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Abstract

Study Design—A rat puncture injury intervertebral disc (IVD) degeneration model with 

structural, biomechanical, and histological analyses.

Objective—To determine if males and females have distinct responses in the IVD after injury.

Summary of Background Data—Low back pain (LBP) and spinal impairments are more 

common in women than men. However, sex differences in IVD response to injury have been 

underexplored, particularly in animal models where sex differences can be measured without 

gender confounds.

Methods—Forty-eight male and female Sprague Dawley rats underwent sham, single annular 

puncture with tumor necrosis factor α (TNFα) injection (1x), or triple annular puncture with 

TNFα injection (3x) surgery. Six weeks after surgery, lumbar IVDs were assessed by radiologic 

IVD height, spinal motion segment biomechanical testing, histological degeneration grading, 

second harmonic generation (SHG) imaging, and immunofluorescence for fibronectin and α-

smooth muscle actin.

Results—Annular puncture injuries significantly increased degenerative grade and IVD height 

loss for males and females, but females had increased degeneration grade particularly in the 

annulus fibrosus (AF). Despite IVD height loss, biomechanical properties were largely unaffected 

by injury at six weeks. However, biomechanical measures sensitive to outer AF differed by sex 

after 3x injury--male IVDs had greater torsional stiffness, torque range, and viscoelastic creep 

responses. SHG intensity of outer AF was reduced after injury only in female IVDs, suggesting 

sex differences in collagen remodeling. Both males and females exhibited decreased cellularity 

and increased fibronectin expression at injury sites.

Conclusions—IVD injury results in distinct degeneration and functional healing responses 

between males and females. The subtle sex differences identified in this animal model suggest 

differences in response to IVD injury that might explain some of the variance observed in human 
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LBP, and demonstrate the need to better understand differences in male and female IVD 

degeneration patterns and pain pathogenesis.

Level of Evidence—N/A
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Introduction

Low back pain (LBP) is the most prevalent musculoskeletal disease, and responsible for the 

most years lived with disability of any disease (1–3). 50–80% of the US population 

experiences LBP, and prevalence is increasing (4–6). However, LBP remains difficult to 

treat, as both surgical and non-surgical interventions produce inconsistent results (7, 8).

Chronic pain is more prevalent in women than men (9). Findings for LBP specifically are 

more mixed, but many studies find greater prevalence (10) and severity (11) of LBP in 

women. While pain differences are sometimes attributed to cultural/gender differences, such 

as who is more likely to work a manual labor job or who is more likely to visit a physician 

for a pain complaint, rather than biological/sex differences, animal studies have 

demonstrated clear nervous system sex differences in chronic pain (12–16). These animal 

study findings have no gender confound, for animals do not have a gender. Therefore, 

differences between men and women in LBP cannot be contributed exclusively to gender/

cultural effects, warranting investigation of sex differences in LBP animal models.

IVD degeneration is strongly associated with LBP, although pain origin is often 

multifactorial (17–21). Due to its significant role in LBP, in vivo animal models of IVD 

degeneration have been developed across multiple species. Annular puncture injury models 

are widely used (22–26), and can assess sex differences in IVD degeneration without 

gender-related confounds.

In humans, spinal anatomy and biomechanical properties differ between males and females. 

Females have greater lordotic angle and lordotic wedging of lumbar vertebrae (27–30), and 

there are sex differences in spino-pelvic alignment (30–32). Biomechanically, female spines 

exhibit greater flexibility and range of motion (33, 34). Furthermore, IVD degeneration 

causes more biomechanical property changes in male IVDs (33), suggesting sex-specific 

IVD degeneration. Similar anatomical differences have not been well described in standard 

rodent models (Rattus norvegicus, Mus musculus), but sex differences in radiologic disc 

space narrowing and wedging that varied with animal age have been seen in the sand rat 

(Psammomys obesus)(35).

How males and females differ in response to IVD injury remains a critical question that is 

poorly understood and likely to inform more precise IVD degeneration treatments. Almost 

no previous work in animal models of IVD degeneration have compared males and females 

as separate cohorts. In this work, we apply a rat IVD degeneration model to male and female 

rats to determine if IVDs exhibit sex-specific injury responses. More specifically, we 
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determined the effects of sex and injury severity on the progression of IVD degeneration that 

was quantified using IVD height, degeneration grade, functional biomechanical properties, 

AF collagen structure, and fibrosis.

Material and Methods

Study Design

IVD degeneration was induced using a rat annular puncture model. A rat model was used 

because their IVDs are commonly used and known to have many similarities in structure and 

anatomy to human IVDs, it is a small animal model that is sufficiently large to produce 

precise surgical injuries, and rats are amenable to future pain behavioral testing (22, 25, 36, 

37).

Animals and surgical intervention

Procedures were approved by Icahn School of Medicine Institutional Animal Care and Use 

Committee. 48 skeletally-mature, 4-month old Sprague-Dawley rats were used (24 male, 24 

female) (Charles River Laboratory, Wilmington, MA). Rats were randomly divided into 

three groups: sham, single (1x), or triple puncture injury (3x). Anterior puncture with TNFα 
injection was used with full-depth/complete AF injuries since this was a previously validated 

to induce repeatable and severe IVD degeneration (25). Single and triple puncture injures 

were applied to induce varying degeneration levels. Procedures were performed under 2–3% 

isofluorane (Baxter, Deerfield, IL). Sham surgery was an anterior abdominal incision with 

exposure of L3/4, L4/5, and L5/6 IVDs (Figure 1A). 1x surgery used the same approach, but 

exposed IVDs were punctured with a 26G needle midline anteriorly, and injected with 2.5μL 

of 0.1 ng/μL tumor necrosis factor alpha (TNFα) (80045RNAE50; Sino Biological Inc., 

Beijing, China) (Figure 1B). 3x surgery had additional punctures left and right 

anterolaterally (Figure 1C). One animal died during surgery. Animals maintained Body 

Conditioning Score > 2. Rats were euthanized six weeks after surgery for tissue collection 

(Figure 1D).

Intervertebral disc height

IVD structural change was assessed via in vivo radiologic measurements of IVD height, 

which has been shown to be sensitive to IVD injury and associated with pain in humans (25, 

38). Rats received lateral X-rays at 55 kV for 10 seconds (UltraFocus Faxitron, Tucson, AZ) 

before surgery and at six weeks (Figure 2A). Vertebral borders were manually defined in Fiji 

(National Institutes of Health, Bethesda, MD), and IVD height calculated in MATLAB 

(MathWorks, Natick, MA) (25). Average IVD height for punctured IVDs were averaged for 

each time point (Figure 2A - box) and percentage change from baseline calculated.

Biomechanics

L5/6 motion segments (vertebra-IVD-vertebra) were used for biomechanical testing (Figure 

3A). Posterior elements were removed, and vertebrae potted in stainless steel cylindrical 

pots with cyanoacrylate.
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Axial biomechanics and creep

Axial biomechanics are reflective of physiological loading and were used to evaluate NP 

pressurization, AF tension, and IVD laxity. Creep is known to be sensitive to alterations in 

short and long-time viscoelastic behaviors. Axial and creep testing used an ElectroForce 

3200 instrument (TA Instruments, New Castle, DE). Samples were hydrated in PBS with 

protease inhibitor tablets (ThermoScientific, Rockford, IL). Motion segments underwent 20 

cycles ±8N of tension-compression at 1Hz followed by 60 minutes of compressive creep at 

−8N and 30 minutes of unloaded rehydration. Compressive stiffness, tensile stiffness, axial 

range of motion, and axial hysteresis were calculated from the 20th cycle in MATLAB 

(Figure 3B). Three independent reviewers manually calculated neutral zone (NZ) length and 

stiffness. Samples with undetectable NZ were excluded from NZ stiffness analysis. Creep 

was analyzed with MATLAB code measuring total displacement and applying a 5-parameter 

viscoelastic solid model to calculate elastic response (Se), fast response (τ1 and S1), and 

slow response (τ2 and S2) time constant and stiffness parameters, respectively (39) (Figure 

3C).

Torsional biomechanics

Torsional biomechanics were used to measure AF structural integrity, without the influence 

of NP changes. Torsional biomechanical testing used an AR2000ex rheometer (TA 

Instruments, New Castle, DE). Motion segments equilibrated for five minutes at −8N 

compression before 20 cycles ±10° at 1Hz. Torsional stiffness, torque range, torsional 

hysteresis, NZ length and NZ stiffness were calculated from the 20th cycle using MATLAB 

(Figure 3D). Four curves were excluded from analysis due to unloading curves suggestive of 

improperly secured pots.

Histology

L3/4 IVD midsagittal 5μm paraffin-embedded sections were used for histology.

Degeneration grading

Sections were stained with picrosirius red (collagen) and alcian blue (glycoaminoglycans) 

(PR/AB) and imaged at 20x on a Leica DMB6 microscope (Leica Microsystems, Wetzlar, 

Germany) under brightfield and stitched as a single image. Three blinded independent 

evaluators performed degeneration scoring, using a semi-quantitative scoring system grading 

annulus fibrosus (AF) integrity, nucleus pulposus (NP) cellularity, NP matrix quality, 

interruption of AF/NP border, and endplate irregularity, that is sensitive to degenerative 

changes after IVD puncture injury (40, 41).

Second-harmonic generation imaging

Second-harmonic generation (SHG) imaging was used to evaluate AF collagen organization. 

Sections were imaged using an Olympus FV1000MPE two photon microscope with 910nm 

excitation wavelength (Olympus Corporation, Tokyo, Japan). SHG signal was collected in 

the backward direction at 25x and photomultiplier tube at 440±20nm. Maximum intensity z-

projection was performed on mosaic images. Outer AF regions of interest were manually 

outlined in Fiji and background subtracted using 50 pixel rolling-ball radius. SHG pixel 
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intensity was defined by mean gray value. OrientationJ Fiji plug-in was used for collagen 

organization analysis. Contrast enhancement was applied to minimize confounds from SHG 

intensity differences, fibril orientation calculated with a 1 pixel gaussian window for 

gaussian gradient, and orientation plotted in a histogram.

Immunofluorescence

Immunofluorescence was used to assess fibrotic markers in the IVD after injury. Sections 

were fluorescently co-labeled for alpha smooth muscle actin (α-SMA), fibronectin, and 4′,

6-diamidino-2-phenylindole (DAPI) (Table 1 and see Data, Supplemental Digital Content 1, 

positive and negative controls). Fluorescent microscopy was performed at 10x using a Zeiss 

AxioImager.Z1 microscope with Apotome for optical sectioning (Zeiss, Thornwood, NY).

Statistical analysis

Statistical analysis used Prism (GraphPad, La Jolla, CA). Differences between groups were 

evaluated with 2-way ANOVA (injury severity & sex) with Tukey’s post-hoc test, 

significance as p<0.05.

Results

Annular puncture induced lumbar IVD structural change

A sex effect was observed in baseline IVD height, but sex differences were only significant 

at L3/4 and L2/3 IVDs (Figure 2B). IVD height was averaged over three levels and 

measured as a percent difference from pre-operative baseline to control for level and sex 

effects. 1x and 3x injuries were sufficient to significantly reduce average IVD height from 

baseline, while no significant change was observed in sham controls at six weeks and no sex 

effect observed (Figure 2C).

Sex, but not annular puncture, influenced lumbar IVD biomechanical properties

At six weeks, there were no significant changes in compressive stiffness across groups, 

suggesting no differences in NP pressurization (Figure 4A). Significant sex effects were seen 

on 2-way ANOVA for tensile stiffness and axial ROM, with male IVDs exhibiting greater 

stiffness and less axial ROM than female IVDs, but significant differences were not seen 

after post-hoc tests (Figure 4B–C). Axial hysteresis, axial NZ length, and axial NZ stiffness 

showed no differences between groups six weeks following injury (Figure 4D–F).

No significant differences were seen between groups for total displacement, τ1, τ2, or Se 

(Figure 5A–D). However, a significant interaction effect was observed for S1, which was 

significantly greater in male than female IVDs after 3x injury, but not after 1x or sham 

surgery (Figure 5E). A similar interaction effect was not observed for S2 (p = 0.0511) 

(Figure 5F).

At six weeks, torsional stiffness had a significant sex effect on 2-way ANOVA, and after 3x 

injury, male IVDs were significantly stiffer than female IVDs (Figure 6A). Torque range 

exhibited a similar pattern, with a significant sex effect (Figure 6B). However, 3x sex 

differences were not significant after post-hoc tests (p = 0.058) (Figure 6B). No differences 
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were observed for torsional hysteresis (Figure 6C). Torsional NZ had a significant sex effect 

on 2-way ANOVA, but a corresponding sex effect was not seen in torsional NZ stiffness 

(Figure 6D–E).

Annular puncture changed lumbar IVDs histologically

Structural histology showed disruption of annular fibers at six weeks for 1x and 3x, and a 

qualitative glycoaminoglycan reduction after 3x injury (Figure 7A). Total degeneration 

grade had sex and injury effects on 2-way ANOVA (Figure 7B). After post-hoc tests, 1x and 

3x had significantly greater degeneration grade compared to sham and no sex differences 

were seen (Figure 7B).

AF/NP border and NP matrix scoring showed an injury effect and 1x and 3x scored 

significantly higher than sham (Figure 7C–D). NP matrix was affected by injury and sex 

(Figure 7E). Scoring for AF quality had sex, injury, and interaction effects (Figure 7F). 

Female IVDs scored significantly higher after 1x and 3x injury than sham, and scored 

significantly higher than male IVDs for 1x (Figure 7F). Endplate scoring showed an injury 

effect, and female 1x and 3x scored significantly greater than sham, but only male 3x scored 

higher than sham (Figure 7G). Overall, scoring for individual degeneration criteria are 

consistent with total degeneration score, although sex effects are limited to AF and NP 

matrix scoring.

AF collagen microstructure was assessed using SHG signal intensity (Figure 8A). There was 

a significant injury effect on SHG intensity on 2-way ANOVA, however, after post-hoc tests, 

only female IVDs had significantly reduced SHG intensity from sham after both injuries 

(Figure 8B). Collagen organization contribution to SHG intensity was assessed by 

measuring collagen fibril orientations (Figure 8C). There were no injury or sex effects in 

either skewness or kurtosis of outer AF fibril orientation histograms, indicating that collagen 

disorganization was similar between groups (Figure 8D–E).

Immunofluorescence for fibrosis markers fibronectin and α-SMA and nuclear stain DAPI 

were qualitatively assessed. Sham IVDs had organized AF cells, but DAPI staining showed 

loss of cellularity in the needle tract after annular puncture (Figure 9). Fibronectin was 

minimally expressed in sham IVDs, but fibronectin increased in 1x and 3x, particularly 

within the needle tract (Figure 9). α-SMA expression was not seen in sham, 1x, or 3x AF 

(Figure 9). No sex differences in fibronectin or α-SMA expression were observed.

Discussion

This study investigated sex differences in IVD injury responses by applying 1x and 3x 

annular puncture with TNFα injection to three lumbar IVDs in a rat IVD degeneration 

model. We hypothesized there would be sex-specific responses to IVD injury since sex 

differences are seen in LBP (10, 11) and degeneration-related change in spinal biomechanics 

(33). This rodent model determined if sex differences existed within injured IVDs to 

distinguish sex effects from gender/culture effects. The most important finding of this study 

is that sex differences exist in IVD degeneration and healing response following injury. Most 

biomechanical changes were restored at six weeks, consistent with increased fibronectin in 
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the needle tract indicating fibrotic healing. Reduced SHG intensity after injury in outer AF 

in females IVDs, combined with larger torsional stiffness, torque range, and fast-response 

creep stiffness in male IVDs supports the concept that males heal with improved function 

and collagen quality.

Sex differences in outer AF ultimate tensile stress are seen in human IVD (42). Outer AF sex 

differences may also reflect distinct immune responses to injury, as this is likely a site for 

immune cell infiltration. Since AF integrity is strongly associated with LBP (43, 44), we 

infer that sex differences in IVD degeneration and healing responses are a potential source 

for increased pain prevalence in females. However, these biomechanical and structural 

changes were relatively mild compared to IVD height loss and degeneration.

IVD height loss and increased degeneration grade were similar for males and females after 

annular puncture, similar to prior studies that did not stratify by sex (25, 41, 45, 46). IVD 

height loss is a parameter shown to be strongly associated with IVD degeneration and LBP 

in human patients (47). LBP is multifactorial, involving spinal and neural components. Prior 

work has shown sex differences in LBP (10, 11) and in the neural “pain pathway” (12, 13, 

15, 16, 48). Since males and females had similar IVD height loss, we expect sex-specific 

interactions between spinal and nervous systems are also likely to play a role in increased 

LBP prevalence in females.

Biomechanical properties were restored six weeks after injury, as there were no significant 

differences in any axial, creep, or torsional biomechanical property between sham, 1x, and 

3x, suggesting possible collagen remodeling. Biomechanical restoration was surprising and 

contrasts many acute IVD injury studies (49–51). Large biomechanical changes are known 

to occur following ex vivo IVD injury and are dependent on puncture injury size (49, 51). 

Martin et al. showed that mouse caudal IVDs did not restore biomechanical properties 

several weeks after in vivo injury (50). We believe improved mechanical performance 

following injury in this study is due to differences between the loading environments of 

lumbar and caudal IVDs. Additionally, differences in species, anatomy (36), proximity to 

lymph nodes and other immune tissues (54) may also account for improved biomechanical 

properties in this study. However, ex vivo biomechanical testing of the IVD is not a perfect 

reflection of the in vivo condition, as adjacent structures have been removed, and testing 

sequence may influence biomechanical parameters (52, 53). Since IVD height loss and 

degeneration remained, we conclude that degeneration dominated any healing response.

Sex effects were seen in axial, creep, and torsional biomechanical parameters, and outer AF 

degeneration and structure following injury. These sex differences demonstrate that male and 

female IVDs cannot be used interchangeably in biomechanical studies. This is an important 

consideration in study design, yet we note that the majority of properties were similar across 

sex and these sex differences were smaller effect size than IVD injury effects.

Injury caused a significant reduction in SHG intensity in the outer AF only in female IVDs. 

SHG intensity is reflective of collagen organization (55), collagen density (56), fibril 

diameter (57), and molecular damage (58). Collagen organization, measured by fibril 

orientation, did not differ across sex or injury groups, suggesting the reduced SHG intensity 
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in females is likely not due to disorganized collagen fibrils. The lack of difference in SHG 

intensity after injury in the males may have been due to an increase in collagen density or 

fibril diameter, further suggestive of increased fibrotic healing. Greater fibrosis in males has 

been found across other tissues, including liver (59, 60), kidney (61), heart (62–64), and 

lungs (65–67), so a similar effect may occur within IVD. However, no sex differences in 

immunofluorescence for fibronectin and α-SMA were found. Fibronectin increased after 1x 

and 3x injury across sexes, indicating a fibrotic response to IVD degeneration (68–70) and 

suggesting active tissue remodeling (71). α-SMA expression did not differ across groups. 

Although α-SMA is classically considered a fibrosis marker (72, 73), it has been found to be 

an inconsistent marker of fibrogenic activity (74, 75). Taken together, SHG and 

immunofluorescence results support the concept that sex differences may be more from 

collagen density and quality than fibrillar organization.

Some limitations of this study warrant discussion. This study prioritized chronic changes in 

IVDs at a six week time point. Six weeks was sufficient to induce chronic, stable IVD 

degeneration in prior studies (25, 45), and long-term degeneration was a key investigation 

parameter. Future time course investigations, and mechanistic studies to determine if sex 

differences in biomechanical properties and collagen quality are hormonally mediated are 

warranted.

In conclusion, this work identified sex differences in IVD degeneration and healing 

responses after IVD injury that may be an important contributing factor to LBP. This work 

demonstrates the need to consider sex effects and including both males and females in 

preclinical studies of spinal pathology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Surgical approach for sham and 1x and 3x annular puncture surgeries.
(A) Sham procedure with lumbar IVD exposure. (B) 1x annular puncture surgery with 

TNFα injection. (C) 3x annular puncture surgery with three punctures and a single TNFα 
injection. (D) Study design timeline.
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Figure 2. Both 1x and 3x IVD injury reduced IVD height 6 weeks after injury, with no significant 
differences between male and female IVDs or between 1x and 3x injuries.
(A) IVD height was calculated from lateral X-rays of the L3/4, L4/5, and L5/6 IVD space 

(box). (B) Pre-operative comparisons between lumbar IVD levels by sex. Significant sex 

differences in IVD height were only observed at the L3/4 and L2/3 IVD. (C) The percentage 

change in the average IVD height across these three levels was significantly different from 

pre-operative baseline for 1x and 3x, but did not differ between males and females. (n=6–8, 

* p<0.05, *** p<0.001, **** p<0.0001 from baseline, p values for 2-way ANOVA effects 

shown below each graph).
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Figure 3. Biomechanical testing workflow and representative curves.
(A) Each IVD was subjected to an identical protocol of axial tension-compression, 

compressive creep, rehydration, and torsional rotation. “Minutes” is abbreviated as ‘ (single 

apostrophe). Representative curves from axial (B), creep (C), and torsional testing (D).
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Figure 4. Annular puncture did not effect axial biomechanical properties at six weeks after 
injury.
Neither compressive stiffness (A), tensile stiffness (B), axial range of motion (C), axial 

hysteresis (D), axial neutral zone length (E), nor axial neutral zone stiffness (F) differed 

between sham and either 1x or 3x, or between males and females (n= 6–8 panels A-E, n = 

4–6 panel F, p values for 2-way ANOVA effects shown below each graph).
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Figure 5. Annular puncture injury did not affect creep biomechanical properties at six weeks 
after injury, as measured with a 5 parameter viscoelastic solid model.
Neither total displacement (A), fast time constant (B), slow time constant (C), nor elastic 

response stiffness (D) differed between sham and either 1x or 3x, or between males and 

females. (E) A significant interaction effect was found for fast response stiffness (associated 

with IVD bulge), with male IVDs exhibiting a significantly greater fast response stiffness 

than female IVDs after 3x injury. (F) Unlike fast response stiffness, slow response stiffness 

(associated with fluid exudation) did not have a significant interaction effect (p = 0.0511) (n 

= 6–8, p values for 2-way ANOVA effects shown below each graph).
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Figure 6. IVDs exhibited sex differences in torsional biomechanical properties six weeks after 3x 
annular puncture injury.
(A) Torsional stiffness did not differ between sham, 1x, and 3x six weeks after injury, but 

torsional stiffness was significantly greater in male IVDs than female IVDs after 3x injury (p 

< 0.05). (B) Torque range exhibited a similar pattern to torsional stiffness, but the sex 

difference after 3x injury was not significant (p = 0.058). Neither torsional hysteresis (C), 

torsional neutral zone length (D), nor torsional neutral zone stiffness (E) differed between 

groups six weeks after annular puncture. (n = 5–8, p values for 2-way ANOVA effects 

shown below each graph).
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Figure 7. Both 1x and 3x annular puncture significantly increased degeneration grade in male 
and female IVDs compared to sham at six weeks after injury.
(A) Representative 5 um PR/AB stained paraffin sections. (B) Total degeneration score was 

significantly increased across both 1x and 3x, and did not differ between male and female 

IVDs or between 1x and 3x. Scoring for the integrity of the AF/NP border (C) and NP 

matrix (D) exhibited the same pattern as the total degeneration score. (E) NP cellularity 

scoring differed between sham and 3x injury in both male and female IVDs, but only female 

IVDs had a significantly increased NP cellularity score compared to sham after 1x injury. 

(F) Scoring for AF integrity was significantly greater in female IVDs after both 1x and 3x 
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injury compared to sham, but injured male IVDs did not significantly differ from sham. 

Female IVDs scored higher for AF integrity grading than males after 1x injury. (G) Scoring 

for endplate quality was significantly greater in female IVDs after both 1x and 3x injury 

compared to sham, but endplate quality scores in male IVDs only differed from sham after 

3x injury. (n = 5–8, p values for 2-way ANOVA effects shown below each graph).
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Figure 8. SHG signal intensity was reduced after injury only in female IVDs.
(A) Representative SHG images. (B) SHG signal mean intensity was reduced in both 1x and 

3x in female, but not male IVDs. (C) Representative images of fibril orientation distribution 

generated using Orientation J. (D) Skewness of fibril orientation histograms did not differ 

between groups. (E) Kurtosis of orientation histograms did not differ between groups (n=6–

8, * p < 0.05, p values for 2-way ANOVA effects shown below each graph).
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Figure 9. An increase in fibronectin and loss of cellularity was seen in the needle tract in both 
males and females after both 1x and 3x injury.
Cellularity was determined by DAPI nuclear staining (white). Fibronectin expression (green) 

was most pronounced in the needle tract (red outline). No change in alpha SMA expression 

(magenta) in the AF was seen with injury. AF is outlined in yellow to distinguish from 

vertebral bone and surrounding tissue.

Mosley et al. Page 22

Spine (Phila Pa 1976). Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mosley et al. Page 23

Table 1.

List of antibodies used for immunohistochemistry in Figure 9 and Supplemental Digital Content 1.

antibody vendor product number host species fluorophore dilution positive control

anti-α-SMA (1°) Abcam ab7817 mouse N/A 1:1000 ovary

anti-mouse (2°) Abcam ab150120 goat Alexa Fluor 594 1:250 ovary (paired with anti-α-SMA)

anti-fibronectin (1°) Abcam ab2413 rabbit N/A 1:50 kidney

anti-rabbit (2°) Abcam ab150081 goat Alexa Fluor 488 1:250 kidney (paired with anti-fibronectin)
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