16 and designed compound DR16.1 showed moderate
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potencies, the conserved pharmacophore and novel chemical characteristics of this chemical class
make them good candidates for future development into highly potent TASK-3 modulators through
medicinal chemistry optimization.

Supplementary Materials: Supplementary materials that includes Tables S1 and S2 and Figures S1–S13 can be
found at http://www.mdpi.com/1422-0067/20/16/4014/s1.
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Abbreviations

A Hydrogen bond acceptor
ADME The absorption, distribution, metabolism, and excretions properties
D Hydrogen bond donor
e-Pharmacophore Energy-optimized pharmacophore model
e-PBVS e-Pharmacophore-based virtual screening
H Hydrophobic group
HTVS High-throughput virtual screening
K2P Two-pore domain potassium channel
MDs Molecular dynamics simulation(s)
MM/GBSA The molecular mechanics-generalized Born surface area method
N Negatively charged group
P Positively charged group
POPC Phosphatidyl oleoylphosphatidylcholine
R Aromatic ring
RMSD Root-mean-square deviation
SASA Solvent accessible surface area
SPC Single point charge water molecules

TASK
Tandem of pore domains in a weak inwardly rectifying K+ channel [TWIK]-related
acid-sensitive K+ channel

T3-treCC TASK-3 from TREK-1 in closed−closed fenestration state
T3-twiOO TASK-3 from TWIK in open-open fenestration state
T3-trCO TASK-3 from TRAAK in closed-open fenestration state
T3-trOO TASK-3 from TRAAK in open-open fenestration state
VS Virtual Screening
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