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Abstract

Dopamine neurons facilitate learning by calculating reward prediction error, or the difference 

between expected and actual reward. Despite two decades of research, it remains unclear how 

dopamine neurons make this calculation. Here we review studies that tackle this problem from a 

diverse set of approaches, from anatomy to electrophysiology to computational modeling and 

behavior. Several patterns emerge from this synthesis: that dopamine neurons themselves calculate 

reward prediction error, rather than inherit it passively from upstream regions; that they combine 

multiple separate and redundant inputs, which are themselves interconnected in a dense recurrent 

network; and that despite the complexity of inputs, the output from dopamine neurons is 

remarkably homogeneous and robust. The more we study this simple arithmetic computation, the 

knottier it appears to be, suggesting a daunting (but stimulating) path ahead for neuroscience more 

generally.

Introduction

The brain is a prediction-making machine. Is that bobbing circle in the distance a human 

face? Whose face is it? How quickly will she arrive? For every piece of sensory information, 

our brains use stored patterns to generate a series of predictions. For each of these 

predictions, an outcome is ultimately experienced. The difference between prediction and 

outcome is the prediction error, which is thought to be a fundamental way that the brain 

learns from experience. If the error is small, there is no need to learn. If the error is large, 

however, the prediction must be updated. In this way, the brain ensures more optimal 

predictions in the future.

Predictive coding—the idea that the brain generates hypotheses, which are then tested 

against sensory evidence—has been discussed in a multitude of contexts, from visual 

processing to motor learning, cerebellum to cortex, simple organisms like electric fish to 

complex human diseases like schizophrenia (Friston, 2012; Rao and Ballard, 1999). Here we 

discuss one type of prediction error—reward prediction error—and one circuit that encodes 

it: the dopamine circuit. Synthesizing classic and recent findings, we develop a model for 
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how dopamine neurons calculate reward prediction error and how this signal is broadcast to 

the rest of the brain.

Reward prediction error coding by dopamine neurons

Dopamine and reward prediction error: an introduction

The idea that reward prediction errors help guide learning emerged first in psychology, with 

seminal work by Bush, Mosteller, Kamin, Rescorla, and Wagner, among others (Bush and 

Mosteller, 1951; Kamin, 1969; Rescorla and Wagner, 1972). Exploiting intricate behavioral 

tasks, these pioneers discovered that simple repetition was not always enough for animals to 

form a durable association between stimuli and reward. To ensure learning, surprise (i.e., an 

outcome different than expected) was critical. Later, this concept was appropriated by 

computer scientists, who created prediction-error algorithms to optimize how a 

computerized agent explores an unknown environment (Sutton and Barto, 1998). Indeed, 

prediction errors continue to play a role in even the most advanced computational 

algorithms, such as the one that recently mastered the game of Go (Silver et al., 2016).

In the mid-1990s, these models of learning gained a neurobiological flare when Wolfram 

Schultz and colleagues demonstrated the remarkable similarity between dopamine neuron 

firing rates and the reward prediction error signal (Mirenowicz and Schultz, 1994; Montague 

et al., 1996; Schultz et al., 1997; Waelti et al., 2001). When monkeys receive unexpected 

reward, dopamine neurons fire a burst of action potentials. If the monkeys learn to expect 

reward, that same reward no longer triggers a dopamine response. Finally, if an expected 

reward is omitted, dopamine neurons pause their firing at the exact moment reward is 

expected (Hollerman et al., 1998). Together, these results suggest that dopamine neurons 

signal the difference between the reward an animal expects to receive and the reward it 

actually receives. When reward is greater than expected, dopamine neurons fire; when 

reward is the same as expected, there is no response; when reward is less than expected, 

activity is suppressed.

Over the past 20 years, numerous electrophysiological and electrochemical recordings have 

confirmed and elaborated these results, investigating the properties of dopamine prediction 

errors and how these signals might facilitate learning in the brain (Glimcher, 2011; Schultz, 

2013, 2016a). Activities consistent with reward prediction errors have been demonstrated in 

monkeys (Bayer and Glimcher, 2005; Enomoto et al., 2011), rats (Day et al., 2007; Flagel et 

al., 2011; Hart et al., 2014; Oleson et al., 2012; Roesch et al., 2007; Stuber et al., 2008) and 

humans (D’Ardenne et al., 2008), and appear to faithfully encode various features that 

determine reward value: probability (Fiorillo et al., 2003), magnitude (Bayer and Glimcher, 

2005; Bayer et al., 2007; Tobler et al., 2005), timing (Fiorillo et al., 2008; Hollerman et al., 

1998; Kobayashi and Schultz, 2008), and even subjective preference (Lak et al., 2014).

One limitation in the above electrophysiological studies is that the identification of 

dopamine neurons was based on indirect physiological properties such as wide spike 

waveforms (Grace and Bunney, 1983; Schultz, 1986; Ungless and Grace, 2012). These 

criteria are not always reliable (Lammel et al., 2008; Margolis et al., 2006). To circumvent 

these problems, Cohen et al. (2012) used optogenetics (Boyden et al., 2005; Lima et al., 
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2009) to definitively identify dopaminergic neurons while recording in the ventral tegmental 

area (VTA). The authors tagged dopamine neurons with the light-sensitive cation channel, 

channelrhodopsin-2 (ChR2). Then, at the beginning and end of each recording session, they 

delivered pulses of blue light through a fiber optic, directly into the region of VTA being 

recorded. Dopamine neurons identified using this approach showed reward-prediction error-

related activities, confirming previous studies (Cohen et al., 2012; Tian and Uchida, 2015) 

(Figure 1A, B). More recently, Stauffer et al. (2016) applied this technique in a non-human 

primate, opening the possibility to perform rigorous identifications in non-human primates.

Arithmetic of dopamine prediction errors

How do dopamine neurons calculate reward prediction error? Reinforcement learning 

models long assumed that dopamine neurons perform subtraction, i.e., reward prediction 

error = actual reward – expected reward. However, this arithmetic was never explicitly tested 

against alternative possibilities.

To explore the nature of the computation, it is helpful to think of dopamine neurons as if 

they were sensory neurons—but instead of encoding the decibels of a sound, for example, 

they encode the extent of prediction error. Sensory neurons transform external information 

into an internal variable: firing rate. If a neuron is tuned to a particular stimulus (e.g., sound), 

then the more intense the stimulus, the more that neuron will fire. Often a neuron responds 

minimally to low intensities, increases its response with a certain slope, and then saturates at 

an asymptotic level, resembling a sigmoid. This input-output function, however, is not fixed: 

the threshold, slope and saturation level are all modulated by the nature of sensory inputs 

and the context in which they are presented. These changes in response functions are 

examples of “neuronal arithmetic” and are thought to be essential for the brain to process 

behaviorally-relevant sensory information (Silver, 2010; Uchida et al., 2013). In particular, 

the fields of vision (Atallah et al., 2012; Lee et al., 2012; Williford and Maunsell, 2006; 

Wilson et al., 2012) and olfaction (Kato et al., 2013; Miyamichi et al., 2013; Olsen et al., 

2010; Papadopoulou et al., 2011) abound with examples of neuronal arithmetic, with a rich 

modeling (Ayaz and Chance, 2009; Holt and Koch, 1997; Murphy and Miller, 2003) and 

experimental (Cardin et al., 2008; Chance et al., 2002; Olsen et al., 2010; Shu et al., 2003) 

literature exploring the biophysical mechanisms that might underlie it. Until recently, this 

type of analysis was lacking in the dopamine field.

Although many models of reinforcement learning assumed subtraction, division is equally 

possible, and in fact much more commonly found in other systems in the brain (Silver, 

2010). To find out which computation dopamine neurons use, Eshel et al. (2015) recorded 

from optogenetically-identified dopamine neurons in the lateral VTA as mice performed a 

simple classical conditioning task. Mice received various sizes of water reward: sometimes 

these rewards were delivered unexpectedly, in the absence of any cue, and sometimes they 

were preceded by an odor cue. By using a number of different reward sizes, the authors 

inferred the full dose-response function for dopamine neurons, i.e., the number of spikes that 

dopamine neurons fired for various rewards (Figure 2A). They then compared this response 

function when reward was expected (because of a cue) or unexpected (Figure 2B). The 

authors found that expectation reduces the phasic reward responses of dopamine neurons in 
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a purely subtractive fashion (Figure 2C). No matter the size of reward, a given level of 

expectation caused a consistent decrease in dopamine responses. This is an unusual 

computation in the brain but one that is consistent with classic reinforcement learning 

models.

These analyses were done by averaging over all recorded dopamine neurons. As a 

population, then, dopamine neurons use simple subtraction. How do individual neurons 

make this computation? In a subsequent paper, Eshel et al. (2016) determined the full 

prediction error functions for each individual dopamine neuron in the lateral VTA, and 

assessed how these functions related to each other. They found remarkable homogeneity 

among neurons. Each dopamine neuron appeared to use the same function, just scaled up or 

down (Figure 2D). Thus, dopamine neurons provide an ideal broadcast signal: similar 

enough from neuron to neuron that downstream targets could decode the same information 

regardless of the subset of dopamine neurons that they contact. Such robust encoding had 

long been inferred (Fiorillo et al., 2013; Glimcher, 2011; Schultz, 2013), but the quantitative 

relationship between individual neurons had never been demonstrated.

Functions of dopamine prediction error signals

Dopamine has long been thought to be a key regulator of reward-based learning (Wise and 

Rompre, 1989). The above findings indicate that dopamine can drive learning through 

signaling prediction error. Recent experimental findings using newer techniques have 

reinforced this idea, although they by no means exclude other functions of dopamine (Wise, 

2004). With optogenetics, it became possible to manipulate dopamine neurons with the 

temporal and genetic precision required to probe their causal effect on learning. Using this 

technique, it has been shown that activation or inhibition of dopamine neurons is sufficient 

to reinforce a behavior positively (Tsai et al., 2009; Witten et al., 2011) or negatively (Danjo 

et al., 2014; Tan et al., 2012; van Zessen et al., 2012), respectively. Importantly, using the so-

called ‘blocking’ paradigm, Steinberg et al. (Steinberg et al., 2013) demonstrated that phasic 

increases in dopamine firing were sufficient for prediction-error-induced learning. 

Stimulating dopamine neurons at the time of an expected reward caused rats to learn an 

association with an otherwise ‘blocked’ cue, presumably through positive prediction errors. 

Conversely, Chang et al. (Chang et al., 2016) used the paradigm of Pavlovian over-

expectation to show that phasic decreases in dopamine responses were also sufficient to 

produce learning, this time through negative prediction errors. Together, these results 

demonstrate that dopamine prediction errors regulate learning in both positive and negative 

directions.

Complexities in the dopamine signal

So far we have seen evidence favoring a very simple story: dopamine neurons calculate 

prediction error by subtracting expected from actual reward, and then broadcast this signal 

accurately and consistently to target regions in the brain, promoting learning from trial and 

error. This simple story, however, belies very important complexities in the nature of this 

signal.
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The findings above on the homogeneity of dopamine prediction error functions fit with a 

classic literature showing that dopamine neurons have stereotyped electrophysiological 

properties (Grace and Bunney, 1983), electrically couple with each other (Vandecasteele et 

al., 2005), and coordinate their in vivo firing rates (Joshua et al., 2009; Kim et al., 2012; 

Morris et al., 2004; Schultz, 1998). However, it is now clear that dopamine neurons are not 

all the same (Bromberg-Martin et al., 2010; Volman et al., 2013). A host of recent studies 

have shown diversity in every aspect of dopamine neurons: from their physiology (Margolis 

et al., 2006; Neuhoff et al., 2002), to their connectivity (Lammel et al., 2008, 2012; Watabe-

Uchida et al., 2012), and even their genetic profiles (Blaess et al., 2011; Haber et al., 1995).

Importantly for this review, some dopamine neurons do not faithfully calculate prediction 

error in the first place. Instead, they increase their firing to both rewarding and aversive 

events (Fiorillo et al., 2013; Horvitz, 2000; Joshua et al., 2008; Lerner et al., 2015; 

Matsumoto and Hikosaka, 2009a). Rather than encoding the difference between actual and 

predicted outcome, these neurons might encode “motivational salience” or the absolute value 

of this difference (Matsumoto and Hikosaka, 2009a). Mostly found in more lateral regions of 

the midbrain, particularly the substantia nigra pars compacta (SNc) (presumably projecting 

to the dorsal striatum), these neurons may be important in marking behaviorally important 

stimuli rather than in updating value assignments (Matsumoto and Hikosaka, 2009a) (but see 

Fiorillo et al., 2013).

While the nature of these ‘non-canonical’ dopamine signals remains to be further 

characterized, a preponderance of evidence suggests that dopamine in the nucleus 

accumbens (Acb) encodes prediction error signals relatively faithfully in simple tasks 

(Flagel et al., 2011; Hart et al., 2014; Stuber et al., 2008; Wenzel et al., 2015). Roitman et al. 

(2008) reasoned that release of dopamine in Acb in response to aversive stimuli may be due 

to confounding factors such as the difference in sensory modality or intensity. To control for 

these differences, they used sucrose and quinine solutions for appetitive and aversive stimuli, 

respectively. They found that these stimuli caused opposite responses: sucrose increased and 

quinine decreased dopamine release in the Acb, suggesting that at least the majority of 

dopamine neurons projecting to the Acb are inhibited by aversive stimuli (Roitman et al., 

2008). Another study showed that Acb dopamine could be elevated when an animal 

successfully avoided an aversive event, suggesting that some of the excitation to aversive 

stimuli could be regarded as a “safety” signal (Oleson et al., 2012; Wenzel et al., 2015).

Another important factor to be considered is that dopamine neurons’ responses may depend 

on reward context (Kobayashi and Schultz, 2014). Previous studies that recorded from 

optogenetically-identified dopamine neurons typically found bi-phasic responses (short-

latency, transient excitation followed by inhibition) to airpuff or airpuff-predictive cues 

(Cohen et al., 2012; Tian and Uchida, 2015) (Figure 1A, B). A recent study, however, found 

that most dopamine neurons in the lateral VTA show pure inhibition to cues predicting 

aversive airpuffs in a certain task condition (Matsumoto et al., 2016). The difference is due 

to reward context: the short-latency, transient excitation appears in high reward contexts but 

disappears in low reward contexts (Figure 1C). Therefore, some of the excitatory responses 

to aversive events can be due to the effect of high-reward contexts, which are commonly 

used in recording experiments (Cohen et al., 2012; Tian and Uchida, 2015). Schultz recently 
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posited that there are two components of the phasic dopamine signal (Schultz, 2016b). An 

initial stage (the first ~200 ms) is unselective, detecting physical salience, rather than 

prediction error. Matsumoto et al. (2016), discussed above, showed that this initial response 

is more vulnerable to context-dependent modulations. Later on, from 200–400ms after 

stimulus onset, dopamine neurons show a more fine-grained prediction-error response 

(Schultz, 2016b), which could be obscured by the initial response in certain conditions such 

as in high reward contexts (Fiorillo, 2013; Matsumoto et al., 2016).

Besides prediction errors, some dopamine neurons also appear to encode movement-related 

information (Howe and Dombeck, 2016; Jin and Costa, 2010; Kim et al., 2015; Parker et al., 

2016). Howe and Dombeck (2016), for example, found that dopamine axons projecting to 

the dorsal striatum transiently elevate their activity around the onset of locomotor 

movements (Also see, Jin and Costa, 2010). Other studies found that dopamine activity can 

be modulated by direction of movement (Kim et al., 2015; Parker et al., 2016). Furthermore, 

more sustained or ramping dopamine signals have been found when the animal is engaged in 

certain task conditions (Hamid et al., 2016; Howe et al., 2013; Takahashi et al., 2011) (but 

see Gershman, 2014).

The physiology of dopamine signal appears more complex the more it is studied. As 

discussed above, there is certainly diversity of responses, pointing to the importance of 

characterizing dopamine responses with the firm knowledge of their neurochemical identity 

as well as their projection targets. At the same time, recent experiments have provided 

stronger evidence that RPE constitutes a core component of the dopamine signal. To 

understand the circuit mechanism, it is, therefore, helpful to return to the simplest version of 

RPE, and design experiments to understand how this simple arithmetic can be instantiated 

by a neural network. What are the inputs and how are they combined?

Computation of dopamine prediction errors

Models of the prediction error computation

As discussed above, the activity of dopamine neurons can be approximated by simple 

equations (Eshel et al., 2015; Schultz et al., 1997). Multiple theories have proposed how 

RPE could be computed in the brain (Brown et al., 1999; Hazy et al., 2010; Houk and Davis, 

1995; Joel et al., 2002; Kawato and Samejima, 2007; Schultz, 1998; Schultz et al., 1997; 

Stuber et al., 2008; Tan and Bullock, 2008; Vitay and Hamker, 2014). Although there are 

numerous differences between these models, most boil down to three components: regions 

that encode expectation, region that encode actual reward, and the subtraction of these inputs 

at a common downstream target, usually dopamine neurons themselves. This system nicely 

explains how dopamine neurons respond to unexpected or expected reward. However, 

important mysteries remain, including how dopamine neurons become excited by reward-

predicting cues or inhibited by omission of expected reward. How is reward information 

transferred from the reward itself to earlier stimuli? And how does the system learn the 

precise timing of reward?

To answer these questions, the temporal difference (TD) learning model posits that the cue 

and omission responses both emerge from the same inputs (Figure 3A) (Houk and Davis, 
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1995; Kawato and Samejima, 2007; Morita et al., 2013; Schultz et al., 1997; Sutton and 

Barto, 1998). In the simplest version, there are two sustained expectation signals, both of 

which rise at the cue predicting reward and fall at the time of reward itself. One of these 

signals [V(t)] is excitatory while the other [V(t+1)] is inhibitory. Importantly, the inhibitory 

signal is slightly temporally shifted, so that it begins and ends later than the excitatory 

signal. By summing these signals, dopamine neurons would show phasic excitation at 

reward predicting cues and inhibition at reward omission (Figure 3A). In other words, RPE 

is generated by taking the derivative of reward prediction.

TD models are successful in explaining many aspects of dopamine RPEs and provide a link 

between the dopamine reward circuit and machine learning mechanisms. However, this does 

not prove that RPEs are calculated exactly as the equation predicts. It remains unclear 

whether the precise time-shift between V(t) and V(t+1) is realistic or what neural substrates 

could underlie such signals. Thus, another group of models posits that there are multiple 

inputs that separately represent reward prediction at the CS and at the US (Figure 3B, C) 

(Brown et al., 1999; Contreras-Vidal and Schultz, 1999; Hazy et al., 2010; O’Reilly et al., 

2007; Tan and Bullock, 2008; Vitay and Hamker, 2014). One set of inputs excites dopamine 

neurons at the reward-predicting cue and another inhibits reward responses when reward is 

predicted. The latter system may also produce the dopamine dip when reward is omitted, or 

this could be accomplished by a third input. Using separate systems is advantageous in the 

sense that it provides flexibility to build complex features, such as independent learning 

rates or variable timing.

Finally, several authors have suggested that prediction error is not calculated by dopamine 

neurons at all, but rather in upstream areas such as the rostromedial tegmental nucleus 

(RMTg) (Jhou et al., 2009) or lateral habenula (lHb) (Hong et al., 2011; Matsumoto and 

Hikosaka, 2007, 2009b). The information is then relayed to dopamine neurons. In this view, 

the dopamine neurons are passive conveyers of information, rather than active comparators 

of actual and predicted reward.

Anatomy of dopamine inputs

To distinguish between these models and understand how dopamine RPE signals are 

generated, we start with anatomy. Which brain areas actually project to dopamine neurons? 

Using retrograde tracers, Zahm and colleagues (Geisler and Zahm, 2005; Geisler et al., 

2007) systematically examined projections to VTA and found extensive sources of inputs, 

particularly around the medial forebrain bundle. Importantly, the authors proposed that brain 

areas that project directly to VTA tend to also project indirectly to VTA. For example, there 

is a loop from PFC to nucleus accumbens (Acb) to ventral pallidum (VP) to lateral 

hypothalamus (LH) to VTA, suggesting an interconnected anatomical network for the 

regulation of dopamine neurons.

Although informative, conventional retrograde tracers cannot distinguish cell types of the 

target areas. Since the VTA consists of dopamine neurons, GABA neurons, and glutamate 

neurons, some of the areas that project to VTA may not in fact project to dopamine neurons. 

To overcome this barrier and label monosynaptic inputs to dopamine neurons specifically, 

Watabe-Uchida et al. (Watabe-Uchida et al., 2012) applied a modified rabies virus system 
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(Wickersham et al., 2007). Using this system, the authors comprehensively mapped inputs to 

dopamine neurons and found many brain areas that project directly to dopamine neurons 

(Figure 4A, B). Comparing inputs to dopamine neurons in VTA and SNc, the authors 

proposed that lateral orbitofrontal cortex (OFC) and LH are the major excitatory inputs to 

VTA, while sensorimotor cortex and subthalamic nucleus are the major excitatory inputs to 

SNc. On the other hand, the ventral and dorsal nuclei in the basal ganglia (the Acb and VP, 

versus the dorsal striatum, globus pallidus, entopeduncular nucleus and substantia nigra 

reticulata) provide the major inhibitory inputs to dopamine neurons in VTA and SNc, 

respectively.

The above study mapped inputs to dopamine neurons in VTA and SNc regardless of where 

those dopamine neurons project. However, it is well known that dopamine neurons within a 

given region may project to a diverse array of targets. Thus, the previous study might have 

observed so many monosynaptic inputs because the dopamine neurons were themselves 

diverse. Recent studies tackled this problem by mapping monosynaptic inputs to 

subpopulations of dopamine neurons that project to specific brain areas (Beier et al., 2015; 

Lerner et al., 2015; Menegas et al., 2015). These studies found that even when the projection 

targets of dopamine neurons were specified, there were still monosynaptic inputs from a 

large number of brain areas. Menegas et al (2015) found that, for 7 of the 8 examined 

subpopulations of dopamine neurons, monosynaptic inputs were largely overlapping. 

Unexpectedly, however, dopamine neurons that projected to the “tail” of the striatum (TS, 

the most posterior part of the striatum) received a different set of inputs, suggesting that the 

function of TS-projecting dopamine neurons might be different from most dopamine 

neurons. Assuming that most dopamine neurons encode RPE, the inputs specific to TS-

projecting dopamine neurons can be excluded from the list of inputs needed for RPE. The 

brain areas that remain—those that appear to provide major inputs to RPE-encoding 

dopamine neurons—are the LH, the ventral and dorsal striatum, the lateral preoptic area, and 

the VP. With this structural information in hand, the next question is: what information does 

each area send to dopamine neurons?

Electrophysiology of inputs

Decades of recordings have provided important hints on candidate brain areas for RPE 

computations. For example, the lateral hypothalamus (LH) is known to encode reward 

information such as taste (Ono et al., 1986). Combined with the fact that responses to reward 

are modulated by internal states such as hunger (Burton et al., 1976), these results suggest 

that the LH may encode subjective values, which could be sent to dopamine neurons directly 

or indirectly. On the other hand, striatal neurons respond to reward-predicting cues, often 

showing sustained excitation (Hikosaka and Sakamoto, 1986; Schultz et al., 1993). Together 

with the fact that the overwhelming majority of striatal neurons are inhibitory, this response 

pattern makes the striatum a good candidate for providing the expectation signal. Because 

the striatum is the main projection target of dopamine neurons, reciprocal connections 

between the striatum and dopamine neurons would make learning straightforward: the 

striatum sends predicted value and dopamine neurons return prediction error. Further, direct 

and multi-synaptic pathways from the striatum to dopamine neurons imply several potential 

mechanisms to produce RPE.
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Although electrophysiology can be incredibly informative, there are important pitfalls in the 

interpretation of these results. First, although recording experiments can find interesting 

activity in a given brain area, other areas may have the same responses. Hence the need for 

the systematic study of many brain regions, ideally simultaneously. Second, neurons that 

seem to encode information relevant to the task at hand are often intermingled with neurons 

that show other types of activity. We seldom know which information is sent to a specific 

downstream brain target. Third, even if we know the projection target of the neurons, the 

target brain areas are themselves diverse, and it can be unclear to which specific type of 

neuron the information is going. In the case of reward prediction errors, the relevant question 

is which brain areas send information about actual and expected reward to dopamine 

neurons.

To directly answer this question, Tian et al. (2016) established an awake recording system 

that combined optogenetics with the modified rabies virus. While mice performed simple 

classical conditioning tasks, the authors recorded extracellular activity of monosynaptic 

inputs to dopamine neurons in 7 input areas: dorsal striatum (DS), nucleus accumbens 

(Acb), VP, LH, subthalamic nucleus, RMTg, and pedunculopontine tegmental nucleus 

(PPTg) (Figure 4C). Surprisingly, there were input neurons in all 7 recorded areas that 

encoded either actual reward or expectation. In fact, many single input neurons were 

modulated by both actual reward and expectation. Thus, information relevant to reward 

prediction error had already been combined—at least in part—in input neurons. Importantly, 

however, very few input neurons showed complete reward-prediction-error signals. Thus, 

dopamine neurons receive a spectrum of information, including pure reward, pure 

expectation, mixed reward and expectation, partial RPE, and in rare cases, complete RPE, all 

from multiple brain areas. This then gets funneled into a pure RPE signal in dopamine 

neurons. In other words, the brain seems to perform the RPE computation redundantly, in 

multiple layers.

At first glance, these results are puzzling. The brain appears to solve the problem in a very 

inefficient way. However, a simple model helps explain the findings. Tian et al. (2016) first 

created a linear model to reconstruct dopamine activity using the activity of input neurons 

from all 7 areas. They found that a weighted sum of inputs could easily reconstruct 

dopamine activity. Indeed, even if an entire brain area were removed from the analysis, the 

remaining inputs could still reconstruct dopamine RPEs. The same is true even if the 

weights for each input were totally shuffled: the resulting output sill captured aspects of RPE 

signals. On the other hand, if recordings from other neurons in these regions, which were not 

identified as inputs, were used for the model, the reconstructions became less accurate. 

These results suggest that the identity of the inputs is important, even if the precise weights 

between inputs and dopamine neurons are not. Thus, far from inefficient, the presence of 

mixed information appears to be a convenient, robust, and ready-to-use format for dopamine 

neurons to compute RPE.

One open question, then, is whether inputs to dopamine neurons are redundant or 

specialized. The data presented above suggests the former. Another open question is the 

importance of excitatory versus inhibitory projections to dopamine neurons. For this, Tian et 

al. (2016) identified input neurons that could discriminate conditioned stimuli based on 
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probability of reward, and whose responses were fast enough to account for the dopamine 

CS response. They found that all input neurons that met these criteria were excited by 

reward cues. Because dopamine neurons are also excited by reward cues, these results 

suggest that excitatory inputs (particularly in VP, LH, and PPTg) likely cause dopamine 

phasic responses to CS. In other words, disinhibition (i.e. inhibition of inhibitory inputs) 

appears to play a very limited role. In fact, this pattern held true for responses to aversive 

stimuli as well: most monosynaptic inputs to dopamine neurons were excited by aversive 

stimuli, implying that the suppression in dopamine neurons must be due to direct inhibition 

(e.g., from inhibitory neurons in Acb or RMTg), rather than reduced excitation.

The presence of both direct excitation and direct inhibition implies that a combination of 

inputs must determine the dopamine RPE response, rather than variations in a single type of 

input. Further evidence for this claim comes from analyzing both the time-course and 

amplitude of dopamine responses. Matsumoto et al. (2016) showed that dopamine excitation 

to reward-predicting cues occurs faster than inhibition to aversion-predicting cues, implying 

different inputs for each process. In addition, as mentioned above, Eshel et al. (2016) found 

that response functions to reward were remarkably uniform from neuron to neuron. It turns 

out that response functions to aversive stimuli are similarly uniform (Matsumoto et al., 

2016). However, responses to reward are not correlated with responses to aversive stimuli 

(Matsumoto et al., 2016). Furthermore, habenula lesions showed that the dopamine dip 

during reward omission disproportionately depends on the function of the lateral habenula 

(lHb), while the dip to aversive stimuli does not (Tian and Uchida, 2015). These findings 

suggest the presence of multiple separate inputs determining excitation and inhibition in 

dopamine neurons, raising the possibility that RPE computations consist of multiple 

mechanisms.

Local connections in VTA

Much of the anatomic and physiologic work discussed so far has focused on long-range 

projections to dopamine neurons. However, dopamine neurons in VTA are surrounded 

locally by GABA neurons and glutamate neurons, both of which send projections to their 

dopaminergic neighbors (Sesack and Grace, 2010). Because of the vicinity, local 

connections may have particularly strong effects on dopamine activity.

To dissect the different roles of neurons in VTA, Cohen et al. (2012) recorded from VTA 

while mice performed classical conditioning tasks. They found three types of activity: type 1 

resembled reward prediction error, with phasic activity to cues and rewards; type 2 

resembled reward expectation, with a ramping cue response proportional to expected reward; 

and type 3 was a mirror image of type 2, with downward-sloping activity dependent on the 

magnitude of expected reward. Using the optogenetic identification method described above, 

the authors showed that while identified dopamine neurons were all type 1 (reward 

prediction error), identified GABA neurons were type 2, signaling reward expectation 

(Figure 1A).

At this moment, it is not clear whether type 3 neurons are GABAergic or glutamatergic. Of 

note, RMTg neurons are located together with dopamine neurons at the boundary between 

VTA and RMTg. Because most neurons in RMTg are GABA neurons and both type 3 and 
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RMTg neurons show inhibition in response to reward cues (Hong et al., 2011; Jhou et al., 

2009), it is possible that they are actually one and the same. In this case, type 3 neurons 

would be GABA neurons. However, there are difference in activity between type 3 neurons 

and RMTg neurons. Whereas many VTA type 3 neurons show sustained inhibition to reward 

cues, and are not modulated by reward itself, most monosynaptic inputs from RMTg are 

modulated by both cues and rewards (Tian et al., 2016). Further classification—including 

experiments that tag glutamate neurons with ChR2—will be necessary to clarify the activity 

patterns of each cell type in VTA.

Functional studies: causality of inputs

Although many models assume that RPE is calculated in dopamine neurons, some have 

argued that dopamine neurons merely relay already-calculated RPEs. Neurons in the lateral 

habenula (lHb), for example, encode negative RPE (i.e., the mirror-image of dopamine 

RPE). It has therefore been proposed that they send RPE signals to dopamine neurons via 

GABAergic neurons in RMTg (Matsumoto and Hikosaka, 2007; Stephenson-Jones et al., 

2016). If the lHb-RMTg system is the source of dopamine RPE, lesioning Hb should deplete 

RPE signals in dopamine neurons. Tian et al. (2015) tested this theory by lesioning the 

habenula while recording from optogenetically-identified dopamine neurons in the VTA. 

After lesions, dopamine neurons maintained their responses to reward and reward-predicting 

cues. Thus, consistent with the anatomy study above, the lHb-RMTg cannot be the only 

source of RPE. However, dopamine neurons did lose their inhibitory responses to reward 

omission after the habenula lesion, suggesting that there may be a specific function of these 

inputs. Further supporting the specificity of these inputs, dopamine neurons did not lose 

their responses to all aversive events; they maintained their responses to air puffs. Thus, lHb 

appears to be important for determining dopamine neurons’ inhibition specifically to reward 

omission. In support of this idea, responses to reward omission were particularly vulnerable 

to changes in weights or input areas used in the linear combination of inputs discussed above 

(Tian et al., 2016). Perhaps the information important for reward omission arises in OFC 

(Feierstein et al., 2006) and then passes through the nucleus accumbens (Acb), 

entopeduncular nucleus (EP), lHb and RMTg before reaching dopamine neurons.

Beyond the dip to reward omission, one of the core features of RPE is that the response to 

reward is diminished when reward is expected. As discussed above, this reduction in reward 

response occurs through subtraction (Eshel et al., 2015). The obvious next question is: what 

inputs do dopamine neurons subtract? One possibility is VTA GABA neurons, which were 

shown to encode reward expectation (Figure 1A) (Cohen et al., 2012). Do dopamine neurons 

use this signal to calculate reward prediction error? Using optogenetics, Eshel et al. (2015) 

selectively excited or inhibited VTA GABA neurons while mice performed classical 

conditioning tasks, and determined the effect of this manipulation on putative dopamine 

responses. They found that stimulating VTA GABA neurons during the delay between the 

cue and the reward caused a subtraction of dopamine reward responses, mimicking the effect 

of reward expectation. Conversely, inhibiting VTA GABA neurons during this period 

increased dopamine responses to expected reward, as if reward were suddenly less expected. 

Finally, bilaterally stimulating VTA GABA neurons changed the animals’ behavior, causing 

them to reduce their responses to laser-paired cues. This behavior is consistent with GABA 
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stimulation causing an over-exuberant prediction signal, which then led to reduced 

dopamine responses when reward actually came. Together, these results imply that VTA 

GABA neurons help put the ‘prediction’ in ‘prediction error.’ Of course, they may not be the 

only important inputs for reward expectation. It is important to know that VTA GABA 

neurons elevate their activity as soon as the reward-predictive cue is presented while 

dopamine neurons’ baseline firing rates are not significantly inhibited (Figure 1A). This 

suggests that an intricate balance between GABA neuron activity and counteracting 

excitation, as proposed in TD models (Figure 3A), might underlie this process. Furthermore, 

Tian et al. (2016) demonstrated that other monosynaptic inputs have similar properties 

(Figure 4C). Although VTA GABA neurons’ proximity and the density of their projections 

to dopamine neurons may give them an outsized role in RPE calculations, the RPE 

computation likely depends on inputs from diverse areas.

It remains to be determined where reward expectation is calculated in the first place or what 

drives the activity of VTA GABA neurons. Previous studies have shown that many neurons 

in the OFC and nucleus accumbens (Acb) change their activity depending on reward 

expectation. Takahashi and colleagues tested the role of these areas in producing RPE 

signals in dopamine neurons. First, lesions of lateral and ventral OFC in rats reduced 

putative dopamine neurons’ ability to modulate their responses when the size or timing of 

reward was changed (Takahashi et al., 2011). Furthermore, Takahashi et al. (2016) found 

that after lesions of the Acb, putative dopamine neurons lost their ability to modulate their 

responses when the timing but not the size of reward was altered. These results suggest that 

OFC or Acb may play a role in the calculation of RPEs. However, these experiments 

depended on permanent lesions and used a learning paradigm to probe RPEs, making it 

difficult to dissociate whether altered RPE signaling was a direct effect of the lesion, or 

rather due to an impairment in the animal’s ability to learn. Furthermore, it was not possible 

to examine whether the recorded neurons were indeed dopamine neurons, let alone how the 

activity of VTA GABA neurons was altered by the lesions. Studying the pathway by which 

OFC and Acb modulate the activity of dopamine neurons may provide important insights 

into how neural circuits compute RPEs.

Progress and future directions

The idea that dopamine neurons signal RPEs has revolutionized the study of reward 

processing and decision-making in the brain. In particular, the fact that dopamine responses 

can be well approximated by simple arithmetic equations has prompted many researchers to 

propose simple models that combine different variables in a single step. However, as more 

sophisticated anatomic and electrophysiologic data have become available, a complicated 

picture has emerged for the circuit underlying prediction errors. It is now clear, for example, 

that many brain areas project directly to VTA dopamine neurons (Watabe-Uchida et al., 

2012). This is true not just for dopamine neurons as a whole but even for subsets of 

dopamine neurons defined by their projection targets (Beier et al., 2015; Lerner et al., 2015; 

Menegas et al., 2015). Moreover, there is striking interconnectivity between these input 

areas, more often resembling a recurrent neural network than a simple feedforward box-and-

arrow diagram (Geisler and Zahm, 2005). From the standpoint of electrophysiology, 

presynaptic neurons or input neurons from all of these input areas show a diverse set of 
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responses (Tian et al., 2016). In even the simplest task, it is a rare input neuron that exhibits 

a pure response to either reward or expectation. Rather, information relevant for RPE 

computations is mixed and distributed throughout multiple regions. With such complexity, 

can we ever understand how the brain computes RPE?

Fortunately, despite the complexity, patterns have begun to emerge. The data presented 

above strongly support the centrality of dopamine neurons in the RPE calculation. Rather 

than receiving RPE signals passively from upstream regions such as lHb, dopamine neurons 

appear to be performing computations on their input (Eshel et al., 2015). Although most 

models assume pure inputs onto dopamine neurons, our work has demonstrated 

monosynaptic inputs that span from pure (such as reward information from VP, LH, and 

PPTg), to decidedly mixed (Tian et al., 2016). Ultimately, dopamine neurons are capable of 

combining these inputs in such a way to produce a remarkably homogeneous prediction 

error signal, ideal to broadcast to a wide variety of downstream targets (Eshel et al., 2016).

In terms of the mechanisms behind these computations, phasic increases in dopamine 

responses appear to be triggered by direct excitation, rather than disinhibition. Likewise, 

phasic decreases in dopamine responses appear to emerge from direct inhibition, rather than 

reduced excitation (although reduced excitation in PPTg may enhance prediction-dependent 

suppression of dopamine reward responses; see Tian et al. 2016).

Furthermore, unlike the simplest TD models, it does not appear that the CS and US 

responses are due to the same inputs. Instead, dopamine neurons appear to be combining 

multiple separate inputs, with different signals crucial for cue responses, reward responses, 

reward omission, and aversion. Indeed, even the dip in dopamine responses when reward is 

omitted appears to be due to a different input than the reduced but still positive reward 

response that dopamine neurons exhibit when reward is expected (Eshel et al., 2015; Tian 

and Uchida, 2015). And when it comes to aversive events, the inhibition in dopamine 

neurons appears to arise from a slower set of inputs than excitation to reward (Matsumoto et 

al., 2016).

In terms of brain regions involved in this circuit, there appears to be significant redundancy. 

Neurons in multiple regions all provide dopamine neurons with information relevant for 

RPEs. Interestingly, the relative weights of these inputs can change dramatically without 

affecting the final dopamine response (Tian et al., 2016). However, the inputs are not random

—neurons that reside in input regions, but do not themselves project to dopamine neurons, 

cannot easily produce the dopamine RPE response (Tian et al., 2016). Based on a 

combination of anatomic and physiologic studies, key excitatory inputs include the lateral 

OFC, VP, lateral preoptic area and LH, while inhibitory inputs include VTA GABA neurons, 

the Acb, VP, and lateral preoptic area. Interestingly, VTA GABA neurons receive similar 

monosynaptic inputs as dopamine neurons (Beier et al., 2015). This sets up the possibility of 

feed-forward inhibition, allowing dopamine neurons to take derivatives, one of the major 

prediction of TD models.

Although studies have become increasingly specific, with analyses that target specific cell 

types and projection targets, most have focused on just one type of information flow: from 
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input areas to dopamine neurons. In the future, it will be crucial to analyze flow between 

input areas as well. For example, although excitatory inputs in multiple areas (VP, LH, and 

PPTg, to name a few) may trigger phasic responses to rewards and reward-predicting cues in 

dopamine neurons, VP may by the lynchpin, providing information not just to dopamine 

neurons but also to these other input regions. By hopping back through each node in the 

circuit, combining anatomy and physiology at every step, we may be fast approaching the 

solution to this mysterious and crucial circuit for computing RPEs.

The research discussed above has revealed the unprecedented complexity that underlies a 

seemingly simple arithmetic computation. This suggests some fundamental limitations that 

neuroscience faces more generally. First, the ultimate goal of neuroscience is to explain how 

neural circuits produce complex behavior. To this end, we often develop simple box-and-

arrow models in which information flows from area A to B to C. It has also become a 

common practice to artificially activate a population of neurons and infer functions based on 

changes in behavior. Although these approaches can be useful, they often ignore far more 

complex connectivity between these areas and far more diverse activity within each area. 

The brain is a dynamical system that consists of many diverse and interconnected neurons. It 

is vital to consider whether these simplified views help our understanding or unintentionally 

hide essential features of neural circuits.

Second, many of the studies described above relied on monitoring the activity of neurons by 

recording action potentials. Monitoring spikes together with a neuron’s cell type and 

connectivity has considerably enhanced our knowledge of neuronal function. Spikes are the 

main currency with which neurons communicate, and are therefore essential to 

understanding neuronal computations. However, spikes do not necessarily capture all the 

processes required for RPE computations. Importantly, RPE computations require 

comparing actual reward against what the animal expects. The latter requires memory about 

reward in a given context, and memory is likely be stored in synaptic weights or through 

intrinsic properties of neurons (Martin et al., 2000; Schultz et al., 1997). Spikes may not 

faithfully represent these memories because once a neuron fires a spike, the information 

propagates in neural circuits that affect other neurons’ as well as its own activity. At present, 

our ability to monitor synaptic weights or intrinsic properties of neurons in behaving animals 

is quite limited. It is possible that the memory that supports RPE computations is stored in a 

pure fashion. Developing techniques that allow for monitoring synaptic weights, together 

with other variables (spikes, cell types, and connectivity), will advance our understanding.

Third, the results discussed above reinforce the importance of developing theories about how 

neural circuits with complex connectivity can perform simple computations robustly and 

accurately. How is the information stored, and how does it propagate? Are there 

computational advantages to redundant or distributed computations, versus simple box-and-

arrow computations? As is the case in modern artificial neural networks (LeCun et al., 

2015), it is often difficult to infer even simple operating principles by looking solely at the 

component parts. A crucial step is to develop theoretical frameworks that link global, top-

down functions with how each component supports these functions. Only with such models 

can we hope to “understand” neural circuits, even one as seemingly basic as reward 

prediction errors.
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Figure 1. Firing patterns of identified dopamine and GABA neurons in VTA.
A. VTA neurons were recorded while mice performed an odor-outcome association task in 

which different odors predicted different outcomes (see legend on right). Odors were 

presented for 1 second and outcomes were presented after a 1-second delay. Neuron types 

were identified based on their optogenetic responses. Dopamine neurons (left, n = 26) 

showed phasic excitations to reward-predictive cues and reward. GABA neurons (right, n = 

20) showed sustained activation during the delay. Data from Cohen et al. (2012).

B. Reward expectation modulates dopamine neuron firing. Left, when outcome was 

presented; Right, when outcome was omitted. Different odors predicted reward with 

different probabilities. Higher reward probability increased cue responses but suppressed 

reward responses. Data from Tian and Uchida (2015). Also see Fiorillo et al. (2003) and 

Matsumoto and Hikosaka (2009).
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C. Reward context-dependent modulation of dopamine responses to air puff-predictive cues. 

The task conditions during recording differed only in the probability of reward. Dopamine 

neurons showed both excitation and inhibition in high-reward contexts (left) but only 

inhibition in low-reward contexts (right). The response in reward trials (black line) is 

omitted. Data from Matsumoto et al. (2016).
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Figure 2. Subtractive computation in dopamine neurons.
A. In one task condition (No odor, black), different amounts of reward were presented 

without any predictive cue. In another condition (Odor A, orange), the timing of reward was 

predicted by an odor.

B. Prediction. Division should change the slope of the curve, whereas subtraction should 

cause a downward shift.

C. Average response of 40 optogenetically-identified dopamine neurons. Prediction caused a 

subtractive shift. Data from Eshel et al. (2015).

D. Three example neurons. Although individual neurons exhibited diversity with respect to 

response magnitudes, their response functions were scaled versions of one another. Data 

from Eshel et al. (2016).
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Figure 3. Models of RPE computations.
A. Temporal difference (TD) error model as implemented in Schultz et al. (1997). The 

computation of TD errors, δ = r + V t + 1 − V t , can be seen as combining three inputs, one 

for each term. The traces show how each term changes as a function of time in a classical 

conditioning paradigm. The gray trace, V t + 1 − V t , can be seen as the temporal derivative 

of the value function, V t . The dopamine response during reward omission can be 

approximated by V t + 1 − V t  (gray). r: reward.

B, C. Alternative models assuming that reward-predictive cues and reward elicit phasic 

excitation. Reward expectation modulates dopamine reward responses either at the dopamine 

neuron itself (B) or upstream (C).
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Figure 4. Monosynaptic input to dopamine neurons.
A. Monosynaptic inputs to VTA and SNc dopamine neurons (blue and red, respectively). 

Inputs were labeled through transsynaptic retrograde tracing using rabies virus. Data from 

Watabe-Uchida et al. (2012).

B. Schematic summary of A. The thickness of each line indicates the extent of inputs from 

each area (% of total inputs).

C. Firing patterns of monosynaptic inputs in a classical conditioning paradigm. 

Monosynaptic inputs to dopamine neurons were labeled by channelrhodopsin-2 using rabies 

virus. Optogenetics were used to identify these inputs in 7 brain areas while mice performed 

a task. Data from Tian et al. (2016).
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LO: lateral orbitofrontal cortex; M1, primary motor cortex; M2, secondary motor cortex; S1, 

primary somatosensory cortex; Tu, olfactory tubercle; Acb, nucleus accumbens; DS, dorsal 

striatum; VP, ventral pallidum; EA, extended amygdala; BNST, bed nucleus of stria 

terminalis; IPAC, interstitial nucleus of the posterior limb of the anterior commissure; GP, 

globus pallidus (external segment of the globus pallidus); EP, entopeduncular nucleus 

(internal segment of the globus pallidus); MPA, medial preoptic area; LPO, lateral preoptic 

area; Pa, paraventricular hypothalamic nucleus; DB, diagonal band of Broca; Ce, central 

amygdala; LH, lateral hypothalamus; ZI, zona incerta; STh, subthalamic nucleus; PSTh, 

parasubthalamic nucleus; SC, superior colliculus; PPTg, pedunculopontine tegmental 

nucleus; LDTg, Laterodorsal tegmental nucleus; PAG, Periaqueductal gray; DR, dorsal 

raphe; mRt, Reticular formation; PB, parabrachial nucleus.

Watabe-Uchida et al. Page 27

Annu Rev Neurosci. Author manuscript; available in PMC 2019 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Reward prediction error coding by dopamine neurons
	Dopamine and reward prediction error: an introduction
	Arithmetic of dopamine prediction errors
	Functions of dopamine prediction error signals
	Complexities in the dopamine signal

	Computation of dopamine prediction errors
	Models of the prediction error computation
	Anatomy of dopamine inputs
	Electrophysiology of inputs
	Local connections in VTA
	Functional studies: causality of inputs

	Progress and future directions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

