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Abstract

Biomarkers are objective indicators used to assess normal or pathological processes, evaluate 

responses to treatment and predict outcomes. Many blood biomarkers already guide decision-

making in clinical practice. In stroke, the number of candidate biomarkers is constantly increasing. 

These biomarkers include proteins, ribonucleic acids, lipids or metabolites. Although biomarkers 

have the potential to improve the diagnosis and the management of patients with stroke, there is 

currently no marker that has demonstrated sufficient sensitivity, specificity, rapidity, precision, and 

cost-effectiveness to be used in the routine management of stroke, thus highlighting the need for 

additional work. A better standardization of clinical, laboratory and statistical procedures between 

centers is indispensable to optimize biomarker performance. This review focuses on blood 

biomarkers that have shown promise for translation into clinical practice and describes some 

newly reported markers that could add to routine stroke care. Avenues for the discovery of new 

stroke biomarkers and future research are discussed. The description of the biomarkers is 

organized according to their expected application in clinical practice: diagnosis, treatment 

decision, and outcome prediction.
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INTRODUCTION

Biomarkers are objective indicators used to assess normal or pathological processes, 

evaluate responses to medical interventions, and predict outcomes (Atkinson et al. 2001). 
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They can refer to molecules present in body fluids (blood, cerebrospinal fluids, urine) but 

also to physical measurements on tissues (e.g. imaging, electrophysiology). Molecular 

biomarkers include proteins, metabolites, lipids, and ribonucleic acids (RNA) (Table 1) 

(O.Y. Bang 2017; Jickling and Sharp 2011; Whiteley et al. 2012a). They can be used alone 

or in combination (panels, scores or indices) to improve their diagnostic accuracy or their 

capacity to estimate disease risk or clinical outcome (Jickling and Sharp 2015). Several 

blood biomarkers are used to aid clinical decisions. For example, high-sensitive cardiac 

troponin T guides the diagnosis of myocardial infarction (Twerenbold et al. 2017), D-dimers 

are informative for the diagnosis of pulmonary embolism (Crawford et al. 2016), plasma 

creatinine is used to assess and monitor kidney function, antibodies targeting acetylcholine 

receptors help to diagnose myasthenia gravis (Lalive 2011), B-type natriuretic peptide 

(BNP) is used to assess heart failure, and C-reactive protein levels reflect the response to 

antibiotic therapy in bacterial infection (Bruns et al. 2008).

There is currently no blood biomarker used for the diagnosis of stroke. This is in part 

because the characteristics required are challenging including high sensitivity and specificity 

in a heterogenous disorder and need for a very rapid turnaround. (Jickling and Sharp 2011; 

Katan and Elkind 2018; Makris et al. 2018). Several reviews have summarized biomarkers 

studied to date in stroke (Jickling and Sharp 2011, 2015; Katan and Elkind 2018; Makris et 

al. 2018; Whiteley et al. 2012a; Whiteley et al. 2009a; Whiteley et al. 2008; Whiteley et al. 

2012b; Glushakova et al. 2016; Ng et al. 2017; Foerch et al. 2009; Sharp and Jickling 2013; 

El Husseini and Laskowitz 2010; Simats et al. 2016; Li and Wang 2016; Kernagis and 

Laskowitz 2012). The current review does not intend to be an exhaustive description of 

stroke biomarkers. It is focused on blood biomarkers that show promise for translation into 

clinical practice and describe newly reported markers that could add to routine stroke care. 

Avenues for the discovery of new biomarkers and future research are discussed. The 

description of the biomarkers is organized according to their applications in clinical practice: 

diagnosis, treatment decisions, and outcome prediction. Abbreviations used are listed in Box 

1.

I. BIOMARKERS FOR STROKE DIAGNOSIS

Clinicians are often faced with diagnostic challenges in the diagnosis and management of 

stroke. A diagnostic test for stroke is needed not only to confidently identify stroke mimics 

that explain more than 40% of cases presenting with an acute neurological deficit (Briard et 

al. 2018), but also to aid in the distinction between hemorrhagic and ischemic stroke in 

circumstances where access to brain imaging is limited. Early identification of patients with 

acute ischemic stroke is important because revascularization therapies are time-sensitive, 

currently limited to 4.5 hours for intravenous thrombolysis (Hacke et al. 2008; Balami et al. 

2013), and up to 24 hours for endovascular thrombectomy (Nogueira et al. 2018)s. Another 

important challenge in stroke diagnosis is determining stroke etiology which remains 

cryptogenic in as many as one third of patients even after a comprehensive workup (Yaghi et 

al. 2017a; Saver 2016). Moreover, the pathophysiological processes involved in brain 

damage and repair in the context of human stroke remain poorly understood, limiting the 

design of adjunctive drug therapies to improve the recovery process. Several molecules are 

being evaluated as blood biomarkers for stroke diagnosis (Table 2).

KAMTCHUM-TATUENE and JICKLING Page 2

Neuromolecular Med. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1) Distinction between acute stroke, healthy controls and stroke mimics

Many blood proteins have the potential to distinguish stroke from disorders mimicking 

stroke or healthy controls, notably antibodies against the NR2A/NR2B subunits of the N-

Methyl-D-Aspartate (NMDA) receptor (Dambinova et al. 2003), neuron specific enolase – 

NSE (Wunderlich et al. 2006), heart-type fatty acid binding protein – HFABP 

(Zimmermann-Ivol et al. 2004), Parkinson disease protein 7 – PARK7, and nucleoside 

diphosphate kinase A – NDKA (Allard et al. 2005). However, none of these protein 

biomarkers has made it to the clinical setting because they either showed suboptimal 

sensitivity and specificity in studies with small sample size and were not independently 

validated or because the interpretation of their performance was limited by selection or 

classification biases (Whiteley et al. 2008). As an example, PARK 7 (or protein 

deglycase-1), a redox-sensitive molecular chaperone measured by enzyme-linked 

immunosorbent assay, was shown to discriminate stroke from controls with 85% sensitivity 

and 97% specificity in a multi-center retrospective observational study that included 622 

patients with stroke or transient ischemic attack and 165 controls. The diagnostic cut-off 

used was 1.55 μg/L (Allard et al. 2005). These promising results have not been robustly 

replicated to establish the benefit of measuring PARK7 in patients with suspected acute 

stroke in the emergency setting.

In a prospective study of 172 strokes and 133 controls, glycogen phosphorylase isoenzyme 

BB was found to discriminate stroke from controls with 93% sensitivity and specificity 

when measured within 12 hours of onset (cut-off of 7.0 ng/mL) (Park et al. 2018). Glycogen 

phosphorylase breaks down glycogen into glucose-1-phosphate to provide the needed 

metabolic energy. It is not specific for brain injuries as its plasma concentration also 

increases in acute coronary syndromes (Bozkurt et al. 2011) which were excluded using 

troponin T screening. Serum apolipoprotein A1 unique peptide (APOA1-UP) was also 

shown to discriminate acute ischemic stroke patients from controls with a sensitivity of 91% 

and a specificity of 97% in a sample of 94 ischemic strokes and 37 controls (Zhao et al. 

2016). Platelet basic protein identified by mass-spectrometry seems to adequately 

discriminate patients with transient ischemic attacks from healthy controls. The results 

obtained on a sample of 20 TIAs, 15 minor strokes and 12 controls (migraine, seizures) need 

to be confirmed on larger cohorts (George et al. 2015). Another study using mass-

spectrometry showed that a set of 30 proteins related to inflammation, coagulation, atrial 

fibrillation and neurovascular unit injury improved discrimination between strokes (n = 20) 

and controls (n = 20) compared to a model based on age alone (p < 0.001, cross-validated 

area under the ROC curve = 0.93 vs. 0.78) (Penn et al. 2018).

Researchers have also attempted to combine protein biomarkers into panels to improve their 

diagnostic properties. A panel of four biomarkers including serum calcium binding protein B 

– S100B (glial activation), von Willebrand Factor – vWF (thrombosis), Matrix 

Metalloproteinase 9 – MMP9, and vascular cell adhesion molecule – VCAM (inflammation) 

was shown to discriminate stroke from controls with 90% sensitivity and specificity (Lynch 

et al. 2004). In the STROKE-CHIP study (n = 1308), none of the 21 biomarkers tested 

showed sufficient accuracy to differentiate between real strokes and stroke mimics and 

between ischemic and hemorrhagic strokes in the hyperacute phase (Bustamante et al. 
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2017a). A logistic regression model including the patients’ demographics and cardiovascular 

risk factors outperformed the model including biomarkers only, for the differentiation 

between ischemic stroke and ICH. The 21-biomarker panel did not include glial-specific 

markers such as the glial fibrillary acid protein (GFAP) which is currently the most robust 

biomarker of ICH (discussed below).

Transcriptional changes induced by the interaction between white blood cells and various 

cellular (damaged brain cells, platelets, blood clot) and humoral factors (cytokines, 

hormones) before or immediately after a stroke could also provide a molecular signature of 

stroke (Sharp and Jickling 2013; Sharp et al. 2011). These transcriptional changes could be 

observed either at the level of messenger RNAs (mRNAs or coding RNAs) or at the level of 

non-coding RNAs. To date, only mRNAs, microRNAs (miRNAs), and long non-coding 

RNAs (lncRNAs) have been studied as potential diagnostic biomarkers for stroke. The first 

study of mRNA expression in acute stroke was conducted in rat models of ischemic stroke, 

intracerebral hemorrhage, status epilepticus, hypoxia and hypoglycemia. Whole genome 

microarray was used to assess mRNA expression in leukocytes isolated within 24 hours after 

the index event. The study demonstrated that many mRNAs are differentially expressed in 

the various conditions explored but an accurate distinction of each specific condition from 

the others could not be done using a single mRNA. The study of a gene expression profile (a 

group or panel of genes) was indispensable to fully characterize each type of brain injury 

(Tang et al. 2001).

Using an 18-gene panel, a subsequent human study confirmed that the assessment of mRNA 

expression profile in peripheral blood mononuclear cells (PBMC) isolated at various time 

points after ischemic stroke (3, 5 and 24 hours) could discriminate acute strokes (45 

samples) from controls (15 samples) with a sensitivity and a specificity greater than 85% 

(Tang et al. 2006). However, the genes differentially expressed in humans after an ischemic 

stroke were different from those reported in rats, meaning that only human studies are 

appropriate for subsequent transcriptomics studies of human stroke (Sharp and Jickling 

2013). Therefore, a larger validation study was performed including 70 stroke patients (199 

samples) and 107 controls (17 with acute myocardial infarction, 52 with various 

cardiovascular risk factors, 38 healthy individuals). The same 18-gene panel was used to 

explore mRNA expression in whole blood and had a sensitivity of 93.5% and a specificity of 

89.5% for stroke diagnosis (Stamova et al. 2010). In further clinical studies, differential 

mRNA expression also displayed 100% sensitivity and specificity for the discrimination of 

patients with transient ischemic attacks from controls with a similar profile of cardiovascular 

risk factors. The genes differentially expressed were associated with inflammation and 

platelet or prothrombin activation (Zhan et al. 2011; Jickling et al. 2012).

Considering that miRNAs have a direct influence on mRNA translation (Im and Kenny 

2012), it is expected that the modifications of mRNA expression observed in stroke patients 

would also be reflected at the level of miRNA expression. Indeed, it has been shown that 

miR-122, miR-148a, let-7i, miR-19a, miR-320d, and miR-4429 are decreased while 

miR-363 and miR-487b are increased in patients with acute stroke when compared to 

controls with a similar profile of cardiovascular risk factors (Jickling et al. 2014a). These 

miRNAs were predicted to regulate various aspects of the inflammatory and coagulation 

KAMTCHUM-TATUENE and JICKLING Page 4

Neuromolecular Med. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



responses in stroke. Changes in the miRNA machinery might even precede the modifications 

of mRNA expression. Further research is needed to refine our understanding of the role of 

miRNAs (both intracellular or extracellular) in stroke.

Long non-coding RNAs have also been explored as potential diagnostic biomarkers for 

stroke. Wang and collaborators have reported that the expression levels of the lncRNA Zinc 

Finger Antisense 1 (ZFAS1) had a sensitivity of 89.4% for discriminating patients with 

stroke due to large artery atherosclerosis from healthy subjects but with only 48% specificity 

(J. Wang et al. 2018). In an analysis of whole-blood RNA samples from 133 patients with 

ischemic stroke and 133 controls matched for vascular risk factors, 299 lncRNAs and 97 

lncRNAs were differentially expressed between stroke patients and controls in males and 

females, respectively. There was proximity between the differentially expressed lncRNAs 

and some putative stroke-risk loci, including lipoprotein, lipoprotein(a)-like 2, ABO 

(transferase A, α1-3-N-acetylgalactosaminyltransferase; transferase B, α1-3-

galactosyltransferase) blood group, prostaglandin 12 synthase, and α-adducins (Dykstra-

Aiello et al. 2016).

2) Distinction between ischemic stroke and intracerebral hemorrhage

Distinguishing ischemic from hemorrhagic stroke is important as it guides therapeutic 

decisions. Patients with ischemic stroke benefit from intravenous thrombolysis, which is 

contraindicated in hemorrhagic stroke. Currently, a plain CT scan of the head is used to 

identify hemorrhagic stroke. This requires patients to be transported to a CT-equipped 

hospital which can delay the treatment. Studies have explored the use of biomarkers to 

quickly rule out an intracerebral hemorrhage (ICH). Such biomarkers could be useful in 

remote regions where transport to nearest CT scanner could take hours.

Glial fibrillary acid protein (GFAP) is a leading candidate to identify hemorrhagic stroke. 

GFAP is a brain-specific intermediate filament protein maintaining astroglial cell structure 

(Eng et al. 2000). It is only found at very low concentrations in the plasma of healthy 

individuals because it is not actively secreted from cells (Missler et al. 1999). However, an 

immediate destruction of glial cells, as is the case in ICH, causes a release of great amounts 

of GFAP and other glial proteins in the bloodstream within minutes. Considering that 

necrotic cell death and cell lysis can be delayed in ischemic stroke, the difference in GFAP 

release kinetics between hemorrhagic and ischemic stroke creates a diagnostic window 

(Brunkhorst et al. 2010). In the BE FAST 1 and 2 trials, the sensitivity-specificity of GFAP 

to distinguish hemorrhagic and ischemic stroke was 84.2%-96.3% and 77.8%-94.2% at a 

threshold of 0.29 μg/mL and 0.03 μg/mL, respectively (Foerch et al. 2012; Luger et al. 

2017). The ability of GFAP to discriminate hemorrhagic from ischemic stroke has been 

confirmed by subsequent studies using different cut-points (Katsanos et al. 2017; Xiong et 

al. 2015) and in a meta-analysis (Perry et al. 2018). Unfortunately, its diagnostic 

performance varies from one cohort to the other and is influenced by the delay between 

symptom onset and sample collection, the nature of the specimen used (serum or plasma), 

the volume of the hematoma, the severity of the stroke, the measurement method, and 

eventually the ethnicity (Michal Rozanski and Audebert 2018). Also, when compared to CT 
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scan, the sensitivity of GFAP does not seem to be high enough for it to serve as a stand-

alone test to decide whether initiating intravenous thrombolysis is safe or not.

Further studies have not clearly improved the diagnostic performance of GFAP by 

combining it with various other biomarkers, notably retinol-binding protein 4 (RBP4) 

(Llombart et al. 2016), anti-NMDA (Stanca et al. 2015), and ubiquitin carboxyl-terminal 

hydroxylase-L1 (Ren et al. 2016). However, no study has investigated the combination with 

S100B, another glial-specific protein expressed by mammalian astrocytes that discriminates 

ischemic stroke from intracerebral hemorrhage with a sensitivity and specificity of 95.7% 

and 70.4%, respectively, at a cut-point of 67 pg/mL (Zhou et al. 2016). A panel combining 

glial-specific and neuron-specific biomarkers might be useful to investigate in the acute 

stroke setting.

In a study of mRNA expression in 99 whole-blood samples from patients with ischemic 

strokes (n = 33), ICH (n = 33) and vascular risk factors-matched controls (n = 33), a panel of 

107 differentially expressed transcripts related to T-cell receptors function could differentiate 

ICH from ischemic strokes and controls (Stamova et al. 2018). Further transcriptomic work 

is needed to better understand its potential as a biomarker to rapidly distinguish ischemic 

from hemorrhagic stroke.

3) Identification of stroke etiology

Stroke is a heterogenous disorder with multiple underlying etiologies. In hemorrhagic 

stroke, hypertension accounts for 50-70% of cases. Other etiologies include cerebral 

amyloid angiopathy, vascular malformations, brain neoplasm, and disorders of coagulation 

(Ariesen et al. 2003; de Oliveira Manoel et al. 2016). In ischemic stroke, etiologies include 

cardioembolism, large vessel atherosclerosis (LAA), small vessel disease, or other 

determined cause (e.g. dissection, mitochondrial disorder, genetic mutation) (Adams et al. 

1993). Often, no clear cause of stroke can be identified despite extensive investigation, 

resulting in over 30% of patients having unclear or cryptogenic cause of stroke. 

Furthermore, multiple potential etiologies can exist in the same patient leaving uncertainty 

as to the exact cause. This is highlighted by the causative stroke classification system. In 

lacunar stroke, clinicians rely on indirect features to ascribe etiology (eg. infarct size and 

location) without clear methods to image the underlying small vessel pathology. Biomarkers 

could potentially improve stroke etiology assignment (Table 3).

For cardioembolic stroke, natriuretic peptides have been studied. There are three types of 

natriuretic peptides: atrial natriuretic peptide (ANP) synthesized mainly in the heart atria, B-

type natriuretic peptide (BNP) synthesized mainly by the heart ventricles, and C-type 

natriuretic peptide (CNP) synthesized by the central nervous system and vascular tissues. 

ANP and BNP exist as pro-hormones that are cleaved into N-terminal inactive fragments 

(NT-proANP, NT-proBNP) and biologically active hormones (ANP, BNP) before the release 

into bloodstream (Steadman et al. 2010). The plasma concentration of the inactive fragments 

can be measured by immunoassays using antibodies targeting epitopes on their N-terminal 

end or their mid-region. The mid-regional epitopes are more stable to degradation by 

exoproteases than the N-terminal ones and may therefore allow a more precise estimation of 

the serum concentration of proANP or proBNP (Khan et al. 2008). In a prospective cohort 
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including 362 consecutively enrolled patients with ischemic stroke (36% cardioembolic), 

midregional-proANP (MR-proANP) had a sensitivity of 71% and a specificity of 60.3% for 

identifying cardioembolic stroke at a cut-point of 180 pg/mL (Katan et al. 2010). NT-

proBNP and D-dimers have also shown good performance for the identification of 

cardioembolic strokes (Llombart et al. 2015; Montaner et al. 2008) and the discrimination of 

patients that benefit the most from anticoagulation with warfarin as compared to aspirin 

(Longstreth et al. 2013). A systematic review found that NT-proBNP has a summary 

sensitivity of 55% and a summary specificity of 93% for distinguishing cardioembolic from 

non-cardioembolic strokes (Bai et al. 2018). These discriminative properties are currently 

used in the ARCADIA trial (Atrial cardiopathy and antithrombotic drugs in prevention after 

cryptogenic stroke – NCT03192215), a multicenter, biomarker-driven, randomized, double-

blinded, phase III trial comparing apixaban and aspirin in participants who have evidence of 

atrial cardiopathy and a recent stroke of unknown cause (Kamel et al. 2018). Other potential 

protein biomarkers of cardioembolic stroke include von Willebrand factor, tumor necrosis 

factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL1β). However, their 

diagnostic properties have not been described in detail (Tuttolomondo et al. 2009; Sato et al. 

2006).

Transcriptomics studies have also described biomarkers for the etiologic classification of 

stroke. By analyzing changes in mRNA expression in 76 patients with ischemic stroke (194 

samples), a 40-gene panel could discriminate cardioembolic from large vessel 

atherosclerotic stroke with more than 95% sensitivity and specificity within the first 24 

hours of stroke onset (Jickling et al. 2010). A separate 37-gene panel was able to distinguish 

atrial fibrillation from non-atrial fibrillation cardioembolic strokes with a sensitivity and a 

specificity both greater than 90%. A functional analysis of the genes highlighted differences 

in the inflammatory profile observed in the various stroke subtypes (Jickling et al. 2010). 

After defining the gene expression profile of lacunar strokes (Jickling et al. 2011), the 

profiles of mRNA expressed were applied to 131 cryptogenic strokes patients classified as 

having a small deep infarct/possibly lacunar (n = 32) or a non-small deep infarct/likely 

embolic (n = 99). A 41-gene panel predicted lacunar stroke in 15 of the 32 small deep 

infarcts. The 40-gene panel was then applied to the remaining 116 embolic strokes of 

undetermined significance/ESUS and predicted 76 to be cardioembolic, 24 to be LAA, and 

16 to remain of unclear etiology. These results suggest that up to 50% of patients diagnosed 

with cryptogenic stroke may have a cardioembolic source and a subset of patients in this 

group might benefit from anticoagulation. The NAVIGATE-ESUS trial showed no difference 

between aspirin and anticoagulation with rivaroxaban for the prevention of stroke recurrence 

in patients with an ESUS (Hart et al. 2018). Whether patients could be pre-selected by 

cardioembolic stroke biomarker before randomization remains unclear. Non-coding RNAs 

have also been associated with cardioembolic stroke. A set of 15 miRNAs were 

differentially expressed in 16 patients with cardioembolic stroke compared to controls 

(Modak et al. 2018).

Biomarkers of lacunar and LAA strokes have also been described. When compared to 

controls, stroke patients with LAA stroke have higher levels of C-reactive protein (CRP) 

(Suwanwela et al. 2006), fibrinogen (Alvarez-Perez et al. 2011), P-selectin or CD62P (Yip et 

al. 2006), adiponectin (O. Y. Bang et al. 2007), intercellular adhesion molecule 1 (ICAM-1) 
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(Mocco et al. 2001), and lipoprotein-associated phospholipase A2 (Delgado et al. 2012; 

Katan et al. 2014). ICAM-1 is also increased in symptomatic versus asymptomatic carotid 

plaques collected post-endarterectomy (DeGraba et al. 1998). ICAM-1 is not specific to 

large vessel atherosclerosis as it is increased in other stroke subtypes and other diseases 

(Hassan et al. 2003). Various other markers of endothelial dysfunction (homocysteine, 

vWF), coagulation/fibrinolysis (D-dimer, plasminogen activator inhibitor – PAI), and 

inflammation (CRP, IL-6, TNF-α) have also been associated with lacunar stroke (higher 

levels compared to non-stroke) (Wiseman et al. 2014).

Plasma levels of fibrillin-1 discriminate strokes due to carotid dissection (n = 99) from 

stroke of other causes (n = 115) and healthy controls (n = 20) with a 78% sensitivity and an 

80% specificity (Zhu et al. 2018). Thus, plasma fibrillin-1 could aid in the diagnosis of 

stroke due to dissection in situations where there is high level of clinical suspicion, but 

conventional neurovascular imaging is inconclusive or not affordable.

II. BIOMARKERS FOR ACUTE STROKE TREATMENT

Once the diagnosis of stroke is made, the appropriate treatment must be administered in a 

timely manner to ensure the greatest benefits for patients and to avoid complications. For 

ICH, treatment options include reversal of anticoagulation if required, control of blood 

pressure, treatment of increased intracranial pressure, respiratory support if required, and 

supportive care and monitoring to prevent complications such as infection, seizure, 

hyperglycemia and metabolic derangements (Poli et al. 2017; Anderson et al. 2017; Dastur 

and Yu 2017). In ischemic stroke, acute treatments include intravenous administration of 

tissue plasminogen activator (tPA or alteplase) and endovascular thrombectomy (EVT) 

(Rothwell 2018). Treatment algorithms are becoming complex with the need to consider 

various clinical, imaging and biological parameters, notably the time of symptom onset 

(Balami et al. 2013), the infarct size/volume in relation to that of the penumbra (Nogueira et 

al. 2018; Thomalla et al. 2018; Albers et al. 2018), and the risk of hemorrhagic 

transformation (Jickling et al. 2014b). Various biomarkers have been explored to refine the 

estimation of these parameters and deliver patient-specific treatment recommendations 

(Table 4).

1) Estimation of the time of stroke onset and the volume of the ischemic penumbra

In acute ischemic stroke, patient selection for endovascular therapy (EVT) utilizes advanced 

imaging to identify regions of salvageable brain (ischemic penumbra) in comparison to the 

size of permanently infarcted tissue (Albers et al. 2018; Nogueira et al. 2018; Thomalla et al. 

2018). Although perfusion and vascular imaging is important for the triage of acute stroke 

patients, it is not always readily available in all care centers. A biomarker could complement 

acute stroke imaging in the selection of patients for reperfusion therapy.

To date, there is no validated blood biomarker to estimate the time of stroke onset and find if 

a penumbra is still present in human acute ischemic stroke. Most attempts to define the 

molecular characteristics of the ischemic penumbra have been performed on animal brains 

(rodents and monkeys) and have reported increased levels of various proteins, cytokines and 

metabolites (lactate, glutamate, heat shock proteins such as HSP70, neuregulin, IL-1 and 

KAMTCHUM-TATUENE and JICKLING Page 8

Neuromolecular Med. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IL-6, TNF-α, hypoxia inducible factor-1/HIF-1, chemokine stromal-derived factor-1/SDF-1/

CXCL12, prostacyclin synthase/PGIS) or upregulation of early inducible genes (e.g. c-fos 

and c-jun) and anti-apoptotic genes (e.g. Bcl-2 and Bcl-xl) (Castellanos et al. 2006; Sharp et 

al. 2000). Only one study attempted to validate some of the reported protein biomarkers of 

ischemic penumbra in human stroke. In 226 adults with acute hemispheric ischemic stroke 

(median onset to enrolment time: 3.6 hours), including 61 with clinical-diffusion mismatch 

(CDM), serum interleukin-10 ≥ 23pg/mL and glutamate ≥ 130 μmol/L predicted CDM with 

a sensitivity of 96% and a specificity of 98%. Patients with CDM also had higher levels of 

IL-10, TNF-α and lower levels of NSE, IL-6, and active matrix metalloproteinase-9 

(MMP-9) (Rodriguez-Yanez et al. 2011). However, the authors did not comment on the 

performance of the biomarker for discriminating between different estimated sizes of 

penumbra (small, medium or large CDM defined by a combination of admission NIHSS and 

lesion volume on diffusion-weighted imaging). Such distinction is important because the 

cost-benefit and/or the risk-benefit ratios might sometimes be against the administration of 

recanalization therapy in patients with small CDMs. In the DEFUSE-3 trial evaluating the 

benefit of EVT performed 6 to 16 hours after stroke onset, patients were only enrolled if 

they had a penumbra to infarct volume ratio of 1.8 or greater, with a penumbra volume > 15 

mL and a core volume < 70 mL (Albers et al. 2018). Further studies are needed to refine the 

molecular characterization of the ischemic penumbra in human acute stroke as this could 

pave the way for the optimization of patients triage in the acute setting or the design of 

therapeutic intervention aimed at extending the therapeutic window by improving neuronal 

tolerance to ischemia.

2) Prediction of recanalization following intravenous thrombolysis

The rates of arterial recanalization within the first 2 hours following tPA administration are 

generally < 35% and depend on the location (proximal versus distal), length and 

composition of the thrombus (Thiebaut et al. 2018). In patients with proximal internal 

carotid artery, basilar artery or carotid T occlusions, the rate of recanalization could be as 

low as 4% (Bhatia et al. 2010). Patients with a thrombus longer than 8 mm or with a higher 

proportion of platelets also have lower rates of recanalization (Riedel et al. 2011; Denorme 

et al. 2016). Biomarkers to predict recanalization could inform the design of adjuvant 

therapies to improve the efficacy of tPA in areas where EVT is not readily available or when 

EVT is not indicated (distal clots with low NIHSS at presentation and high pretreatment 

modified Rankin scale - mRS) (Powers et al. 2018).

As an example, lower levels α2-antiplasmin, and thrombin-activatable fibrinolysis inhibitor 

(TAFI) have been associated with successful recanalization (Marti-Fabregas et al. 2005). A 

study of acute stroke in mice has demonstrated that the administration of a diabody targeting 

PAI-1 and TAFI improves the efficacy of tPA without increasing the risk of hemorrhagic 

transformation (Wyseure et al. 2015). Another TAFI inhibitor is currently being evaluated in 

a multicenter randomized double-blind placebo-controlled phase 1b/2 trial (NCT02586233) 

aiming to recruit 130 patients with acute stroke presenting beyond 4.5 hours of onset and 

therefore not eligible for tPA (Thiebaut et al. 2018). Plasma levels of plasminogen activator 

inhibitor 1 (PAI-1) > 34 ng/mL have also been shown to predict proximal middle cerebral 

artery (MCA) recanalization resistance with a sensitivity of 84.6% and a specificity of 70% 
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(Ribo et al. 2004a). These results could be explained by the inhibitory effect of PAI-1 on tPA 

that guided the design of tenecteplase (TNK). The latter is a genetically modified tPA with 

increased fibrin specificity and resistance to PAI-1. TNK has a longer half-life allowing a 

single bolus administration at a lower dose (0.25 mg/kg, maximum 25 mg) (Keyt et al. 

1994). In the EXTEND-IA TNK trial (NCT02388061), recanalization rates were twice as 

high in the group receiving TNK (22%, n = 101) than in the group receiving tPA (10%, n = 

101). The patients receiving tenecteplase also had better 90-days functional outcome with 

similar rates (1%) of hemorrhagic transformation (Campbell et al. 2018).

More recently, a study recruiting 108 tPA-treated acute ischemic stroke patients 

demonstrated that higher plasma levels of ADAMTS13 (A Disintegrin And 

Metalloproteinase with ThromboSpondin type-1 motif, member 13) were associated with 

successful recanalization assessed by the Thrombolysis In Brain Ischemia (TIBI) flow 

grading system using transcranial Doppler. A cut-off of 75% predicted recanalization 2 

hours after tPA treatment with 69% sensitivity and 55% specificity (Bustamante et al. 2018). 

The administration of ADAMTS13 has shown promise as a standalone therapy in mouse 

models of stroke related to arterial platelet-rich thrombi that are tPA-resistant (Denorme et 

al. 2016). Further studies should inform on the possibility to use this molecule alone or in 

combination with alteplase in human acute stroke.

3) Prediction of hemorrhagic transformation in ischemic stroke

Hemorrhagic transformation (HT) is a feared complication of reperfusion therapy. It occurs 

when blood extravasates into the brain parenchyma across a disrupted cerebral vessel. 

Depending on the severity and the type, HT is observed in 3-45% of patients with acute 

ischemic stroke (Balami et al. 2011; Jaillard et al. 1999). Cases of HT can be divided into 

asymptomatic versus symptomatic according to a set of clinical and imaging criteria. In the 

European Cooperative Acute Stroke Study, a symptomatic HT was defined by a neurological 

deterioration within the first 36 hours of stroke onset associated with a greater than 4 points 

increase of the NIHSS score (Yaghi et al. 2017b). The administration of tPA leads to a 10-

fold increase in the rate of symptomatic hemorrhagic transformation (Brott et al. 1997). 

Many factors and clinical scores to predict the risk of HT have been reported, including 

stroke severity, administration of tPA or antithrombotics, hyperglycemia, hypertension, and 

cerebral white matter disease (Jickling et al. 2014b).

Several protein and transcriptomics biomarkers to predict the occurrence of HT in ischemic 

stroke have been described. Plasma levels of MMP-9 ≥ 140 ng/mL, cellular fibronectin (c-

Fn) ≥3.6 μg/mL and serum levels of S100B ≥ 11.89 pg/mL, neuron specific enolase (NSE) ≥ 

24.05 μg /mL, and vascular endothelial growth factor < 177.43 pg/mL predict HT with a 

sensitivity-specificity of 87%-90% (Castellanos et al. 2003), 100%-96% (Castellanos et al. 

2004), 92%-48%, 24%-95%, 53%-82% (Kazmierski et al. 2012), respectively. When 

combining levels of PAI-1 < 21.4 ng/mL and TAFI > 180%, symptomatic HT was predicted 

with 75% sensitivity and 98% specificity (Ribo et al. 2004b). An mRNA expression panel 

comprising 6 genes (SMAD4, INPP5D, VEGI, AREG, MCFD2, and MARCH7) measured 

within 1.5 hour of stroke onset could identify patients that developed tPA-related HT at 24 

hours with 80% sensitivity and 70.2% specificity (Jickling et al. 2013).
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The biomarkers associated with risk of HT could inform the development of therapies to 

prevent HT despite the complexity of the underlying pathophysiology. For example, lower 

levels of PAI-1 are associated higher rates of recanalization (Ribo et al. 2004a) and higher 

rates of HT (Ribo et al. 2004b). This means that enhancing the activity of PAI-1 may 

decrease the risk of HT while reducing the effect of tPA if administered concurrently. 

Minocycline, an inhibitor of MMP-9, reduces rates of HT in animal stroke models and has 

shown similar effects in human stroke (MINOS trial) (Switzer et al. 2011; Jickling et al. 

2014b). Confirmatory data on the neuroprotective effects of minocycline are awaited from 

ongoing trials (e.g. NCT03320018). Finally, there are currently four major clinical trials 

aiming to determine the optimal time to start anticoagulation in patients with acute ischemic 

stroke: ELAN (NCT03148457; Switzerland), OPTIMAS (EudraCT, 2018-003859-38; UK), 

TIMING (NCT02961348; Sweden), and START (NCT03021928; USA) (Seiffge et al. 

2018). Whether a blood biomarker could help stratify risk of HT and guide timing of 

anticoagulation warrants study.

III. BIOMARKERS FOR STROKE PROGNOSIS

Predicting outcome is important to guide treatment and communicate with patients and their 

families regarding the expected effects of a stroke. Biomarkers offer the potential to predict 

prognosis in stroke, including patient response to treatment, development of complications, 

and long-term functional outcomes.

1) Prediction of early complications

Patients with acute stroke can suffer a wide range of complications in the hours following 

the onset of symptoms, including hemorrhagic transformation (discussed above), malignant 

cerebral edema, infarct growth with early neurological deterioration (END), and infection 

(e.g. pneumonia, urinary tract infection).

Approximately 10-20% of patients with complete large MCA infarcts develop a malignant 

cerebral edema (Balami et al. 2011). Decompressive hemicraniectomy (DHC), when 

performed early (< 48 hours), can reduce mortality by 50% (Vahedi et al. 2007; Powers et al. 

2018). Early treatment is associated with improved outcomes (Dasenbrock et al. 2017). 

Studies of biomarkers to aid in the selection of candidates for DHC are scarce and generally 

included a small number of participants. For instance, plasma levels of S100B > 1.03 μg/L 

predicted a malignant course of infarction in acute MCA occlusion with 94% sensitivity and 

83% specificity when measured 24 hours after stroke onset in a sample of 51 stroke (Foerch 

et al. 2004). Plasma levels of c-Fn > 16.6 μg/mL on admission also predicted the 

development of fatal malignant MCA infarction with 90% sensitivity and 100% specificity 

in a sample of 40 patients (Serena et al. 2005). These studies require replication.

An average of one-third of acute stroke patients experience an early neurological 

deterioration (END) which means a worsening of their neurological status within the first 72 

hours following symptom onset (Haapaniemi and Tatlisumak 2009). The causes of early 

neurological deterioration are variable, including infarct growth, recurrent stroke, and 

infection. Identifying biomarkers to predict END could help clinicians to refine patients’ 

selection for specific management. In a study of 197 patients with acute hemispheric 
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infarction (<12 hours), plasma glutamate > 200 μmol/L on admission was the most powerful 

and independent predictor of infarct growth on DWI (Castellanos et al. 2008). Glutamate 

release in the extracellular space in the context of ischemic stroke may cause infarct growth 

by activating the neuronal nitric oxide synthase pathway leading to the generation of toxic 

free radical and by inducing a spreading depolarization in the peri-infarct tissue thus 

increasing the metabolic demand in the context of reduced oxygen supply. This leads to the 

accumulation of lactate and free radicals causing protein denaturation, inflammation and 

ultimately cell death if the recovery machinery (heat shock proteins and neuregulin) fails to 

restore cell function (Castellanos et al. 2006). Inflammatory markers have also been 

associated with END, notably plasma ferritin > 275 ng/mL (sensitivity of 93% and 

specificity of 80%) in a study with 100 participants (Davalos et al. 2000), TNF-α >14 

pg/mL, ICAM-1 > 208 pg/mL (Castellanos et al. 2002).

Chest and urinary infections are the most common medical complications in stroke, 

occurring 13 – 45% of patients (Kumar et al. 2010). In a recent systematic review, 

standardized CRP at 24–48 hours was independently associated with infection (OR 

1.93-30.41 depending on the model) (Bustamante et al. 2017b).

2) Prediction of short and long-term outcome

Several biomarkers have been associated with short- and long-term clinical outcome after 

stroke (Table 5) but most of them have not improved the prediction capacities of clinical 

variables. Some of these biomarkers include neuroglial proteins such as S100B and HFABP 

(S. Y. Park et al. 2013a; S. Y. Park et al. 2013b); inflammatory markers such as IL-6, CRP, 

and TNF-α (Dieplinger et al. 2017; S. Y. Park et al. 2013a; Whiteley et al. 2012b); cardiac 

markers such as NT-proBNP and MR-proANP (Dieplinger et al. 2017; Katan et al. 2010; 

Whiteley et al. 2012b); and hemostatic markers such as fibrinogen and D-dimer 

(Haapaniemi and Tatlisumak 2009; S. Y. Park et al. 2013a). Copeptin, a neuroendocrine 

marker released by the hypothalamus in equimolar concentration with vasopressin, 

represents an exception since it could improve the prediction capacity of the NIHSS score 

for the 90-day functional outcome and the mortality (De Marchis et al. 2013; Katan et al. 

2009).

Leptin/adiponectin ratio > 1.16 on day 1 has been associated with good 90-day functional 

outcome (mRS: 0-2) in 35 patients with atherothrombotic acute ischemic stroke (Carbone et 

al. 2015). High serum levels of mannose-binding lectin (MBL), a component of the 

complement activation cascade, were associated with mortality and poor 90-day functional 

outcome in 220 patients with acute ischemic stroke (Zhang et al. 2015). In another cohort of 

220 patients with acute ischemic stroke, low levels of 25-hydroxyvitamin D (25-OHD) were 

associated with mortality and poor 90-day functional outcome (W. J. Tu et al. 2014). Other 

biomarkers of mortality and/or poor 90-day functional outcome in patients with acute 

ischemic stroke include high serum levels of progranulin, a multipotent growth factor (n = 

216) (Xie et al. 2016); YKL-40, a glycoprotein associated with acute and chronic 

inflammation (n = 141, large artery atherosclerotic stroke) (Chen et al. 2017); RBP4 (n = 

299, cut-point of 37.4 μg/mL, 50% sensitivity, 90% specificity) (Y. Y. Zhu et al. 2018); and 

neurofilament light, a neuronal scaffolding protein (n = 110) (Tiedt et al. 2018). High serum 
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levels of neurofilament light also correlated with infarct volume and recurrent ischemic 

lesions on MRI. High levels of glycated hemoglobin or HbA1c (n = 308) (H. Wang et al. 

2018) and low activity of ADAMTS13 have also been associated with mortality or poor 

functional outcome (Sonneveld et al. 2016). All these biomarkers improved the performance 

of the NIHSS and other traditional risk factor models for the prediction of poor functional 

outcome and mortality. Further studies are needed to validate these results and clarify their 

clinical implications.

Many protein biomarkers have been reported for outcome prediction in patients with ICH. 

For example, serum fibulin-5, an extracellular matrix protein, predicted mortality (cut-off 

80.7 μg/mL, sensitivity 78%, specificity 93%) and poor 90-day functional outcome (cut-off 

48.5 μg/mL, sensitivity 86%, specificity 54%) in a cohort of 68 patients with acute ICH. 

Serum levels of fibulin-5 were also associated with disease severity (positive correlation 

with the NIHSS and the hematoma volume, negative correlation with the Glasgow Coma 

Scale) (Hu et al. 2016). Another study of 1262 patients with ICH demonstrated that 

admission serum levels of calcium ≤ 2.41 mmol/L could predict a poor composite 90-day 

prognosis (death or major disability) with 89% sensitivity and 78% specificity (L. Tu et al. 

2018).

3) Risk stratification for secondary prevention

Stroke survivors are at increased risk for recurrent cerebrovascular events (Balami et al. 

2011). Biomarkers may help to stratify the risk of recurrent stroke, myocardial infarction 

and death in patients with TIA, ischemic stroke and intracerebral hemorrhage (Table 6).

Transient ischemic attacks—In patients with TIA, the risk of recurrence ranges from 

2-15% within the first 90 days (Giles and Rothwell 2007). Clinical scores such as the 

ABCD2 and ABCD3-I are used to predict the risk of stroke after TIA and identify high risk 

groups in need of urgent evaluation and therapy (Kelly et al. 2016; Knoflach et al. 2016). 

Biomarkers may offer the possibility to improve the accuracy of ABCD2 or ABCD3-I. For 

example, the neuroendocrine hormone copeptin improved the ABCD3-I capacity to predict 

stroke recurrence after TIA (De Marchis et al. 2014; Q. Xu et al. 2017; Katan et al. 2011). 

Lower plasma levels of lysophosphatidylcholine predict recurrent stroke in TIA and add to 

the predictive ability of the ABCD2 score (Jove et al. 2015). In the CHANCE trial, high 

levels of high-sensitive CRP (marker of inflammation) and soluble CD40L (marker of 

atherosclerotic plaque instability) were also identified as independent predictors of stroke 

recurrence (Li et al. 2016; Cabral et al. 2015). In the same trial, patients with increased 

levels of glycated albumin (GA > 15.5%, n = 1907) had similar rates of stroke recurrence 

whether they were in the aspirin group or in the aspirin plus clopidogrel group (Li et al. 

2015).

Large artery atherosclerotic stroke—Large artery atherosclerosis is responsible for 

approximately 15-25% of all ischemic strokes and encompasses cervical artery 

atherosclerosis affecting the anterior (carotid arteries) or the posterior circulation (vertebral 

arteries) and stroke due to intracranial atherosclerosis (Chaturvedi and Bhattacharya 2014; 

Hart et al. 2014). The risk is not the same in all these subcategories and depends on the 
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topography of the stenosis, its grade, and the characteristics of the atherosclerotic plaque 

(Paraskevas et al. 2018; Markus et al. 2017).

Several protein and RNA markers of carotid plaque instability or progression have been 

reported. In 173 adult patients with ischemic stroke, low serum levels of omentin-1, a 

protein regulating vascular inflammation, were associated with the presence of instability 

features on carotid plaques assessed by ultrasound (ulceration and/or hypoechogenicity) (T. 

Xu et al. 2018). In 70 acute ischemic stroke patients, serum levels of complement complex 

C5b-9 were associated with plaque instability, plaque burden, and degree of carotid stenosis 

(Si et al. 2018). High levels of ICAM-1, high-sensitivity CRP, and lipoprotein-associated 

phospholipase A2 (Lp-PLA2) have also been associated with progressive or symptomatic 

LAA (Delgado et al. 2012; Arenillas et al. 2008; DeGraba et al. 1998; Katan et al. 2014). 

However, the specificity of these markers for carotid atherosclerosis is uncertain as they may 

also reflect the inflammatory response to brain ischemia. In the STABILITY trial, an 

inhibitor of Lp-PLA2 (darapladib) did not reduce the risk of ischemic stroke (Stability 

Investigators et al. 2014), raising questions regarding the relationship of Lp-PLA2 to the risk 

of ischemic stroke. The trial was designed to demonstrate the incremental effect of 

darapladib for the prevention of cardiovascular events in patients already receiving optimal 

secondary prevention therapy, including statins in 96% and coronary revascularization in 

75% prior to randomization. Statins have been shown to reduce the levels of Lp-PLA2 by up 

to 35% (Ridker et al. 2012; White et al. 2013). Therefore, the events rate might have been 

lower than expected in both arms of the trial, thus limiting the probability to observe a 

significant effect of the adjunctive therapy.

MicroRNAs may also inform the risk of stroke in patients with carotid atherosclerosis. In 60 

patients with >50% asymptomatic carotid artery stenosis, increased plasma levels of 

miR-199b-3p, miR-27b-3p, miR-130a-3p, miR-221-3p, and miR-24-3p were associated with 

progression of carotid stenosis (Dolz et al. 2017). These miRNAs play roles in 

inflammation, angiogenesis, endothelial and smooth muscle cell proliferation, migration, 

and differentiation (Urbich et al. 2008; Feinberg and Moore 2016; Maitrias et al. 2017). In 

another study of 170 healthy participants, increased plasma levels of miR-29c was 

independently associated with subclinical atherosclerosis defined as carotid intima-media 

thickness ≥ 0.9 mm after adjusting for age, body mass index, systolic blood pressure, total 

cholesterol, fasting blood-glucose, and CRP. Expression levels of miR-29c and CRP levels 

were positively correlated (Huang et al. 2018). Carotid intima-media thickness is a well-

described and validated surrogate marker of atherosclerosis and a predictor of future 

cardiovascular events (Lorenz et al. 2007; Touboul et al. 2012). In a study of miRNA 

expression in 22 carotid plaques from patients undergoing carotid endarterectomy, higher 

levels of miR-200c were found in unstable carotid plaques (n = 12) defined according to 

findings on preoperative contrast-enhanced ultrasound and medical history (symptomatic or 

not, risk factors, treatment) (Magenta et al. 2018). Moreover, when analysing mRNA 

expression levels of selected biomarkers, miR-200c was positively correlated with 

biomarkers of plaque instability (MMP1, MMP9, IL-6, and monocyte chemoattractant 1 or 

MCP-1) and negatively correlated with biomarkers of plaque stability (zinc finger E-box 

binding homeobox 1 or ZEB1, endothelial nitric oxide NO synthase or eNOS, forkhead 
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boxO1 or FOXO1, and Sirtuin1 or SIRT1). Plasma levels of miR-200c decreased after 24 

hours post-endarterectomy but returned to preoperative levels at 1 month.

Other stroke subtypes—A plasma level of high-sensitive CRP > 4.86 mg/L was 

associated with stroke recurrence in the Levels of Inflammatory Markers in the Treatment of 

Stroke (LIMITS) trial (n = 1244) (Elkind et al. 2014). In the Northern Manhattan Study 

(NOMAS), high plasma procalcitonin was associated with an increased risk of lacunar 

stroke and high plasma MR-proANP was related to an increased risk of cardioembolic 

stroke (Katan et al. 2016). An increase in plasma levels of free fatty acids was associated 

with a higher risk of stroke recurrence in patients with cardioembolic stroke (n = 105) (Choi 

et al. 2014). Further studies are required to confirm these finding and clarify the mechanism 

by which free fatty acids increase the risk of stroke in patients with cardioembolism.

An analysis of data from 2176 participants of the Stroke Prevention by Aggressive 

Reduction of Cholesterol Levels (SPARCL) trial demonstrated that osteopontin, neopterin, 

and myeloperoxidase are were independently associated with the risk of recurrent stroke and 

improved the prediction capacity of the Stroke Prognostic Instrument II (area under the 

receiver operating characteristic curve increased by 0.023, P=0.015 and continuous net 

reclassification improvement of 29.1%, P<0.0001) (Ganz et al. 2017; Kernan et al. 2000). 

Finally, low ADAMTS13 activity was associated with a higher risk of first ever ischemic 

stroke of any type in 5941 individuals aged 55 years or older from the Rotterdam study 

(Sonneveld et al. 2015).

CONCLUSIONS

Efforts to overcome the limitations of expert clinical judgement and multimodal 

neuroimaging in stroke medicine have resulted in the identification of several blood 

biomarkers that could improve the diagnosis and the management of stroke patients. These 

biomarkers are mainly proteins, RNA, lipids, and metabolites involved in various aspects of 

stroke, including brain injury and repair. For the diagnosis of stroke, the best discrimination 

between stroke and mimics have been observed when markers are combined in panels. 

GFAP is a leading candidate for the distinction between ischemic and hemorrhagic strokes 

and might perform better if combined with selected brain-specific markers. Likewise, to 

determine stroke etiology, panels of markers may also achieve sufficient sensitivity and 

specificity to address the heterogeneity in human stroke. For stroke treatment, serum IL-10 

and glutamate may identify patients with clinical-diffusion mismatch, but further studies are 

needed to better define the blood biomarkers of ischemic penumbra. Several blood markers 

to predict HT have been described and future studies will clarify if they could inform the 

development of therapies to prevent HT or assist decision-making regarding the timing of 

anticoagulation after stroke. For stroke prognosis, plasma copeptin can add to age and 

NIHSS to predict functional outcome and to the ABCD2/ABCD3-I scores to predict stroke 

recurrence after TIA. Other markers of functional outcome include YKL-40, RBP4, and 

neurofilament light which require validation. Several RNA markers have been associated 

with atheroma plaque instability and further work is needed to determine if they could refine 

patient selection for carotid endarterectomy or stenting. The development of blood 

biomarkers to improve stroke diagnosis and management is ongoing. Additional results 
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regarding the role of biomarkers to aid in diagnosis, risk stratification, and treatment 

decisions are expected from several larger trials mentioned in this review.
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Box 1:

List of abbreviations used in the main text and tables

aHR = adjusted hazard ratio; aOR = adjusted odds ratio; ADAMTS13 = A Disintegrin 

And Metalloproteinase with Thrombospondin type-1 motif, member 13 ; ANP = atrial 

natriuretic peptide; APOA1-UP = apolipoprotein A1 unique peptide; BNP = B-type 

natriuretic peptide; CDM = clinical diffusion mismatch; c-Fn = cellular fibronectin; CRP 
= C-reactive protein; CT = computerized tomography; DHC = decompressive 

hemicraniectomy; END = early neurological deterioration; EVT = endovascular 

thrombectomy; FC = fold change; GFAP = glial fibrillary acid protein; HbA1c = 

glycated hemoglobin; HFABP = heart-type fatty acid binding protein; HR = Hazard 

ratio; HT = hemorrhagic transformation; ICAM-1 = intercellular adhesion molecule; 

ICH = intracerebral hemorrhage; IL-10 = interleukin 10; IL-6 = interleukin-6; IS = 

ischemic stroke; LAA = large artery atherosclerosis; lncRNA = long non-coding RNA; 

Lp-PLA2 = lipoprotein-associated phospholipase A2; MCA = middle cerebral artery; 

MBL = mannose-binding lectin; MMP9 = matrix metalloproteinase 9; MiRNA = 

microRNA; MR-proANP = mid-regional pro-atrial natriuretic peptide; MRI = magnetic 

resonance imaging; mRS = modified Rankin scale; MS = mass spectrometry; N/A = not 

applicable or not available, NDKA = nucleoside diphosphate kinase A; NfL = 

neurofilament light; NMDA = N-methyl-D-aspartate; NIHSS = national institutes of 

health stroke scale; NSE = neuron-specific enolase ; NT-proBNP = N-terminal B-type 

natriuretic peptide; OR = odds ratio; PAI-1 = plasminogen activator inhibitor 1; PARK7 
= Parkinson disease protein 7; PBP = platelet basic protein; RBP4 = retinol-binding 

protein 4; RNA = ribonucleic acid; S100B = serum calcium binding protein, VCAM = 

vascular cell adhesion molecule; Se = sensitivity; Sp = specificity; TAFI = thrombin-

activatable fibrinolysis inhibitor; TIA = transient ischemic attack; TNF-α = tumor 

necrosis factor α; tPA = tissue plasminogen activator; VCAM = vascular cell adhesion 

molecule; VEGF = vascular endothelial growth factor; vWF = von Willebrand factor; 

ZFAS1 = zinc finger antisense 1
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