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Propagation of temporal and rate signals
in cultured multilayer networks
Jérémie Barral 1,2, Xiao-Jing Wang1 & Alex D. Reyes1

Analyses of idealized feedforward networks suggest that several conditions have to be

satisfied in order for activity to propagate faithfully across layers. Verifying these concepts

experimentally has been difficult owing to the vast number of variables that must be con-

trolled. Here, we cultured cortical neurons in a chamber with sequentially connected com-

partments, optogenetically stimulated individual neurons in the first layer with high

spatiotemporal resolution, and then monitored the subthreshold and suprathreshold poten-

tials in subsequent layers. Brief stimuli delivered to the first layer evoked a short-latency

transient response followed by sustained activity. Rate signals, carried by the sustained

component, propagated reliably through 4 layers, unlike idealized feedforward networks,

which tended strongly towards synchrony. Moreover, temporal jitter in the stimulus was

transformed into a rate code and transmitted to the last layer. This novel mode of propa-

gation occurred in the balanced excitatory-inhibitory regime and is mediated by NMDA-

mediated receptors and recurrent activity.
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Information in the nervous system, encoded as action poten-
tials, propagates within and across the many networks in the
brain. A simple substrate for signal propagation is a feedfor-

ward network, such as the sequential brainstem nuclei in sensory
pathways or the cortical layers through which thalamic inputs
from layer IV propagates. What signals are transmitted through
feedforward networks is still under debate. Information may either
be represented as the average number of spikes per unit time (rate
coding)1,2 or by their precise timing (temporal coding)3. The
nervous system may also utilize a combination of both strategies,
suggesting a continuum between these two extreme coding
schemes4. Indeed, in some systems, timing information is con-
verted and then transmitted via a rate code5–7.

The feedforward architecture places specific constraints on the
type of signals that propagate. Analyses of idealized feedforward
networks consisting of randomly connected excitatory neurons
indicate that transmitted signals default to synchronous events8–12.
Activating a sufficiently large number of neurons in the input layer
within a narrow temporal window (termed pulse packets)8,10 or
long stimuli4,9,13 caused neuronal firing to either become more
synchronous in the subsequent layers or to dissipate. From a
neural code perspective, the development of synchronous activity
degrades rate signals13–15.

Asynchronous activity and hence rate information can theo-
retically propagate under certain conditions. In simulations,
sparse but strong synaptic coupling decreases synchrony by
effectively reducing the number of presynaptic inputs shared by
neurons in successive layers12,16. Nearly complete asynchrony
was also achieved by introducing background synaptic noise13,16

or by embedding feedforward networks with strong connections
within a recurrent network11,12,17,18. Modulating the relative
timing or balance between excitation and inhibition also provides
a means for selectively propagating temporal or rate signals19–21.
Whether these conditions are met under physiological conditions
have not yet been verified experimentally.

Idealized feedforward networks, although conducive to rigor-
ous theoretical treatment, makes several simplifying assumptions
and cannot account fully for complex response properties of
neurons. In particular, recurrent connections within cortex pro-
vide additional drive to neurons and transform their activities. In
sensory cortices (visual: ref. 22; auditory: refs. 23,24; somatosen-
sory: refs. 5,25), transient stimuli often generate tonic firing that
extend past the stimulus offset. This prolonged response is most
evident in cortical areas involved with working memory where
transient stimuli (cue) evoke firing responses (hold period) that
are long lasting and in some cases persistent26,27. Moreover,
instead of becoming more synchronous in successive layers, the
firing pattern can actually become less transient and more

persistent in progressively higher order brain structures5,6,28,29.
Modeling studies suggest that recurrent activity and/or NMDA-
mediated synaptic transmission underlie the prolonged activity30

and are supported by experimental work in sensory systems,
which demonstrates the role of NMDA current in the develop-
ment of the late response31,32.

Because of the difficulties in accounting for controlling the
many variables in vivo, reduced preparations are often used to
elucidate the underlying cellular and synaptic properties33–35.
Experiments in a network of neurons cultured in a long, narrow
continuous track suggest that rate signals can propagate through
relatively long distances36. However, how these results are related
to the theories is difficult to assess: the Ca2+ signals were too slow
to measure temporal signals and does not allow monitoring of
subthreshold potentials, the stimulus parameters could not be
systematically varied, and the network was continuous rather
than having discrete layers.

Here, we examined signal propagation in in vitro cultures of
excitatory (E) and inhibitory (I) cortical neurons grown in a
multilayer chamber. As shown previously, networks in culture
retain the general synaptic connection architecture documented
in vitro and excitatory–inhibitory balance. Importantly, the cul-
tured networks naturally reproduce salient firing responses
observed in vivo with no fine tuning of the experimental condi-
tions, indicating that the results reflect general operating princi-
ples independent of detailed organization or cell types37. To
examine signal propagation, excitatory neurons that expressed
channelrhodopsin were individually stimulated with a specified
spatio-temporal pattern and activity of neurons in subsequent
layers documented with whole-cell or cell-attached recording. In
contrast to theoretical predictions, we find that the evoked firing
far outlasts the transient stimulus and can propagate rate infor-
mation successfully. Moreover, the firing rate is modulated by
jitter in the stimulus, suggesting that information about the
temporal dispersion of the input is transformed to a rate code.
Whole-cell recordings, pharmacological manipulations, and
computer simulations indicate that signal transformation and
propagation is mediated by a combination of NMDA-receptors
and recurrent connections.

Results
Multilayer network in vitro. To examine experimentally the
conditions for propagation of activity across layers, we cultured
cortical neurons in chamber with multiple compartments in
series (Fig. 1a, b). This design demarcated the different stages and
hence permitted a systematic examination of signal propagation
that was not possible with cultures grown in a single chamber38
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Fig. 1 Stimulation of neurons in cultured multilayer networks. a Neurons, visualized with IR-DIC and fluorescent microscopy, are grown in distinct layers
(0.7 × 6 mm2) separated by 0.4mm. b Schematic of the multilayer network. Cell-attached or whole-cell recordings could be performed from four neurons
in sequential layers. c Using a Digital Light Processing (DLP) projector mounted on a microscope, brief light pulses (blue boxes in a) were delivered to
neurons (in layer 1) that expressed ChR2 and a fluorescent tag (green)
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or in a continuous track34,36. Importantly, optogenetic stimula-
tion permitted independent stimulation of individual neurons
with high temporal and spatial resolution (see below).

Although there were six layers, experiments were performed
only in the middle four layers (henceforth designated as layers
1–4) to prevent edge effects due to fewer connections in the
terminal layers (Supplementary Fig. 1). To confine cell bodies in
layers, neurons were first cultured in rectangular compartments
(0.7 × 6 mm2) separated by 0.4 mm spacers; after 24 h, the spacers
were removed to allow bidirectional growth of axons. Some
dendrites extended to the gap but are too small to reach the other
layers39. At 14–21 days in vitro (DIV), neurons grew primarily in
the compartments (henceforth termed layers) and formed
recurrent and bidirectional synaptic connections within and
across layers (see Supplementary Fig. 2). Previous studies showed
that intrinsic and synaptic properties and the relative proportion
and synaptic connection architecture between excitatory and
inhibitory cells were similar to those measured in vitro37,40.

To characterize the connectivity patterns between neurons, we
performed paired whole-cell recordings and estimated the
connection probabilities between cells. Neurons formed connec-
tions with other neurons in the same layer (henceforth termed
recurrent connections) and with neurons in adjacent layers. The
connection probability between neurons within a layer (Pc= 0.3
± 0.06; mean ± SEM; n= 50 tested connections in 13 networks;
533 ± 132 µm apart; mean ± SD) was comparable to those
between neurons in two adjacent layers (Pc= 0.23 ± 0.04, mean
± SEM; n= 100 tested connections in 13 networks; 666 ± 140 µm
apart; mean ± SD). The connection probabilities were determined
only by the distance between neurons and resembled the

connection probability profiles of neurons grown in a single
compartment (see Supplementary Fig. 2 and ref. 37). Based on the
connection profile and on the geometry, each neuron is estimated
to connect to about 120 neurons in the same layer and to about
30 neurons in adjacent layers (Supplementary Fig. 1a, with a
density of 300 neurons∙mm−2). Given the long distances between
chambers (~1.1 mm, layer+ gap), connections across non-
adjacent layers were rare so that propagation occurs sequentially
and did not “skip” layers (see simulations in Supplementary Fig.
1a). Both excitatory and inhibitory connections occurred across
chambers; the connection architecture therefore resembles the
layers of cortex more than the long-range excitatory connections
between brain regions where inhibition is local.

Propagation of activity in multilayer networks. To examine
propagation of activity across layers, we expressed channelrho-
dopsin (ChR2) in excitatory neurons using a transgenic line (see
Methods). We optically stimulated neurons in the first layer using
a computer-controlled Digital Light Processing (DLP) projector
to deliver independent blue light pulses (Fig. 1c; see37,41) as fol-
lows. Approximately 20–40 neurons within a 0.7 × 1.5 mm2

region were marked for stimulation with regions of interests
(ROIs, Fig. 1a). A single brief blue light pulse (5 ms), which
evoked reliable action potentials37, was delivered to each neuron
to evoke action potentials. The stimulus “packet” consisted of
pulses delivered either synchronously or with temporal jitter.
Extracellular spikes and intracellular membrane potential of
neurons in layers 1–4 were recorded using cell-attached and
whole-cell recordings, respectively.
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Fig. 2 Activity propagation in multilayer networks in culture. a, b Examples of dot rasters showing spikes recorded in cell-attached mode from individual
neurons in each layer. Synchronized light stimuli were delivered to ChR2-expressing (non-recorded) neurons in the first layer (30 repetitions of the light
stimuli). Data in a, b are, respectively, from sparse and dense networks. c, d Average poststimulus time histogram (PSTH) of action potentials in each layer
from sparse (c) and dense (d) networks. A single neuron was recorded in each layer (from black to red for layers 1–4, respectively). e Firing rate measured
in a 300ms time window after the stimulus. Inset, probability of evoking at least one spike vs layer in sparse (orange) and dense (blue) networks. f Firing
rate averaged over all layers vs network density. Inset: spike probability in the 4th layer as a function of density. g, h Temporal spread (g) and delay (h) of
first spike vs recorded layer in sparse (orange) and dense (blue) networks. In h dashed lines represent a linear fit to the data with slopes of 8.9 ms per layer
and 36.2 ms per layer for sparse and dense networks respectively. The statistical significance between the two distributions of slopes for individual
networks was assessed using Mann–Whitney U-test (P= 1.7 × 10−6). In e–h all data are shown and the mean ± SEM is represented as thick lines. Data for
PSTH in c, d and plots in e–h are compiled from n= 15 sparse (347 ± 81 neurons·mm−2) and n= 16 dense (686 ± 122 neurons·mm−2) networks
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There were two basic modes of propagation, depending on the
density of the networks and stimulus parameters (Fig. 2a–d). In
sparse networks (density ≲ 450 neurons∙mm−2), propagation
occurred via what we henceforth term as synfire mode: light
pulses delivered synchronously to 20–40 ROIs in the 1st layer
evoked firing that was locked to the stimulus. Repeated delivery of
identical stimuli evoked action potentials that exhibited little trial-
to-trial jitter, as can be seen from the dot rasters of a single
neuron (Fig. 2a) and from the sharp peaks in the poststimulus
time histograms (PSTHs) compiled from several networks (Fig.
2c). However, the firing became less reliable and the activity
disappeared in successive layers: the firing rate (Fig. 2e, orange;
average in a 300 ms window after stimuli) and the probability of
at least 1 spike occurring (inset) decreased to nearly 0 by the 4th
layer. The jitter in first spike times, measured as the standard
deviation of spike times across trials, remained small, with only a
slight increase in the spread (≲5 ms) in successive layers (Fig. 2g,
orange), indicating that synchrony was preserved in the 2–3
layers that the activity propagated (see also below).

Propagation in the synfire mode was mediated primarily by
unidirectional feedforward inputs despite the presence of
reciprocal connections within and across layers. The spike onset
increased linearly up to the 3rd layer with a slope of 8.9 ms per
layer (Fig. 2h). The delay in action potentials between neurons
across layers is composed of a conduction delay of 5 ms
(conduction velocity37,42 200 µm∙ms−1 × 1.1 mm, layer+ gap), a
synaptic delay of 3 ms37,43, and a delay due to the integration
time associated with the neurons’ membrane time constant (~20
ms37). Therefore, recurrent activity within a layer and feedback
from downstream layers are unlikely to contribute substantially to
the transient firing phase. Simulations with a network model that
incorporated experimentally-measured synaptic potentials and
architecture are consistent with predominant role of recurrent vs
feedback connections (see below).

In denser networks, propagation occurred via what we
henceforth term as a rate mode. Unlike the synfire mode, a
stimulus packet delivered in the first layer evoked firing that had
both a transient and a persistent phase (Fig. 2b, d). The transient
component was similar to that in sparse networks: the trial-to-
trial variability in the action potentials was small, as evident in a
sharp peak in the PSTH. After a brief period of decreased activity,
neurons fired over a period that often lasted several hundred
milliseconds. The activity evoked in this persistent phase
propagated reliably to layer 4, unlike the transient component,
which mostly disappeared after layer 2. Transient activity
propagated to layer 2 in 50% of the networks and to layer 3 in
12%, but never reached layer 4. Both the firing rate (Fig. 2e; blue)
and probability of 1 action potential (inset) remained high across
layers. This mode of propagation occurred reliably in networks
with densities ≳450 neurons∙mm−2 (Fig. 2f, blue). In contrast to
the synfire mode, the temporal distribution (or spread) of the
initial action potential increased substantially with layer (Fig. 2g).
Moreover, the delay in the occurrences of the initial action
potentials increased progressively at a rate of 36.2 ms per layer
(Fig. 2h, blue). Because we based our analysis on the time of the
first spike, the long delays indicate that propagation involved
polysynaptic, recurrent connections within and possibly between
layers.

These two modes of propagation could be simulated by
networks of integrate-and-fire neurons with parameters derived
from experimental measurements (see below). Varying the
number of neurons and the synaptic strength according to the
scaling rule measured experimentally37, we found a transition
between a synfire mode where propagation failed to a rate mode
where activity displayed a transient and a persistent phase
(Supplementary Fig. 3).

It is important to note that the light-evoked activities are not
uncontrolled, all-or-none events but rather can be modulated by
subtle changes in the stimuli such as the pulse rate of light stimuli
(Supplementary Fig. 4) and the number of stimulated neurons
(Supplementary Fig. 5). Moreover, as will be shown below, firing
rate is also modulated by the temporal characteristics of the light
stimuli and by the activity in layer 1.

Propagation of pulse packets. Propagation in feedforward net-
works is postulated to depend on the number and timing of active
neurons in the first layer8,10. To test this hypothesis, we varied
systematically the temporal distribution of the light pulses
delivered to neurons in the first layer (Supplementary Fig. 6). The
pulse packets were Gaussian distributed with standard deviations
(σ) of 0, 5, 10, 15, and 20 ms (Fig. 3, left). The evolution of firing
probability and spread (defined as the temporal distribution of
the first spike) across layers could be tracked by constructing
trajectories on a phase diagram (Fig. 3): the starting point of each
trajectory (black arrows) reflects the spread of the light pulses in
layer 1 and each segment thereafter corresponds to the values in
layers 1–4.

Because we could only record simultaneously from a maximum
of four neurons, the phase diagram could not be constructed by
summing the responses of a population of neurons to a single
stimulus;10 instead, the phase diagram was constructed from the
responses of single neurons in each layer to repeated, identical
stimulation and the average compiled by pooling data from
separate experiments (data from the 15 sparse and 16 dense
networks in Fig. 2). Simulations that incorporated experimentally
measured network variables37 indicated that this method
produced phase diagrams that were qualitatively similar to those
obtained by combining population activities (Supplementary Fig.
7). Moreover, the distribution of spike times of four simulta-
neously recorded neurons in the same layer were strongly
correlated with the distribution of spike times obtained by
repeated stimulation of the same stimulus (Supplementary Fig. 8).
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Fig. 3 Phase diagram of spike propagation. Plot of spike probability vs spike
spread for different initial conditions in sparse (orange) and in dense (cyan)
networks. The jitter in the light pulse stimuli (pulse packet) delivered to the
neurons was varied (left, examples of Gaussian distributed pulse packets
with standard deviations of 0, 10, and 20ms widths). Black arrows indicate
stimulus jitters and arrowheads connected by lines indicate values in
successive layers (from 1 to 4). Data are compiled from n= 15 sparse and
n= 16 dense networks and are from the same networks in Fig. 2. Red and
dark blue lines denote trajectories in sparse and dense networks,
respectively, where all neurons in the field of view were activated
synchronously (17 sparse networks of density= 303 ± 59 neurons·mm−2

and 14 dense networks of density= 569 ± 80 neurons·mm−2)
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Thus, to a first approximation the phase diagrams calculated from
individual neurons resembles that calculated from a population.

The trajectories deviated from predictions of theory10. In the
rate mode (Fig. 3, cyan), the trajectories starting at different initial
stimulus conditions (here defined as layer 0; cf37) approached
each other in the first layer (next segment) and then co-varied
thereafter. The trajectories did not approach stable non-zero
attractors with low jitter and high spiking probability but rather
moved towards the direction of increasing spread. Finding
potentials attractors would require more layers than present in
the experiments.

The trajectories in the synfire mode (Fig. 3, orange) were
almost perpendicular to those in the rate mode: all followed
paths that clustered in the first layer regardless of the initial
conditions and then moved towards zero probability with a
relatively small change in the spread. Increasing the amplitude
and decreasing the width of the pulse packet, which was
accomplished by synchronously activating all ChR2-expressing
neurons within the field of view (0.7 × 1.5 mm2) in layer 1,
produced mixed results: all (17/17) showed a rate-like propaga-
tion as with the dense network but with some also propagating
the transient component to layer 4 (8/17). Hence, the state-space
trajectory did not simply move towards an attractor with
increasingly narrow spread and high probability firing but
rather acquired a rate mode that resulted in a widening with
successive layers (red). Similar stimuli delivered to networks
already exhibiting rate mode propagation did not change the
trajectory (dark blue).

Encoding and transmitting information about the stimulus
jitter as rate. The temporal information that is lost with the
disappearance of the transient component (Fig. 2b, d) and the
increase in spread of the first spike (Figs. 2g and 3) is transformed
and propagated via a rate code. In the first layer, systematically
increasing the stimulus pulse jitter (σ= 0, 5, 10, 15, 20 ms) caused
progressive decreases in the neurons’ firing rate evoked in the
persistent phase (Fig. 4a, b; Supplementary Fig. 9). In the next
layers, the transient component disappeared but the differences in
firing rate remained.

The observation that the spikes were tightly distributed in the
initial layers and subsequently replaced with a sustained
component in deeper layers suggested that both timing and rate
are important variables for propagation. To examine the
evolution from a temporal to a rate code across layers, we
trained a binary classification decision tree to decode the jitter in
the stimulus pulses (see Methods). Using as predictors the firing
rate in a 300 ms time window after the light stimulation and the
time of the first spike, we computed the decoding accuracy (Fig.
4c, black) and the channel capacity (Fig. 4d, black). Decoding
accuracy and channel capacity decreased in successive layers but
remained above chance. Channel capacity represents the upper
bound of the mutual information between the stimulus feature
(i.e. the temporal spread σ) and the response (i.e. spike time and
firing rate). In the first layer, the channel capacity averaged over
16 networks was ~0.9 bits, which represents about 40% of the
upper bound defined as the total entropy of the stimulus (~2.3
bits). In subsequent layers, this measure decreased to 0.2 bits in
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layer 4 but remained above chance level (statistically significant
decoding accuracy was observed in 11/16 networks). There was
some variability in channel capacity in individual experiments
with some reaching values as high as 1.8 and 0.6 bits in layers 1
and 4, respectively (inset in Fig. 4d). In the synfire mode,
decoding accuracy dropped to zero because activity did not
propagate (Supplementary Fig. 10). In simulations, modulation of
firing rate and propagation of information about the stimulus
jitter were also found in dense but not in sparse networks
(Supplementary Fig. 11).

The transient component, though dissipating in deeper layers,
improved information transmission in the initial layers. To
determine the relative contribution of timing and rate to channel
capacity in successive layers, we trained the classifier solely with
either first spike timing (Fig. 4d, magenta) or firing rate (blue). In
layers 1 and 2, spike timing contributed more to channel capacity
than firing rate (Fig. 4e); in layer 3–4, firing rate accounted for
most of the channel capacity. Taken together, the results suggest
that information about the temporal dispersion of the stimulus is
transformed and then propagated as firing rate in the deeper
layers.

Although the decoding accuracy and capacity were high in over
half of the networks, the substantial decrease in the average values
suggest that that information about the stimulus jitter can be
encoded as rate but may be limited to four layers. However,
because of experimental limitations, analyses were performed
with a single neuron; accuracy and capacity are likely to improve
substantially if many neurons are used for decoding.

Transmission of rate information across layers. To demonstrate
further that rate information propagates, we took advantage of
the high trial-to-trial variability in the firing rate evoked in the
first layer (mean coefficient of variation ± SE= 0.71 ± 0.08, cal-
culated by dividing the standard deviation of spike counts by the
mean) and pooled the data obtained under all experimental
conditions. For each network, we then sorted the evoked firing

rates (calculated in a 300 ms time window after the light stimuli)
in the first layer into five groups (each with an equal number of
trials) and documented the associated rates in layers 2–4. The
firing rate profiles (Fig. 5a) were separable in all layers, indicating
that discriminability of rates is preserved (Fig. 5b). To compare
across different experiments, the firing rates and PSTHs were
normalized (see Methods; non-normalized data from a single
experiment shown in Supplementary Fig. 12). Discriminability
was also maintained when repetitive firing was induced in the
neurons in the first layer by delivering long (0.5 s) Poisson trains
of light pulses at different rates (Supplementary Fig. 4). Thus,
information about firing rate propagated successfully.

To determine the range of frequencies that can be reliably
propagated and discriminated, we constructed logistic maps
where the abscissa is the firing rate in a given (nth) layer and the
ordinate is the firing rate in the next (n+ 1th) layer (Fig. 5c). For
frequencies ≲ 15 Hz, the curve (averaged from 16 networks)
superimposed with the unitary slope line, indicating that in this
range, firing rate was preserved across layers and uniquely
represented. At higher frequencies, the curve became
sublinear, which indicates that firing rate decreased to a fixed
value of ~15 Hz within a few layers (dotted line in Fig. 5c).

To quantify discriminability in each layer, we trained a binary
classification decision tree and defined the decoding accuracy as
the probability of correctly identifying the firing rate in layer 1
based on the firing rate in the nth layer (see Methods). In
successive layers, decoding accuracy for a single neuron decreased
from a peak in layer 1 but remained well above chance in the deep
layers (Fig. 5d). Similar results were found in simulated networks
(Supplementary Fig. 13). To quantify how much information
could be propagated in our system, we computed the channel
capacity (Fig. 5e). This measure peaked at a value of about 2.1 bits
in layer 1, which correspond to the maximum capacity of
information that a single neuron is able to encode. In layers 2–4,
channel capacity was constant and attained a value of about 0.7
bits (range: [0.1, 1.5] bits). Substantial improvement may be
possible if decoding is performed with a population of cells: both
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the decoding accuracy (inset in Fig. 5d) and channel capacity
(inset in Fig. 5e) improved when 3 neurons were used
simultaneously for decoding.

Maintaining E–I balance during propagation. To examine the
synaptic potentials underlying activity propagation, we performed
whole-cell recordings from neurons in layer 1–4 during light
stimulation in layer 1 (Fig. 6a, b). In the synfire mode, the
postsynaptic potentials (PSPs) recorded in the first layer (Fig. 6a,
black) rose sharply to a peak and decayed back to baseline. The
PSPs evoked in the next layers had progressively longer onset
times, slower rate of rise and fall, and smaller amplitudes.
Superimposing the PSPs with the PSTHs shows that the action
potentials were evoked on the rising edge of the PSPs (right).

In the rate mode, the underlying PSPs in the first layer rose
rapidly to a peak and subsequently decayed at slow rate (Fig. 6b).
There was a large decrease in PSP amplitude from the first to the
second layer followed by much smaller decrease in subsequent
layers. Compared to the synfire mode, the membrane potential
hovered closer to firing threshold. Moreover, the membrane
potential was more variable (shaded area is standard deviation
across trials). The trial-to-trial variability allowed threshold
crossings even when the average membrane potential was below
threshold (Fig. 6c). The changes in the evoked firing rate across
layer reflect the time course of the underlying PSP (Fig. 6b, right).
In the first layer, the sharp rise in the PSP amplitude accounted
for the transient firing while the slow decay produced the

persistent component. The transient spiking component dis-
appeared with the fast component of the PSP, leaving only the
slow component of the PSP and the persistent firing. In layers
3–4, the peak of the PSTHs lagged the peak of the PSP because a
longer integration time was needed for the membrane potential to
cross threshold.

The balanced regime—where the E and I synaptic inputs track
each other both in magnitude44 and in time37,45,46—is main-
tained during propagation within and across layers. To view the E
and I synaptic potentials, we held the membrane potentials at
−80 or 0 mV (reversal potentials of I and E, respectively) during
repeated delivery of identical stimuli (Fig. 6d). Note that the
isolation protocol for E reveals primarily the AMPA-mediated
component, as the hyperpolarized potential likely did not release
the Mg2+ block of the NMDA-mediated receptors (see below). In
the first layer, the large, sharp peak in the composite PSP
measured at resting potential (Fig. 6d, middle, black) was due to a
combination of a rapidly rising EPSP (bottom, black) and an IPSP
(top, black). The IPSP increased the decay rate of the composite
PSP but did not cancel the depolarization (Fig. 6d, middle). In
subsequent layers, the EPSP and IPSP amplitudes both decreased
(Fig. 6e) with the EPSPs decreasing at a slightly faster rate than
the IPSPs. Nevertheless, consistent with the balanced regime, the
IPSP increased nearly proportionately with the EPSP (Fig. 6e).

The relative timing of the AMPA-mediated EPSPs and IPSPs
was also preserved across layers. We measured the delays of
EPSPs and IPSPs at the maximal slope of the membrane
potential. In the first layer, there was a relatively long delay
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between the EPSPs and IPSPs, because only the E cells were
stimulated and some time was needed for the inhibitory cells to
fire (Fig. 6f). The result is that there is a time window where the
edge of the EPSP can “escape” inhibition to evoke the early spikes
that compose the transient phases of the synfire and rate mode. In
layers 2–4, the EPSP-IPSP delay was significantly shorter as
neurons could receive afferents from both E and I cells in the
previous layer (Fig. 6f). With no sharp peaks in the composite
PSP, the evoked action potentials were delayed (Fig. 2b, h). Thus,
the amplitude, shape and arrival time of EPSPs were well matched
by those of IPSPs, producing balance between excitation and
inhibition that impeded further propagation of the transient
component in deeper layers.

The E-I tracking and balance predicts that the noise correlation
in spiking is low45. Low spiking correlation increases the
effectiveness of rate codes15. To measure correlations, we
performed cell-attached recordings from pairs of neurons within
(Supplementary Fig. 14) and between layers. To measure noise
correlation between neurons, we subtracted the ‘signal’ correlo-
grams, constructed from shuffled trials, from the raw correlo-
grams (see Supplementary Fig. 15). The noise correlation
measured at the peak was low for neurons in the same layer
(median value of C= 0.03; 1st and 3rd quartile [−0.01, 0.17]; n=
30 pairs; see Supplementary Fig. 16) and for neurons separated by
1, 2, or 3 layers (median values of C= 0.01; 1st and 3rd quartile
[−0.02, 0.08]; n= 96 pairs).

NMDA-mediated component of the prolonged activity. The
persistent phase in the PSP and firing was mediated in part by
NMDA receptor synaptic current47,48. Using paired recordings,
we confirmed the presence of strong NMDA-mediated compo-
nents in the E synapses (Supplementary Fig. 17). The estimated
ratio of NMDA to AMPA component in cultures (~0.7) was well
within the range of those measured in vitro49,50. Blocking NMDA

currents with APV reduced substantially the duration of the
evoked activity but had relatively little effect on the activity near
the onset (<100 ms) (Fig. 7a, b left vs middle). This NMDA-
insensitive component, which propagated to the 4th layer, was
wider than the firing in the synfire mode and was likely mediated
by recurrent activity. Adding GABA blocker (bicuculline)
increased but did not fully reproduce the original firing activity:
the duration of the responses recovered (Fig. 7c) but the total
activity was larger than in the control conditions (Fig. 7d),
indicating that recurrent activity was participating but was
insufficient to produce the full extent of the activity.

The NMDA component, by prolonging the activity, enhanced
the transmission of information. In the presence of APV, the
channel capacity in layers 2–4 decreased by half (0.39 ± 0.07 bits,
mean ± SE in neurons from layers 3 to 4) as compared to control
(0.80 ± 0.11 bits). The decreased channel capacity was unlikely
due to the decrease in overall firing rate (Fig. 7d) as the channel
capacity in layer 1 were similar both in the absence and presence
of APV (Fig. 7e). By the same token, blocking inhibition, which
raised the firing rate (Fig. 7d), increased channel capacity (0.64 ±
0.09 bits) but did not reach control levels. These results suggest
that both the late response carried by the NMDA current and a
larger gain provided by recurrent excitation play a role in the
propagation of firing rate information.

These results were qualitatively reproduced by simulations. In
simulated networks with only feedforward connections, brief
pulse packets propagated (Fig. 8a) provided there was a sufficient
number of neurons per layer, as predicted by theory10. Adding
recurrent and feedback excitatory connections respectively within
and across layers evoked activity with an initial transient phase
followed by a sustained phase (Fig. 8b). The addition of inhibitory
neurons prevented propagation even with the recurrent con-
nectivity (Fig. 8c) because inhibitory connections were both
strong and dense. Propagation was rescued when NMDA-
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mediated synaptic current was included (Fig. 8d). Consistent with
the rate mode in the experiments, there was a prominent
persistent component which did not show a substantial increase
in synchrony across layers beyond what was already present in
layer 1 (compare with4,9,13). Some synchrony was present in layer
1 probably because the model did not capture the variability
observed in the cultures (Fig. 6c, Supplementary Fig. 14).

Propagation in layers of different sizes. The fact that propaga-
tion occurs more readily in dense networks, which contains more
recurrent connections, than in sparse networks suggests that the
direction of propagation may be biased in the direction of
increasing network size. In cortex, for example, the number of
neurons and the number of connections in progressively higher
order regions vary significantly51,52.

To examine direction bias, we constructed a multilayer culture
network where the area of each compartment increases in one
direction (Fig. 9a). Using the spatial profile of connection
probability (Supplementary Fig. 2), we estimated that the number
of connections K increases almost linearly from the 1st to the 4th
layer by three-fold (K= 50 to K= 140 in layer 1 and 4,
respectively, Supplementary Fig. 1). Given the synaptic scaling
J / 1=

ffiffiffiffi
K

p
(where J is the synaptic strength) that occurs in

cortical neurons in culture37, the total input μ ¼ J ´K ´ r (where
r is the average firing rate) is expected to scale as

ffiffiffiffi
K

p
and thus to

increase in large networks.
To test for direction bias, neurons in the small layer were

stimulated synchronously and the activity of neurons monitored
in the direction of increasing layer size (Fig. 9b). Then, an equal
number of neurons were stimulated in the large end and spiking
activity monitored in the direction of decreasing layer size (Fig.
9c). Because the rate mode propagated reliably, we focused here
on the synfire mode. As predicted, propagation occurred more
readily in the direction of increasing layer size, as evidenced by

the increased spike probability and firing rate in the last layer
(Fig. 9d, e). The delays of action potentials were slightly shorter in
the direction of increasing size (Fig. 9f), consistent with the fact
that small networks resembled sparse networks. Taken together,
these results suggest that the direction of signal transmission
could be biased in non-homogeneous network by amplification of
signal in the direction of increasing size.

Discussion
We examined signal propagation using a multi-layered culture
preparation consisting of cortical neurons. We found that con-
trary to predictions of theory8,10,11 and experiments with
iteratively-constructed networks9, the propagated activity did not
evolve to a fully synchronous state. Rather, the evoked firing
actually became more temporally dispersed across layers. This
feature allowed rate signals to propagate successfully with low
correlations without the need to introduce large background
noise13,16. Rate propagation occurred because the strong NMDA
component of the excitatory input prolonged the decay of the
synaptic potential and kept the membrane potential near
threshold, resulting in highly variable spiking activity across trials
(Figs. 2b, 4a, 6b, c, 7a) and across simultaneously recorded cells
(Supplementary Fig. 14). The net effect is to maintain decoding
accuracy and channel capacity through the layers (Fig. 5d, e and
Fig. 7e).

These results complement and extend previous findings
obtained in culture preparations using extracellular recording
arrays or calcium imaging33,34,36. Indeed, rate information con-
tained in spontaneous or stimulus-evoked bursts propagated
through a network of neurons cultured in a long, tubular chamber
over distances of 3 mm, or ~10 axonal lengths36. The high tem-
poral and spatial resolution afforded by using multilayer cultured
networks in combination with optogenetic stimulation and
whole-cell recording allowed us to examine the underlying
synaptic and network mechanisms. Importantly, the presence of
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distinct layers facilitated direct testing of seminal theories of
signal propagation.

The results deviated from theoretical predictions largely
because of the contribution of the NMDA component but also
because of differences in network architecture. Unlike idealized
feedforward networks used in most models, the multilayer culture
network contained feedback and recurrent connections. However,
these interlayer connections are unlikely to contribute sig-
nificantly to rate propagation. When NMDA was blocked with
APV, the response rate and duration decreased significantly, as
did the information capacity (Fig. 7). The remaining response
fraction was mostly due to recurrent connections within a layer
rather than across layers: based on the connection profile, a
neuron receives 80% of its connections from the same layer and
only 20% from the neighboring layers (i.e. 10% from feedforward
inputs from previous layer and 10% from feedback inputs from
the next layer). We used simulations to further understand the
impact of the different connection types (Supplementary Fig. 18).
In purely feedforward networks made of excitatory and inhibitory
neurons; propagation failed after few layers. Whereas the addition
of feedback connections to the network did not qualitatively
change the behavior, the presence of recurrent connections
strongly supported propagation.

In the framework of information theory, the channel capacity
of a neuron is related to the range of firing that the neuron can
explore. Because noise interferes with the discrimination of
nearby levels of firing activity, the capability to generate a broad
range of firing is important for representing information as rate:
networks that have a narrow range of responses to a wide range of
stimuli, for example, have limited information capacity. Previous
studies have shown that spontaneous53,54 and evoked36 firing in
cultures are not all-or-none but rather exhibit a range of firing
rates. We showed that the firing rate is modulated by subtle
changes in the rate, number, and timing of the light pulses
delivered to the network. Small jitter generated large firing rates
probably because the large depolarization caused by the near

synchronous arrival of synaptic potentials increased the NMDA
component, which in turn kept the membrane potential closer to
threshold for a longer period of time and recruited more cells in
the network. The transformation of temporal code to a rate code
and subsequent propagation through layers is of some functional
significance: for example, phase-locked, temporally precise signals
generated by specialized brainstem neurons are lost en route to
cortex5–7,25,28.

The culture preparation is versatile and has been used pre-
viously to engineer complex networks35. However, a major con-
cern with the reduced preparation is whether the networks can
reproduce firing behavior observed in the intact animals. Though
the proportion and patterns of connections between excitatory to
inhibitory neurons is similar to those in intact brains55–57, the
detailed microcircuitry is lost. Yet, despite these differences, the
firing behavior of cultured networks with a wide range of den-
sities reproduces salient properties of neurons in vivo37,including
low spiking correlation58 and stimulus-induced decreases in
variability59. We stress that these results are general and are not
restricted to the culture preparation: the results were obtained
with no fine tuning of the culture or stimulus parameters and
indeed were reproducible with a wide range of conditions. The
NMDA-dependent component that occurs in the multilayer
cultured networks is similar to the late response observed in
sensory systems which is also sensitive to perturbation of NMDA
current31,32 and may involve regenerative processes (so-called
NMDA spikes60,61). Moreover, the increased duration of firing
resembles prolonged firing observed in sequentially higher order
brain structures (visual: ref. 22; auditory: refs. 23,24; somatosen-
sory: refs. 5,25; frontal and temporal cortex: refs. 26,27). In rodents,
a brief deflection of the whisker results in a transient response in
the thalamorecipient layer 4 and in a more sustained response in
layer 2/3, with a substantial reduction in the transient
component5,25,29.

Propagation of rate in the cultured networks depended on
several conditions that are likely to be satisfied in the intact brain.
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First, the network has to be sufficiently dense to support recurrent
activity. The density that supported rate propagation was ~500
neurons∙mm−2 (Fig. 2f) indicating an average of 400 connections
per neuron37, much less than that estimated for pyramidal cells
in vivo55,62. Second, the NMDA-mediated component of the
excitatory synapse must be sufficiently large to maintain the
membrane potential near threshold. The time course and mag-
nitude of the NMDA-mediated component in the cultures are
comparable to those measured in vitro49,50. Finally, the ratio of
inhibitory to excitatory neurons (0.23; ref. 37) is similar to those
estimated in vitro and in vivo; the inhibitory amplitude is larger
in the cultures but scales with network size and in proportion to
AMPA-mediated components37. Although inhibition did not
track completely the much longer-lasting NMDA component, the
network did not result in runaway excitation, indicating that
overall excitatory–inhibitory balance was maintained.

Feedforward networks are a primary means of communication
between regions of the nervous system. However, theoretical
analyses predict that the signals that propagate default to syn-
chronous events. With the NMDA-mediated propagation, both
rate and temporal (transformed as rate) information can be
transmitted at least across four layers. An intriguing consequence
is that the signals that are propagated could be potentially con-
trolled by neuromodulation of NMDA63.

Methods
Primary neuron cultures. Dissociated cortical neurons from postnatal (P0–P1)
mice of either sex were prepared as described previously37,64 and in accordance
with guidelines of the New York University Animal Welfare Committee. Briefly,
the mouse cortex was dissected in cold CMF-HBSS (Ca2+ and Mg2+ free Hank’s
balanced salt solution containing 1 mM pyruvate,15 mM HEPES, 10 mM
NaHCO3). The tissue was dissociated in papain (15 U∙mL−1, Roche) containing 1
mM L-cystein, 5 mM 2-amino-5-phosphonopentanoic acid and 100 U∙mL−1

DNase (DN25; Sigma) for 25 min. After enzymatic inactivation in CMF-HBSS
containing 100 mgmL−1 BSA (A9418; Sigma) and 40 mg∙mL−1 trypsin inhibitor
(T9253; Sigma), pieces were mechanically dissociated with a pipette. Cell con-
centration was measured before plating using a haemocytometer. Approximately
0.3–3 × 106 cells were plated on each coverslip, resulting in a density of ~100–1000
cells∙mm−2 at the time of experiment. Neurons were seeded onto German glass
coverslips (25 mm, #1 thickness, Electron Microscopy Science). Glass was cleaned
in 3 N HCl for 48 h and immersed in sterile aqueous solution of 0.1 mg∙mL−1 poly-
L-lysine (MW: 70,000–150,000; Sigma) in 0.1 M borate buffer for 12 h. Neurons
were grown in Neurobasal medium (supplemented with B27, Glutamax and
penicillin/streptomycin cocktail; Invitrogen) in a humidified incubator at 37 °C, 5%
CO2. One third of the culture medium was exchanged every 3 days.

Expression of channelrhodopsin (ChR2) in excitatory neurons was achieved by
crossing homozygote Vglut2-Cre mice (016963, Jackson Laboratory) with ChR2-
loxP mice (Ai32, 012569, Jackson Laboratory). Experiments were performed at
14–21 DIV, when neuronal characteristics and network connectivity were stable
and expression of ChR2 was sufficient to enable reliable photostimulation.

Microfabrication and microchambers’ production. The culture chambers had
rectangular compartments (width w, length l) separated by a gap of length c.
Neurons were confined to the layers and axons grew bidirectionally through the
gaps. We designed a symmetric network where all layers had the same size (Fig. 1b;
in mm: w= 0.7; l= 6; c= 0.4) and an asymmetric network where the length
increased linearly with layer number (Fig. 8a; in mm: w= 0.5; l= 0.5, 1, 1.5, 2, c=
0.4) (see also Supplementary Fig. 1b). The symmetric network was made of six
layers and we recorded neurons in layers 2–5 (and not in layer 1 or 6) to avoid edge
effects due to fewer connections at the terminal layers (see Supplementary Fig. 1).
The asymmetric network had seven layers and we recorded from layer 1 to 4 to
maximize the variation of number of connections (see Supplementary Fig. 1b).

The chambers were made in PDMS using soft lithography and replica molding.
To fabricate the master with positive relief patterns of cell culture compartments,
we built a single layer of photoresist of 160 μm in height. A layer of SU82050 was
spin-coated onto the wafer at 1200 rpm and then soft-baked for 7 min at 65 °C and
30 min at 95 °C. The template was then exposed to UV light through an optic
plastic mask (CAD/Art Services) of the culture compartment. After hard bake
(5 min at 65 °C, 12°min at 95 °C, and 1 min at 65 °C), the final mold was developed
in SU8 developer.

We casted and cured a polydimethylsiloxane polymer (PDMS, Sylgard 184,
Dow Corning) against the positive relief master to obtain a negative replica-molded
piece. PDMS was mixed with curing agent (10:1 ratio) and degassed under vacuum.
The resulting preparation was poured onto the mold, pressed between two glass

slides and cured at 110 °C for 2 min onto a hot plate. After curing, the PDMS piece
was peeled away, sterilized with ethanol and sealed onto the treated glass coverslip.
The resulting assembly was washed with PBS and incubated at 37 °C overnight.
After rinsing, the device was flooded by culture medium. Neurons were added and
cultured normally. After 24 h, the PDMS mold was peeled away from the glass
coverslip to allow processes to grow and connect different layers.

Electrophysiological recordings. Recordings were performed at room tempera-
ture in HEPES-based artificial cerebrospinal fluid (aCSF). The aCSF solution
contained (in mM): 125 NaCl, 10 NaHCO3, 25 D-glucose, 2.5 KCl, 2 CaCl2, 1.25
NaH2PO4, 1 MgCl2, and 10 HEPES. For some experiments, 50 μM APV was added
to block the NMDA component of postsynaptic currents or 10 μM bicuculline to
block GABA-A inhibitory currents.

Electrodes, pulled from borosilicate pipettes (1.5 OD) on a Flaming/Brown
micropipette puller (Sutter Instruments), had resistances in the range of 6–10MΩ

when filled with internal solution containing (in mM): 130 K-gluconate, 10 HEPES,
10 phosphocreatine, 5 KCl, 1 MgCl2, 4 ATP-Mg, and 0.3 mM GTP.

Cells were visualized through a × 10 water-immersion objective using infrared
differential interference contrast (IR-DIC) and fluorescence microscopy (BX51,
Olympus). Simultaneous whole-cell current-clamp recordings were made from up
to four neurons using BVC-700A amplifiers (Dagan). The signal was filtered at 5
kHz and digitized at 25 kHz using an 18-bits interface card (PCI-6289, National
Instrument). Signal generation and acquisition were here and in the following
controlled by a custom user interface programmed with LabVIEW (National
Instrument).

Optical stimulation setup. We used a Digital Light Processing projector (DLP
LightCrafter; Texas Instrument) to stimulate optically neurons expressing ChR2 as
previously described37,41. The projector had a resolution of 608 × 684 pixels. The
image of the projector was de-magnified and collimated using a pair of achromatic
doublet lenses (35 mm and 200mm; Thorlabs). A dual port intermediate unit (U-
DP, Olympus) was placed in-between the fluorescent port and the projection lens
of the microscope and enclosed a 510 nm dichroic mirror (T510LPXRXT,
Chroma). The resulting pixel size at the sample plane was a rectangle of dimensions
2.2 µm × 1.1 µm. We used the inbuilt blue LED of the projector which has a center
wavelength of 460 nm and intensity of 10 mW∙mm−2 at the sample plane. The time
resolution of the projector was 1440 Hz.

Stimulation and recordings protocols. We first selected Nstim= 20–40 regions of
interest (ROIs) that were drawn onto ChR2 positive neurons (about 10–20% of
neurons that are in the field of stimulation). Care was taken to stimulate small areas
of ~30 µm × 30 µm to avoid stimulation of processes belonging to adjacent neu-
rons. Each ROI was stimulated by a single light pulse of duration Δpulse = 5 ms. The
light intensity was fixed at 10 mW∙mm−2; a value that was sufficient to evoke
reliably a spike in the selected neurons but too low to stimulate neighboring cells.
Particular attention was paid to record neurons that do not express any ChR2 to
avoid any obvious cross-activation.

In most experiments we varied the temporal jitter in the light pulses delivered to
individual neurons. The jittered pulses (termed pulse packet) were Gaussian
distributed and the standard deviation was varied (σ= 0, 5, 10, 15, 20 ms). In some
experiments we delivered 500 ms-long Poisson trains of light pulses to the first
layer and we varied the effective pulse rates (5, 10, and 20 Hz; Supplementary Fig.
4). A given stimulus was repeated Ntrials= 5–6 times for PSPs data and Ntrials=
10–40 times for spike data. We allowed at least 5 s of recovery between each
stimulation. In each network, we performed simultaneous cell-attached or whole-
cell recordings from four neurons (one neuron in each layer) in current
clamp mode.

Data analysis. Analysis of network characteristics: From IR-DIC images of the
recording site taken after every experiment, neuron density d was estimated by
counting somata on a ~1 × 1 mm2 area in each layer. Data were pooled according
to densities. Low and high densities corresponded to networks of neuronal den-
sities (in neurons∙mm−2): d < 450, and 450 < d, respectively.

Analysis of membrane potential data: The evoked postsynaptic potentials
(PSPs) were averaged over 5–6 stimulus repetitions. The amplitude was measured
at the peak value (or trough for inhibitory PSPs) and the PSP delay at the time of
maximal slope (Fig. 6). We used the Pearson correlation coefficient to quantify the
correlation between IPSPs and EPSPs (Fig. 6e). The significance of the correlation
coefficient was determined using Student’s t-distribution.

Analysis of spike data: The spike probability was defined as the probability of
observing at least one spike on a given trial (Fig. 2e, f). The delay was estimated
from the time of the first spike at each trial (Fig. 2g). The spike spread was
measured as the standard deviation of first spike times across trial (Fig. 2h). The
firing rate was defined as the average firing rate in a window of 300 ms following
the stimulus, as mentioned in the main text (Figs. 2e, f, 4b, 5b, and 7c). Firing rates
for poststimulus time histogram were computed by convolving the spikes data with
a Gaussian kernel of width 25 ms (Figs. 4a and 5a). PSTHs represented as bar plots
had a binning window of 1 ms (Figs. 2c,d, 6a, b, and 7b).
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To examine propagation of rate signals (Fig. 5a, b) across layers, the firing rates
evoked in the first layer of each network were divided into five groups (highest rate
was group 1, lowest group 5). Because the range of firing rates evoked in each
network could vary substantially (Fig. 2e), the data obtained from individual
network were normalized before pooling and averaging. The PSTHs of each
network at all layers were divided by the maximum firing rate in group 1 of the
corresponding layer prior to averaging (Fig. 5a). To display the average firing rate
compiled from the pooled data across layers (Fig. 5b), the evoked firing rate of each
network was divided by the average of the firing rates in the 5 groups. With these
normalization procedures, the separation of the five firing rate groups across layers
could be readily visualized.

Decoding and mutual information: To decode temporal information (i.e. the
correct stimulus among the different jitters σ j 2 Σ= [0, 5, 10, 15, 20 ms]), we
trained a binary classification decision tree for each neuron of each network to
identify the stimulus using two parameters: the firing rate in the 300 ms following
the stimulus and the time of the first spike (Fig. 4c). This allowed us to estimate the

conditional probability p rijσ j
� �

of attributing the response ri to stimulus σ i given

the stimulus σ j . We used the Statistics and Machine Learning Toolbox from Matlab
to train the classifier. To avoid overfitting, we limited the number of leaves in the
tree to the number of classes to decode (5). We also cross-validated our decoder:
the classifier was trained using 80% of the data and tested using the remaining 20%.
This procedure was repeated 50 times on randomly selected sets of data to estimate

the average confusion matrix M ¼ p rijσ j
� �h i

i;j
. We defined the decoding accuracy

d as the proportion of well-attributed trials by the decoder:d ¼ trace Mð Þ. We used
t-tests to assess the statistical difference between the distribution of these 50
estimated decoding accuracies and the 50 ones measured when trials were
randomized. This allowed us to determine how many neurons had a statistically
significant decoding accuracy with a p-value of 0.01 (Fig. 4c and Supplementary
Fig. 10c).

We used the non-uniform partitioning obtained from the classification results
as the base to compute mutual information. Our method is similar to adaptive
partitioning of the (R, Σ) space65. By maximizing decoding accuracy and thus the
sum of diagonal elements of the confusion matrix p rl jσð Þ, our partitioning reduces
the number of empty entries and limits bias in the estimation of mutual
information. The mutual information MIl between the stimulus and the firing rate
in layer l was calculated as follows:

MI ¼
X
i;j

p rijσ j
� �

� log2
p rijσ j
� �

p rið Þ � p σið Þ

0
@

1
A ð1Þ

where p σ ið Þ and p rið Þ are the probability distributions of responses and stimuli,

respectively, and p rijσ j
� �

is the stimulus conditional probability distributions of

responses. In principle, the upper bound for mutual information is the entropy of
the stimulus which equals log2(5)= 2.32 bits because the stimulus can take 5
different values. The channel capacity was then computed numerically using the
Arimoto-Blahut algorithm66. This method maximizes the mutual information and
provides an estimate of how much information can be propagated between the
applied stimulus and the observed response.

In a second analysis, we used the firing rate as the sole feature for the decoder
and calculated mutual information and channel capacity in the same way (Fig. 4d).

To estimate how much information of the firing rate was propagated (Fig. 5),
we ordered and grouped the firing rates measured in layer 1 into five non-
overlapping groups and defined each group as a stimulus s. This was done for each
network separately. We used the number of groups (5) to be the same as the

precedent analysis to compare quantitatively both results. Similarly, we the trained
a classifier to discriminate and classify the stimuli s according to the firing rates in
the layers 1–4. We measured the decoding accuracy and the channel capacity as
described above.

Simulation of multilayer networks. The simulated multilayer network consists of
five layers, with N 2 [80, 960] neurons in each layer. The proportion of inhibitory
neurons was set to 20%. We used leaky integrate-and-fire neuron model. The
membrane potential V(t) of each neuron was governed by the following equation:

τm _V tð Þ ¼ �V tð Þ þ Rm Inoise tð Þ þ IAMPA tð Þ þ INMDA tð Þ þ IGABA tð Þð Þ ð2Þ

where Rm is the input resistance, τm is the membrane time constants, Inoise(t) is a
noisy input current, and IAMPA(t), INMDA(t), and IGABA(t) are synaptic currents. A
spike was generated when V exceeded the voltage threshold Vt and was then reset
to Vreset. No other spike could occur during the refractory period τref. Parameters
and distributions were derived from experimental measurements37 and are
reported in Table 1. Equations were integrated using the Euler method and a step
time dt= 50 µs.

Neuronal units were subjected to fluctuations in their input current which obeys
the following equation:

Inoise tð Þ ¼
ffiffiffiffi
C

p
� Icom tð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� C

p
� Iind tð Þ ð3Þ

where Icom(t) is a noisy input common to all simulated neurons, Iind(t) is an
independent noisy input to each neuron, and C= 0.1 is a constant.

Icom(t) and Iind(t) were realizations of a Gaussian (Ornstein-Uhlenbeck) noise
process and were generated using:

I tnþ1

� � ¼ I tnð Þ � e�dt=τ þ σ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2dt=τ

p
� ξ tnð Þ ð4Þ

where I(T0)= 0 is the initial condition, σ = 15 pA is the standard deviation, τ is the
correlation time (τ = 15 ms for the independent component and τ = 30 ms for the
common component) and ξ tnð Þ is a random variable drawn from the standard
normal distribution of zero mean and unity variance.

The neuronal architecture was based on connection probabilities between and
within layers that was derived from experimental measurements (Supplementary Fig.
2 and ref. 37). To simplify the architecture and compare with existing data, we
simulated a multilayer network with a width of about 1.5mm in which we considered
that the connection probability was constant (Table 2). With these settings, the
simulated area corresponds to 1.5 × 0.7 ≈ 1mm2, such that the number of neurons per
layer in simulations is directly comparable to the neuronal density in experiments.

We used conductance-based synapses. Each synapse is described by a
conductance variable g that obeys the following equation:

g tð Þ ¼ gsyn
τdτr

τd � τr
exp � t � ts � td

τd

� �
� exp � t � ts � td

τr

� �� �
ð5Þ

where gsyn is the synaptic conductance (AMPA, NMDA, GABA), ts is the time of
spike, td is the synaptic delay, and τr and τd are the rise and decay time constants,
respectively. The synaptic delay is 3 ms within layer and 8 ms between layers. The
rise and decay times are the same for AMPA and GABA-based currents and were
τr = 0.1 ms and τd = 15 ms. For NMDA-based currents, rise and decay time
constants were τr = 5 ms and τd = 100 ms. The synaptic conductances given in
Table 1 yield amplitudes of about 2.3 mV and −2.5 mV for EPSPs and IPSPs,
respectively. Synaptic conductances were scaled according to the scaling rule that
we measured in the neuronal culture preparation:g ¼ g0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N=320

p
37.

Table 1 Intrinsic parameters of leaky integrate-and-fire neuronal models

Neuron type Rm (MΩ) τm (ms) Vleak (mV) Vt (mV) Vreset (mV) τref (ms)

Excitatory 190 ± 90 26 ± 16 −60 −44 ± 6 Vt − 12 30 ± 6
Inhibitory 135 ± 70 17 ± 11 −60 −46 ± 5 Vt − 12 20 ± 4

Table 2 Connectivity in the simulated multilayer network

Post-synaptic Excitatory Inhibitory

Presynaptic

Excitatory gAMPA= 10 nS Pwithin= 0.29 gAMPA= 12 nS Pwithin= 0.4
gNMDA= 30 nS Pbetween= 0.07 gNMDA= 36 nS Pbetween= 0.11

Inhibitory gGABA= 36 nS Pwithin= 0.3 gGABA= 46 nS Pwithin= 0.25
Pbetween= 0.03 Pbetween= 0.02
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Thus, the total synaptic current that neuron i receives is:

IAMPA;i tð Þ ¼
X
j

sj tð Þ � pi;j � gi;j tð Þ � Vi tð Þ � VEð Þ ð6Þ

INMDA;i tð Þ ¼
X
j

sj tð Þ � pi;j � gi;j tð Þ � Vi tð Þ � VEð Þ= 1þ exp �0:062 � Vi tð Þð Þ
3:57

� �

ð7Þ

IGABA;i tð Þ ¼
X
j

sj tð Þ � pi;j � gi;j tð Þ � Vi tð Þ � VIð Þ ð8Þ

where s(t) is a synaptic depression variable, pi;j ¼ 0; 1f g is a binary variable of the
connectivity matrix, Vi(t) is the membrane potential. The equation for NMDA-
based currents is including the voltage dependency of NMDA receptors.

Synaptic transmission was subjected to depression as follow. The excitatory
(inhibitory) synaptic conductance was set to 35 % (30 %) of its previous value after
a spike and recovered to its initial value according to:

τs _s tð Þ ¼ 1� s tð Þ ð9Þ
where τs is the recovery time constant and was 850 ms for excitatory and 400 ms
for inhibitory synapses based on recording in the culture preparation
(Supplementary Fig. 19).

To stimulate the network, we provided a 1 nA current pulse during 5 ms in 30%
of excitatory neurons randomly selected from the 1st layer. We varied the jitter in
the same way as in experiments. To analyzed data, we randomly selected 20
neurons in each layer and performed the same analysis as for experiments.

Statistical analysis. The number of neurons and the number of experiments (i.e.
the number of networks) that were used in each figure are shown in the Supple-
mentary Table 1. All the data were shown as mean ± SEM., unless stated otherwise.
No assumptions of normality of data distributions were imposed. Two group
comparisons were performed using either paired or unpaired two-sided
Mann–Whitney U-test. t-tests were used to compare decoding accuracies with the
shuffle estimate (Fig. 4c), increase in decoding accuracy and channel capacity upon
pooling (insets in Fig. 5d, e), and the delay between EPSP and IPSP (Fig. 6f). The
variances between groups were assumed to be different. No statistical methods
were used to pre-determine sample sizes.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during the present study are available from the
corresponding author on reasonable request.

Code availability
Data acquisition (Labview), analysis (Matlab), and simulation (Matlab) softwares used in
this paper are described in Online Methods and will be available upon reasonable
request.
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