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The early prediction of deterioration could have an important role in supporting healthcare 

professionals, as an estimated 11% of deaths in hospital follow a failure to promptly 

recognize and treat deteriorating patients (1). To achieve this goal requires predictions of 

patient risk that are continuously updated and accurate, and delivered at an individual level 

with sufficient context and enough time to act. Here we develop a deep learning approach 

for the continuous risk prediction of future deterioration in patients, building upon recent 

work that models adverse events from electronic health records (2–17) and using acute 

kidney injury—a common and potentially life-threatening condition (18)—as an exemplar. 

Our model was developed on a large, longitudinal dataset of electronic health records that 

cover diverse clinical environments, comprising 703,782 adult patients across 172 inpatient 

and 1,062 outpatient sites. Our model predicts 55.8% of all inpatient episodes of acute 

kidney injury, and 90.2% of all acute kidney injury that requires subsequent administration 

of dialysis, with a lead time of up to 48 h and a ratio of 2 false alerts for every true alert. In 

addition to predicting future acute kidney injury, our model provides confidence assessments 

and a list of the clinical features that are most salient to each prediction, alongside predicted 

future trajectories for clinically relevant blood tests (9). Although the recognition and 

prompt treatment of acute kidney injury is known to be challenging, our approach may offer 

opportunities for identifying patients at risk within a time window that enables early 

treatment.

Adverse events and clinical complications are a major cause of mortality and poor patient 

outcomes, and substantial effort has been made to improve their recognition18,19. Few 

predictors have found their way into routine clinical practice, either because they lack 

effective sensitivity and specificity, or because they report already existing damage20. One 

example relates to AKI, a potentially life threatening condition affecting approximately 1 in 

5 US inpatient admissions21. Although a substantial proportion of cases are thought to be 

preventable with early treatment22, current AKI detection algorithms depend on changes in 

serum creatinine as a marker of acute decline in renal function. Elevation of serum creatinine 

lags behind renal injury, resulting in delayed access to treatment. This supports a case for 

preventative ‘screening’ type alerts, but there is no evidence that current rule based alerts 

improve outcomes23. For predictive alerts to be effective they must empower clinicians to 

act before major clinical decline has occurred by: (i) delivering actionable insights on 

preventable conditions; (ii) being personalised for specific patients; (iii) offering sufficient 

contextual information to inform clinical decision-making; and (iv) being generally 

applicable across patient populations24.

Promising recent work on modelling adverse events from EHR2–17 suggests that the 

incorporation of machine learning may enable early prediction of AKI. Existing examples of 

sequential AKI risk models have either not demonstrated a clinically-applicable level of 
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predictive performance25 or have focused on predictions across a short time horizon, leaving 

little time for clinical assessment and intervention26.

Our proposed system is a recurrent neural network that operates sequentially over individual 

electronic health records, processing the data one step at a time and building an internal 

memory that keeps track of relevant information seen up to that point. At each time point the 

model outputs a probability of AKI occurring at any stage of severity within the next 48 

hours, although our approach can be extended to other time windows or AKI severities (see 

Extended Data Table 1). When the predicted probability exceeds a specified operating point 

threshold, the prediction is considered positive. This model was trained using data curated 

from a multisite retrospective dataset of 703,782 adult patients from all available sites at the 

US Department of Veterans Affairs (VA) - the largest integrated health care system in the 

United States. The dataset consisted of information available from the hospital EHR in 

digital format. The total number of independent entries in the dataset was approximately 6 

billion, including 620,000 features. Patients were randomised across training (80%), 

validation (5%), calibration (5%) or test (10%) sets. A ground truth label for the presence of 

AKI at any given point in time was added using the internationally accepted “Kidney 

Disease: Improving Global Outcomes (KDIGO)” criteria18; the incidence of KDIGO AKI 

was 13.4% of admissions. (Detailed descriptions of the model and dataset are provided in 

the Methods, and Extended Data Figures 1, 2 & 3.)

Figure 1 shows the use of our model. At every point throughout an admission the model 

provides updated estimates of future AKI risk, along with an associated degree of 

uncertainty. Providing the uncertainty associated with a prediction may help clinicians 

distinguish ambiguous cases from predictions fully supported by the available data. 

Identifying an increased risk of future AKI sufficiently in advance is critical, as longer lead 

times may allow preventative action to be taken. This is possible even when clinicians may 

not be actively intervening with, or monitoring a patient (Supplementary Information section 

A for examples)

With our approach, 55.8% of inpatient AKI events of any severity were predicted early 

within a window of up to 48 hours in advance, with a ratio of two false predictions for every 

true positive. This corresponds to an area under the receiver operating characteristic curve 

(ROC AUC) of 92.1% and an area under the precision-recall curve (PR AUC) of 29.7%. Set 

at this threshold our predictive model would, if operationalised, trigger a daily clinical 

assessment in 2.7% of hospitalised patients in this cohort (Extended Data Table 2). 

Sensitivity was particularly high in patients who went on to develop lasting complications as 

a result of AKI. The model provided early predictions correctly in 84.3% of episodes where 

administration of in-hospital or outpatient dialysis was required within 30 days of the onset 

of AKI of any stage, and 90.2% of cases where regular outpatient administration of dialysis 

was scheduled within 90 days of the onset of AKI (Extended Data Table 3). Figure 2 shows 

the corresponding ROC and PR curves, as well as a spectrum of different operating points of 

the model. An operating point can be chosen to either further increase the proportion of AKI 

predicted early, or reduce the percentage of false predictions at each step, according to 

clinical priority (Figure 3). Applied to stage 3 AKI, 84.1% of inpatient events were predicted 

up to 48 hours in advance, with a ratio of two false predictions for every true positive 
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(Extended Data Table 4). To respond to these alerts on a daily basis, clinicians would need to 

attend to approximately 0.8% of in-hospital patients (Extended Data Table 2).

The model correctly identifies substantial future increases in seven auxiliary biochemical 

tests in 88.5% of cases (Supplement B), and provides information about the factors that are 

most salient to the computation of each risk prediction. The greatest saliency was identified 

for laboratory tests known to be relevant to renal function (see Supplement C) The predictive 

performance of our model was maintained across time and hospital sites, demonstrated by 

additional experiments that show generalisability to data acquired at time points after the 

model was trained (Extended Data Table 5).

Our approach significantly outperformed (p < 0.001) established state-of-the-art baseline 

models (Supplement D). For example, we implemented a baseline model with gradient-

boosted trees using manually curated features that are known to be relevant for modelling 

kidney function and in the delivery of routine care (Supplementary Information, sections E 

and F), combined with aggregate statistical information on trends observed in the recent 

history of the patient. This yielded 3599 clinically relevant features provided to the baselines 

at each step (see Methods). For the same level of precision, this baseline model was able to 

detect 36.0% of all inpatient AKI episodes up to 48 hours ahead of time, compared to 55.8% 

for our model.

Of the false positive alerts made by our model, 24.9% were positive predictions made even 

earlier than the 48 hour window in patients who subsequently developed AKI (Extended 

Data Figure 4). 57.1% of these occurred in patients with pre-existing chronic kidney disease 

(CKD), who are at a higher risk of developing AKI. Of the remaining false positive alerts, 

24.1% were trailing predictions that occurred after an AKI episode had already begun; such 

alerts can be filtered out in clinical practice. For positive risk predictions where no AKI was 

subsequently observed in this retrospective dataset, it is probable that many occurred in 

patients at risk of AKI where appropriate preventative treatment was administered which 

averted subsequent AKI. In addition to these early and trailing predictions, 88% of the 

remaining false positive alerts occurred in patients with severe renal impairment, known 

renal pathology, or evidence in the EHR that the patient required clinical review (Extended 

Data Figure 4).

Our aim is to provide risk predictions that enable personalized preventative action to be 

delivered at a large scale. The way these predictions are used may vary by clinical setting: a 

trainee doctor could be alerted in real time to each patient under their care, while a specialist 

nephrologist or rapid response teams27 can identify high risk patients to prioritise their 

response. This is possible because performance was consistent across multiple clinically 

important groups, notably those at an elevated risk of AKI (Supplement G). Our model is 

designed to complement existing routine care, as it is trained specifically to predict AKI that 

happened in this retrospective dataset despite existing best practices.

Although we demonstrate a model trained and evaluated on a clinically representative set of 

patients from the entire VA health care system, the demographic is not representative of the 

global population. Female patients comprised 6.38% of patients in the dataset, and model 
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performance was lower for this demographic (Extended Data Table 6). Validating the 

predictive performance of the proposed system on a general population would require 

training and evaluating the model on additional representative datasets. Future work will 

need to address the under-representation of sub-populations in the training data28 and 

overcome the impact of potential confounding factors related to hospital processes29. 

KDIGO is an indicator of AKI that lags long after the initial renal impairment, and model 

performance could be enhanced by improvements in the ground-truth definition of AKI and 

data quality30.

Despite the state-of-the-art retrospective performance of our model compared to existing 

literature, future work should now prospectively evaluate and independently validate the 

proposed model to establish its clinical utility and effect on patient outcomes, as well as 

explore the role of the model in researching strategies for delivering preventative care for 

AKI.

In summary, we demonstrate a deep learning approach for the continuous prediction of AKI 

within a clinically-actionable window of up to 48 hours in advance. We report performance 

on a clinically diverse population and across a large number of sites to show that our 

approach may allow for the delivery of potentially preventative treatment, prior to the 

physiological insult itself in a large number of the cases. Our results open up the possibility 

for deep learning to guide the prevention of clinically important adverse events. With the 

possibility of risk predictions delivered in clinically-actionable windows alongside the 

increasing size and scope of EHR datasets, we now shift to a regime where the role for 

machine learning in clinical care can grow rapidly, supplying new tools to enhance the 

patient and clinician experience, and potentially becoming a ubiquitous and integral part of 

routine clinical pathways.

Methods

Data Description

The clinical data used in this study was collected by the US Department of Veterans Affairs 

and transferred to DeepMind in de-identified format. No personal information was included 

in the dataset, which met HIPAA “Safe Harbor” criteria for de-identification.

The US Department of Veterans Affairs (VA) serves a population of over nine million 

veterans and their families across the entire United States of America. The VA is composed 

of 1,243 health care facilities (sites), including 172 VA Medical Centers and 1,062 outpatient 

facilities31. Data from these sites is aggregated into 130 data centres, of which 114 had data 

of inpatient admissions that we used in this study. Four sites were excluded since they had 

fewer than 250 admissions during the five year time period. No other patients were excluded 

based on location.

The data comprised all patients aged between 18 and 90 admitted for secondary care to 

medical or surgical services from the beginning of October 2011 to the end of September 

2015, including laboratory data, and where there was at least one year of EHR data prior to 

admission. The data included medical records with entries up to 10 years prior to each 
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admission date and up to two years afterwards, where available. Where available in the VA 

database, data included outpatient visits, admissions, diagnoses as International Statistical 

Classification of Diseases and Related Health Problems (ICD9) codes, procedures as Current 

Procedural Terminology (CPT) codes, laboratory results (including but not limited to 

biochemistry, haematology, cytology, toxicology, microbiology and histopathology), 

medications and prescriptions, orders, vital signs, health factors and note titles. Free text, 

and diagnoses that were rare (fewer than 12 distinct patients with at least one occurrence in 

the VA database), were excluded to ensure all potential privacy concerns were addressed. In 

addition, conditions that were considered sensitive were excluded prior to transfer, such as 

patients with HIV/AIDS, sexually transmitted diseases, substance abuse, and those admitted 

to mental health services.

Following this set of inclusion criteria, the final dataset comprised 703,782 patients, 

providing 6,352,945,637 clinical event entries. Each clinical entry denoted a single 

procedure, laboratory test result, prescription, diagnosis etc, with 3,958,637,494 coming 

from outpatient events and the remaining 2,394,308,143 events from admissions. Extended 

Data Table 6 contains an overview of patient demographics in the data as well as prevalence 

of conditions associated with AKI across the data splits. The final dataset was randomly 

divided into training (80% of observations), validation (5%), calibration (5%) and testing 

(10%) sets. All data for a single patient was assigned to exactly one of these splits.

Data Preprocessing

Feature Representation—Every patient in the dataset was represented by a sequence of 

events, with each event providing the patient information that was recorded within a 6 hour 

period, i.e. each day was broken into four 6 hour periods and all records occurring within the 

same 6 hour period were grouped together. The available data within these six-hour 

windows, along with additional summary statistics and augmentations, formed a feature set 

that was used as input to our predictive models. Extended Data Figure 1 provides a 

diagrammatic view of a patient sequence and its temporal structure.

We did not perform any imputation of missing numerical values, because explicit imputation 

of missing values does not always provide consistent improvements to predictive models 

based on electronic health records32. Instead, we associated each numerical feature with one 

or more discrete presence features to enable our models to distinguish between the absence 

of a numerical value and an actual value of zero. Additionally, these presence features 

encoded whether a particular numerical value is considered to be normal, low, high, very low 

or very high. For some data points, the explicit numerical values were not recorded (usually 

when the values were considered normal), and the provision of this encoding of the 

numerical data allowed our models to process these measurements even in their absence. 

Discrete features like diagnostics or procedural codes were also encoded as binary presence 

features.

All numerical features were normalised to the [0, 1] range after capping the extreme values 

at the 1st and 99th percentile. This prevents the normalisation from being dominated by 

potentially large data entry errors while preserving most of the signal.
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Each clinical feature was mapped onto a corresponding high-level concept, such as 

procedure, diagnosis, prescription, lab test, vital sign, admission, transfer etc. A total of 29 

such high-level concepts were present in the data. At each step, a histogram of frequencies 

of these concepts among the clinical entries that take place at that step was provided to the 

models along with the numerical and binary presence features.

The approximate age of each patient in days, as well as which 6 hour period in the day the 

data is associated with, were provided as explicit features to the models. In addition, we 

provided some simple features that make it easier for the models to predict the risk of 

developing AKI. In particular, we provided the median yearly creatinine baseline and the 

minimum 48 hours creatinine baseline as additional numerical features. These are the 

baseline values that are used in the KDIGO criteria and help give important context to the 

models on how to interpret new serum creatinine measurements as they become available.

We additionally computed three historical aggregate feature representations at each step: one 

for the past 48 hours, one for the past 6 months, and one for the past 5 years. All histories 

were optionally provided to the models and the decision on which combination of historical 

data to include was based on the model performance on the validation set. We did this 

historical aggregation for discrete features by including whether they were observed in the 

historical interval or not. For numerical features we included the count, mean, median, 

standard deviation, minimum and maximum value observed in the interval, as well as simple 

trend features like the difference between the last observed value and the minimum or 

maximum and the average difference between subsequent steps (which measures the 

temporal short-term variability of the measurement). Supplementary Information section H 

provides the effect of volume and recency of available data on model performance.

Because patient measurements are made irregularly, not all 6-hour time periods in a day will 

have new data associated with them. Our models operate at regular time intervals regardless, 

and all time periods without new measurements include only the available metadata, and 

optionally the historical aggregate features. This approach makes continuous risk predictions 

possible, and allows our models to utilise the patterns of missingness in the data during the 

training process.

For about 35% of all entries, the day on which they occurred was known, but not the specific 

time during the day. For each day in the sequence of events, we aggregated these unknown-

time entries into a specific bucket that was appended to the end of the day. This ensured that 

our models could iterate over this information without potentially leaking information from 

the future. Our models were not allowed to make predictions from these surrogate points and 

they were not factored into the evaluation. The models can utilise the information contained 

within the surrogate points on the next time step, corresponding to the first interval of the 

following day.

Diagnoses in the data are sometimes known to be recorded in the EHR prior to the time 

when an actual diagnosis was made clinically. To avoid leaking future information to the 

models, we shifted all of the diagnoses within each admission to the very end of that 

admission and only provided them to the models at that point, where they can be factored in 
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for future admissions. This discards potentially useful information, so the performance 

obtained in this way is conservative by design and it is possible that in reality the models 

would be able to perform better with this information provided in a consistent way.

Ground Truth Labels using KDIGO—The patient AKI states were computed at each 

time step based on the KDIGO18 criteria, the recommendations of which are based on 

systematic reviews of relevant trials. KDIGO accepts three definitions of AKI: an increase in 

serum creatinine of 0.3mg/dl (26.5 μmol/l) within 48 hours; an increase in serum creatinine 

of 1.5 times a patient’s baseline creatinine level, known or presumed to have occurred within 

the prior 7 days; or a urine output of <0.5 ml/kg/h over 6 hours18. The first two definitions 

were used to provide ground truth labels for the onset of an AKI; the third definition could 

not be used as urine output was not recorded digitally in the majority of sites that formed 

part of this work. A baseline of median annualised creatinine was used where previous 

measurements where available; where these were not present the Modification of Diet in 

Renal Disease (MDRD) formula was applied to estimate a baseline creatinine. Using the 

KDIGO criteria based on serum creatinine and its corresponding definitions for AKI 

severity, three AKI categories were obtained: ‘all AKI’ (KDIGO stages 1, 2 & 3), ‘moderate 

and severe AKI’ (KDIGO stages 2 & 3), and ‘severe AKI’ (KDIGO stage 3).

The AKI stages were computed at times when there was a serum creatinine measurement 

present in the sequence and then copied forward in time until the next creatinine 

measurement, at which time the ground truth AKI state was updated accordingly. To avoid 

basing the current estimate of the KDIGO AKI stage on a previous measurement that may 

no longer be reliable, the AKI states were propagated for at most 4 days forward in case no 

new creatinine measurements were observed. From that point onwards, AKI states were 

marked as unknown. Patients experiencing acute kidney injury tend to be closely monitored 

and their levels of serum creatinine are measured regularly, so an absence of a measurement 

for multiple days in such cases is uncommon. A gap of 4 days between subsequent 

creatinine measurements represents the 95th percentile in the distribution of time between 

two consecutive creatinine measurements.

The prediction target at each point in time is a binary variable that is positive if the AKI 

category of interest (e.g., all AKI) occurs within a chosen future time horizon. If no AKI 

state was recorded within the chosen horizon, this was interpreted as a negative. We use 

eight future time horizons, 6h,12h, 18h, 24h, 36h, 48h, 60h, and 72h ahead, which are all 

available at each time point.

Event sequences of patients undergoing renal replacement therapy (RRT) were excluded 

from the target labels heuristically based on the data entries of RRT procedures being 

performed in the EHR, for the duration of dialysis administration. We have excluded entire 

subsequences of events between RRT procedures that occur within a week of each other. The 

edges of the subsequence were also appropriately excluded from label computations.

Models for predicting AKI—Our predictive system operates sequentially over the 

electronic health record. At each time point, input features, which we described above, were 

provided to a statistical model whose output is a probability of any-severity stage of AKI 
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occurring in the next 48 hours. If this probability exceeds a chosen operating threshold, we 

make a positive prediction that can then trigger an alert. This is a general framework within 

which existing approaches also fit, and we describe the baseline methods in the next section. 

The novelty of this work is in the design of the particular model that is used and its training 

procedure, and the demonstration of its effectiveness - on a large-scale EHR dataset and 

across many different regimes - in making useful predictions of future AKI.

Extended Data Figure 2 gives a schematic view of our model, which makes predictions by 

first transforming the input features using an embedding module. This embedding is fed into 

a multi-layer recurrent neural network, the output of which at every time point is fed into a 

prediction module that provides the probability of future AKI at the time horizon for which 

the model will be trained. The entire model can be trained end-to-end, i.e. the parameters 

can be learned jointly without pretraining any parts of the model. To provide useful 

predictions, we train an ensemble of predictors to estimate the model’s confidence, and the 

resulting ensemble predictions are then calibrated using isotonic regression to reflect the 

frequency of observed outcomes33.

Embedding modules.: The embedding layers transform the high-dimensional and sparse 

input features into a lower-dimensional continuous representation that makes subsequent 

prediction easier. We use a deep multilayer perceptron with residual connections and 

rectified-linear (ReLU) activations. We use L1 regularisation on the embedding parameters 

to prevent overfitting and to ensure that our model focuses on the most salient features. We 

compared simpler linear transformations, which did not perform as well as the multi-layer 

version we used. We also compared unsupervised approaches such as factor analysis, 

standard auto-encoders and variational auto-encoders, but did not find any significant 

advantages in using these methods.

Recurrent neural network core.: Recurrent neural networks (RNNs) run sequentially over 

the EHR entries and are able to implicitly model the historical context of a patient by 

modifying an internal representation (or state) through time. We use a stacked multiple-layer 

recurrent network with highway connections between each layer34, which at each time step 

takes the embedding vector as an input. We use the Simple Recurrent Unit (SRU) network as 

the RNN architecture, with tanh activations. We chose this from a broad range of alternative 

RNN architectures, specifically the long short-term memory (LSTM)35, update gate RNN 

(UGRNN) and Intersection RNN36, simple recurrent units (SRU)37,38, gated recurrent units 

(GRU)39, the Neural Turing Machine (NTM)40, memory-augmented neural network 

(MANN)41, the Differentiable Neural Computer (DNC)42, and the Relational Memory Core 

(RMC)43. These alternatives did not provide significant performance improvements over the 

SRU architecture (see Supplement D).

Prediction targets and training objectives.: The output of the RNN is fed to a final linear 

prediction layer that makes predictions over all 8 future prediction windows (6 hour 

windows from 6 hours ahead to 72 hours ahead). We use a cumulative distribution function 

layer (CDF) across different time windows to encourage monotonicity, since the presence of 

AKI within a shorter time window implies a presence of AKI within a longer time window. 

Each of the resulting eight outputs provides a binary prediction for AKI severity at a specific 
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time window and is compared to the ground truth label using the cross-entropy loss function 

(Bernoulli log-likelihood).

We also make a set of auxiliary numerical predictions, where at each step we also predict the 

maximum future observed value of a set of laboratory tests over the same set of time 

intervals as used to make the future AKI predictions. The laboratory tests predicted are ones 

known to be relevant to kidney function, specifically: creatinine, urea nitrogen, sodium, 

potassium, chloride, calcium and phosphate. This multitask approach results in better 

generalisation and more robust representations, especially under class imbalance44–46. The 

overall improvement we observed from including the auxiliary task was around 3% PR AUC 

in most cases (see Supplement A for more details).

Our overall loss function is the weighted sum of the cross-entropy loss from the AKI-

predictions and the squared loss for each of the seven laboratory test predictions. We 

investigated the use of oversampling and overweighting of the positive labels to account for 

class imbalance. For oversampling, each mini-batch contains a larger percentage of positive 

samples than average in the entire dataset. For overweighting, prediction for positive labels 

contributes proportionally more to the total loss.

Training and hyperparameters.: We selected our proposed model architecture among 

several alternatives based on the validation set performance (see Supplement D) and have 

subsequently performed an ablation analysis of the design choices (see Supplement I). All 

variables are initialised via normalised (Xavier) initialisation47 and trained using the Adam 

optimisation scheme48. We employ exponential learning rate decay during training. The best 

validation results were achieved using an initial learning rate of 0.001 decayed every 12,000 

training steps by a factor of 0.85, with a batch size of 128 and a backpropagation through 

time window of 128. The embedding layer is of size 400 for each of the numerical and 

presence input features (800 in total when concatenated) and uses 2 layers. The best 

performing RNN architecture used a cell size of 200 units per layer and 3 layers. A detailed 

overview of different hyperparameter combinations evaluated in the experiments is available 

in Supplement J. We conducted extensive hyperparameter explorations of dropout rates for 

different kinds of dropout to determine the best model regularisation. We have considered 

input dropout, output dropout, embedding dropout, cell state dropout and variational 

dropout. None of these had led to improvements, so dropout is not included in our model.

Competitive Baseline Methods—Established models for future AKI prediction make 

use of L1-regularised logistic regression or gradient boosted trees (GBTs), trained on a 

clinically relevant set of features known to be important either for routine clinical practice or 

the modelling of kidney function. A curated set of clinically-relevant features was chosen 

using existing AKI literature (see Supplement F) and the consensus opinion of six clinicians: 

three senior attending physicians with over twenty years expertise, one nephrologist and two 

intensive care specialists; and three clinical residents with expertise in nephrology, internal 

medicine and surgery. This set was further extended to include 36 of the most salient 

features discovered by our deep learning model that were not in the original list, to give 

further predictive signal to the baseline. The final curated dataset contained 315 base 

features of demographics, admission information, vital sign measurements, select laboratory 
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tests and medications, and diagnoses of chronic conditions directly associated with an 

increased risk of AKI. The full feature set is listed in Supplement E We additionally 

computed a set of manually engineered features (yearly and 48-hourly baseline creatinine 

levels (consistent with KDIGO guidelines), the ratio of blood urea nitrogen to serum 

creatinine, grouped severely reduced glomerular filtration rate (corresponding to stages 3a to 

5), and flagging diabetic patients by combining ICD9 codes and values of measured 

haemoglobin A1c) and a representation of the short-term and long-term history of a patient 

(see ‘Feature representation’). These features were provided explicitly, since the interaction 

terms and historical trends might not have been recovered by simpler models. This resulted 

in a total of 3599 possible features for the baseline model. We provide a table with a full set 

of baseline comparison in Supplement D.

Evaluation—The data was split into training, validation, calibration and test sets in such a 

way that information from a given patient is present only in one split. The training split was 

used to train the proposed models. The validation set was used to iteratively improve the 

models by selecting the best model architectures and hyperparameters.

The models selected on the validation set were recalibrated on the calibration set in order to 

further improve the quality of the risk predictions. Deep learning models with softmax or 

sigmoid output trained with cross-entropy loss are prone to miscalibration, and recalibration 

ensures that consistent probabilistic interpretations of the model predictions can be made49. 

For calibration we considered Platt scaling50 and Isotonic Regression33. To compare 

uncalibrated predictions to recalibrated ones we used the Brier score51 and reliability 

plots52. The best models were finally evaluated on the independent test set that was held out 

during model development.

The main metrics used in model selection and the final report are: the AKI episode 

sensitivity, the area under the precision-recall curve (PR AUC), the area under the receiver-

operating curve (ROC AUC), and the per-step precision, per-step sensitivity and per-step 

specificity. The AKI episode sensitivity corresponds to the percentage of all AKI episodes 

that were correctly predicted ahead of time within the corresponding time windows of up to 

48 hours. In contrast, the precision is computed per-step since the predictions are made at 

each step, to account for the rate of false alerts over time.

Due to the sequential nature of making predictions, the total number of positive steps does 

not directly correspond to the total number of distinct AKI episodes. Multiple positive 

alerting opportunities may be associated with a single AKI episode and different AKI 

episodes may offer a different number of such early alerting steps depending on how late 

they occur within the admission. AKIs occurring later during in-hospital stay can be 

predicted earlier than those that occur immediately upon admission. To better assess the 

clinical applicability of the proposed model we explicitly compute the AKI episode 

sensitivity for different levels of step-wise precision.

Given that the models were designed for continuous monitoring and risk prediction, they 

were evaluated at each 6-hour time step within all of the admissions for each patient except 

for the steps within AKI episodes which were ignored. The models were not evaluated on 
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outpatient events. All steps where there was no record of AKI occurring in the relevant 

future time window were considered as negative examples.

Approximately 2% of individual time steps presented to the models sequentially were 

associated with a positive AKI label, so the AKI prediction task is class-imbalanced. For 

per-step performance metrics, we report both the area under the receiver operating 

characteristic curve (ROC AUC) as well as the area under the precision-recall curve (PR 

AUC). PR AUC is known to be more informative for class-imbalanced predictive tasks53, as 

it is more sensitive to changes in the number of false positive predictions.

To gauge uncertainty on a trained model’s performance we calculated 95% confidence 

intervals with the pivot bootstrap estimator54. This was done by sampling the entire 

validation and test dataset with replacement 200 times. Because bootstrapping assumes the 

resampling of independent events, we resample entire patients instead of resampling 

individual admissions or time steps. Where appropriate we also compute a Mann–Whitney 

U test (two-sided)55 on the samples for the respective models.

To quantify the uncertainty on model predictions (versus overall performance) we trained an 

ensemble of 100 models with a fixed set of hyperparameters but different initial seeds. This 

follows similar uncertainty approaches in supervised learning56 and medical imaging 

predictions57. The prediction confidence was assessed by inspecting the variance over the 

100 model predictions from the ensemble. This confidence reflected the accuracy of a 

prediction: the mean standard deviation of false positive predictions was higher than the 

mean standard deviation of true positive predictions and similarly for false negative versus 

true negative predictions (p-value < 0.01, see Supplement K).

Reporting Summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Ethics and Information Governance

This work, and the collection of data on implied consent, received Tennessee Valley 

Healthcare System Institutional Review Board (IRB) approval from the US Department of 

Veterans Affairs. De-identification was performed in line with the Health Insurance 

Portability and Accountability Act (HIPAA), and validated by the US Department of 

Veterans Affairs Central Database and Information Governance departments. Only de-

identified retrospective data was used for research, without the active involvement of 

patients.

Code Availability

We make use of several open-source libraries to conduct our experiments, namely the 

machine learning framework TensorFlow (https://github.com/tensorflow/tensorflow) along 

with the TensorFlow library Sonnet (https://github.com/deepmind/sonnet) which provides 

implementations of individual model components58. Our experimental framework makes use 

of proprietary libraries and we are unable to publicly release this code. We detail the 
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experiments and implementation details in the methods section and in the supplementary 

figures to allow for independent replication.

Data Availability

The clinical data used for the training, validation and test sets was collected at the US 

Department of Veterans Affairs and transferred to a secure data centre with strict access 

controls in de-identified format. Data was used with both local and national permissions. It 

is not publicly available and restrictions apply to its use. The de-identified dataset, or a test 

subset, may be available from the US Department of Veterans Affairs subject to local and 

national ethical approvals.

Extended Data
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Extended Data Figure 1 |. The sequential representation of EHR data.
All EHR data available for each patient was structured into a sequential history for both 

inpatient and outpatient events in six hourly blocks, shown here as circles. In each 24 hour 

period events without a recorded time were included in a fifth block. Apart from the data 

present at the current time step, the models optionally receive an embedding of the previous 

48 hours and the longer history of 6 months or 5 years.
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Extended Data Figure 2 |. The proposed model architecture.
The best performance was achieved by a multitask deep recurrent highway network 

architecture on top of an L1-regularised deep residual embedding component that learns the 

best data representation end-to-end without pre-training.
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Extended Data Figure 3 |. Calibration.
a, b, The predictions were recalibrated using isotonic regression before (a) and after (b) 

calibration. Model predictions were grouped into 20 buckets, with a mean model risk 

prediction plotted against the percentage of positive labels in that bucket. The diagonal line 

demonstrates the ideal calibration.
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Extended Data Figure 4 |. Analysis of false positive predictions.
a, For prediction of any AKI within 48 h at 33% precision, nearly half of all predictions are 

trailing, after the AKI has already occurred (orange bars) or early, more than 48 h prior (blue 

bars). The histogram shows the distribution of these trailing and early false positives for 

prediction. Incorrect predictions are mapped to their closest preceding or following episode 

of AKI (whichever is closer) if that episode occurs in an admission. For ±1 day, 15.2% of 

false positives correspond to observed AKI events within 1 day after the prediction (model 

reacted too early) and 2.9% correspond to observed AKI events within 1 day before the 

prediction (model reacted too late). b, Subgroup analysis for all false-positive alerts. In 

addition to the 49% of false-positive alerts that were made in admissions during which there 

was at least one episode of AKI, many of the remaining false-positive alerts were made in 

patients who had evidence of clinical risk factors present in their available electronic health 

record data. These risk factors are shown here for the proposed model that predicts any stage 

of AKI occurring within the next 48 h.
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Extended Data Table 1 |
Model performance for predicting AKI within the full 
range of possible prediction windows from 6-72 hours.

On shorter time windows, closer to the actual onset of AKI, the model achieves a higher 

ROC AUC (a), but lower PR AUC (b). This stems from different numbers of positive steps 

within windows of different length. These differences affect both the model precision and 

the false positive rate. When making predictions across shorter time windows there is more 

uncertainty in the exact time of the AKI onset due to minor physiological fluctuations and 

this results in a lower precision being needed in order to achieve high sensitivity. 95% 

bootstrap pivot confidence intervals are calculated using n=200 bootstrap samples.

a

ROC AUC [95% CI]

 Time windows Any AKI AKI stages 2 and 3 AKI stage 3

 24h 93.4% [93.3, 93.6] 97.1% [96.9, 97.3] 98.8% [98.7, 98.9]

 48h 92.1% [91.9, 92.3] 95.7% [95.5, 96.0] 98.0% [97.8, 98.2]

 72h 91.4% [91.1, 91.6] 94.7% [94.4, 95.0] 97.3% [97.2, 97.6]

b

PR AUC [95% CI]

 Time windows Any AKI AKI stages 2 and 3 AKI stage 3

 24h 25.9% [24.6, 27.0] 36.8% [35.1, 38.7] 47.6% [45.1,49.7]

 48h 29.7% [28.5, 30.8] 37.8% [36.1, 39.6] 48.7% [46.4, 51.1]

 72h 31.7% [30.6, 32.8] 37.4% [35.6, 39.1] 48.0% [46.1,49.9]
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Extended Data Table 2 |
Daily frequency of true and false positive alerts when 
predicting different stages of AKI.

The frequency of alerts and its standard deviation are shown for a time window of 48 hours 

an operating point corresponding to a 1:2 TP:FP ratio (N=5101 days). On an average day, 

clinicians would receive true positive alerts of AKI predicted to occur within a window of 48 

hours ahead in 0.85% of all in-hospital patients, and a false positive prediction of a future 

AKI in 1.89% of patients, when predicting the future AKI of any severity. Assuming none of 

the false positives can be filtered out and immediately discarded, clinicians would need to 

attend to approximately 2.7% of all in-hospital patients. For the most severe stages of AKI, 

the model alerts on an average day in 0.8% of all patients. Of those, 0.27% are true positives 

and 0.56% are false positives. Note that there are multiple time steps at which the 

predictions are made within each day, so the TP:FP ratio of the daily alerts differs slightly 

from the step-wise ratio. (a) Daily frequency of true and false positive alerts when predicting 

any stage of AKI. (b) Daily frequency of true and false positive alerts when predicting 

KDIGO AKI stages two and above. (c) Daily frequency of true and false positive alerts 

when predicting the most severe stage of AKI - KDIGO AKI stage 3.

a

 Alert type Frequency predicting any stage of AKI

 True positive alerts 0.85% ± 0.71

 False positive alerts 1.89% ± 1.20

 No alerts 97.26% ± 1.63

b

 Alert type Frequency predicting KDIGO AKI stages 2 and above

 True positive alerts 0.30% ± 0.35

 False positive alerts 0.64% ± 0.55

 No alerts 99.06% ± 0.75

c

 Alert type Frequency predicting KDIGO AKI stage 3

 True positive alerts 0.27% ± 0.33

 False positive alerts 0.56% ± 0.85

 No alerts 99.17% ± 0.96
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Extended Data Table 3 |
Model performance on patients requiring subsequent 
dialysis.

Model performance only in AKI cases where either in-hospital or outpatient administration 

of dialysis is required within 30 days of the onset of AKI, or where regular outpatient 

administration of dialysis is scheduled within 90 days. The model successfully predicts a 

large proportion of these AKI cases early, 84.3% of AKI cases where there is any dialysis 

administration occurring within 30 days and 90.2% of cases where regular outpatient 

administration of dialysis occurs within 90 days.

Subgroup name Sensitivity (AKI 
episode)

PRAUC ROC AUC Sensitivity 
(step)

Specificity 
(step)

In-hospital/outpatient dialysis 
within 30 days

84.3% 70.5% 83.5% 67.7% 83.3%

Outpatient dialysis within 90 
days

90.2% 71.9% 83.8% 76.5% 76.3%

Extended Data Table 4 |
Operating points for predicting AKI up to 48 hours 
ahead of time.

(a) For prediction of any AKI, the model correctly identifies 55.8% of all AKI episodes 

early if allowing for two false positives for every true positive, and 34.7% if allowing for one 

false positive for every true positive. For more severe AKI stages it is possible to achieve a 

higher sensitivity for any fixed level of precision. Performance increases for prediction of 

(b) AKI stages 2 & 3, and (c) AKI stage 3 alone. 95% bootstrap pivot confidence intervals 

are calculated using n=200 bootstrap samples for all tables.

a

Operating points for predicting any AKI up to 48 hours ahead of time

 Precision True positive / 
False positive

Sensitivity [95% Cl] 
(AKI episode)

Sensitivity [95% Cl] 
(step)

Specificity [95% Cl] 
(step)

 20.0% 1:4 76.7% [75.6, 77.8] 58.3% [56.9, 59.8] 94.8% [94.6, 95.1]

 25.0% 1:3 68.2% [66.9, 69.7] 47.7% [46.1,49.4] 96.8% [96.6, 97.0]

 33.0% 1:2 55.8% [53.9, 57.7] 35.0% [33.3, 36.7] 98.4% [98.3, 98.5]

 40.0% 2:3 46.6% [44.5, 49.0] 27.1% [25.2, 28.9] 99.1% [99.0, 99.2]

 50.0% 1:1 34.7% [32.0, 37.2] 18.5% [16.7, 20.3] 99.6% [99.5, 99.6]

 60.0% 3:2 24.7% [21.8, 27.3] 12.4% [10.5, 13.9] 99.8% [99.8, 99.8]

 75.0% 3:1 12.0% [9.3, 14.6] 5.5% [3.9, 7.0] 100.0% [99.9, 100.0]

b

Operating points for predicting AKI stages 2 and 3 up to 48 hours ahead of time

 Precision True positive / 
False positive

Sensitivity [95% Cl] 
(AKI episode)

Sensitivity [95% Cl] 
(step)

Specificity [95% Cl] 
(step)
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a

Operating points for predicting any AKI up to 48 hours ahead of time

 Precision True positive / 
False positive

Sensitivity [95% Cl] 
(AKI episode)

Sensitivity [95% Cl] 
(step)

Specificity [95% Cl] 
(step)

 20.0% 1:4 82.0% [80.6, 83.5] 65.8% [64.0, 67.9] 98.5% [98.4, 98.6]

 25.0% 1:3 77.8% [76.3, 79.7] 60.4% [58.3, 62.8] 99.0% [98.9, 99.1]

 33.0% 1:2 71.4% [69.6, 73.7] 51.8% [49.6, 54.8] 99.4% [99.4, 99.5]

 40.0% 2:3 65.2% [63.0, 67.7] 44.6% [42.1,47.3] 99.6% [99.6, 99.7]

 50.0% 1:1 56.2% [54.0, 59.2] 35.8% [33.5, 38.9] 99.8% [99.8, 99.8]

 60.0% 3:2 45.1% [42.2, 48.6] 26.3% [23.8, 29.4] 99.9% [99.9, 99.9]

 75.0% 3:1 27.5% [24.2, 31.5] 13.8% [11.7, 16.3] 100.0% [100.0, 100.0]

c

Operating points for predicting AKI stage 3 up to 48 hours ahead of time

 Precision True positive / 
False positive

Sensitivity [95% Cl] 
(AKI episode)

Sensitivity [95% Cl] 
(step)

Specificity [95% Cl] 
(step)

 20.0% 1:4 91.2% [90.4, 92.3] 80.3% [78.4, 82.4] 98.8% [98.7, 98.9]

 25.0% 1:3 88.8% [87.7, 90.1] 75.8% [73.7, 78.3] 99.1% [99.0, 99.2]

 33.0% 1:2 84.1% [82.4, 85.9] 68.3% [65.7, 71.0] 99.5% [99.4, 99.5]

 40.0% 2:3 79.5% [77.4, 81.8] 61.1% [57.9, 64.5] 99.7% [99.6, 99.7]

 50.0% 1:1 71.3% [68.3, 74.4] 50.2% [46.4, 53.8] 99.8% [99.8, 99.8]

 60.0% 3:2 61.2% [57.6, 64.9] 39.9% [35.7, 43.8] 99.9% [99.9, 99.9]

 75.0% 3:1 40.5% [36.5, 46.1] 23.2% [19.6, 27.2] 100.0% [100.0, 100.0]

Tomašev et al. Page 21

Nature. Author manuscript; available in PMC 2020 February 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Extended Data Table 5 |
Future and cross-site generalisability experiments.

(a) Model performance when trained before the time point tP and tested after tP, both on the 

entirety of the future patient population as well as subgroups of patients for which the model 

has or hasn’t seen historical information during training. The model maintains a comparable 

level of performance on unseen future data, with a higher level of sensitivity of 59% for a 

time window of 48 hours ahead of time and a precision of two false positives per step for 

each true positive. The ranges correspond to bootstrap pivotal 95% confidence intervals with 

n=200. Note that this experiment is not a replacement for a prospective evaluation of the 

model. (b) Cohort statistics for (a), shown for both before and after the temporal split tP that 

was used to simulate model performance on future data. (c) Comparison of model 

performance when applied to data from previously unseen hospital sites. Data was split 

across sites so that 80% of the data was in group A and 20% in group B. No site from group 

B was present in group A and vice versa. The data was split into training, validation, 

calibration and test in the same way as in the other experiments. The table reports model 

performance when trained on site group A when evaluating on the test set within site group 

A versus the test set within site group B for predicting all AKI severities up to 48 hours 

ahead of time. Comparable performance is seen across key all key metrics. 95% bootstrap 

pivot confidence intervals are calculated using n=200 bootstrap samples. Note that the model 

would still need to be retrained to generalise outside of the VA population to a different 

demographic and a different set of clinical pathways and hospital processes elsewhere.

a

Patient cohorts

 Metric [95% CI] Before tp (test) New admissions after tp 
(test)

Subsequent 
admissions 
after tp

All patients after 
tp

 Sensitivity (AKI 
episode)

55.09 [54.01, 56.06] 59 [57.11, 60.71] 59.04 [58.38, 
59.63]

58.97 [58.33, 
59.52]

 ROC AUC 92.25 [92.01, 92.42] 90.19 [89.76, 90.77] 89.98 [89.83, 
90.17]

89.98 [89.81, 
90.14]

 PRAUC 29.97 [28.61, 31.15] 30.75 [28.65, 32.81] 31.54 [30.87, 
32.30]

31.28 [30.44, 
32.02]

 Sensitivity (step) 34.26 [33.17, 35.28] 36.87 [35.2, 38.85] 37.23 [36.67, 
37.88]

37.08 [36.40, 
37.65]

 Specificity (step) 98.55 [98.50, 98.60] 97.66 [97.54, 97.76] 97.63 [97.58, 
97.68]

97.64 [97.59, 
97.68]

 Precision 32.51 [31.44, 33.21] 32.66 [31.2, 34.03] 32.97 [32.52, 
33.47]

32.84 [32.28, 
33.33]

b

Before tp After tp

 Patients

 Number of patients 599,871 246,406

 Average age* 61.3 64.2
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a

Patient cohorts

 Metric [95% CI] Before tp (test) New admissions after tp 
(test)

Subsequent 
admissions 
after tp

All patients after 
tp

 Admissions within a given period

 Unique admissions 2,134,544 364,778

 ICU admissions 226,585(10.62%) 40,102 (10.99%)

 Medical admissions 1,040,923 (48.77%) 170,383 (46.71%)

 Surgical admissions 373,823(17.51%) 67,617 (18.54%)

 No creatinine measured 458,486 (21.48%) 52,115 (14.29%)

 Any Chronic Kidney Disease 774,883 (36.30%) 156,181 (42.82%)

 Any AKI present 282,398(13.23%) 41,950 (14.59%)

c

 Metric [95% Cl] Site group A Site group B

 Sensitivity (AKI episode) 55.6% [54.5, 56.6] 54.6% [52.8, 56.3]

 ROC AUC 91.8% [91.6, 92.1] 91.3% [90.8, 91.7]

 PRAUC 30.0% [28.6, 31.2] 30.6% [28.3, 32.7]

 Sensitivity (step) 34.3% [33.1, 35.2] 34.7% [32.6, 36.2]

 Specificity (step) 98.5% [98.4, 98.5] 98.3% [98.2, 98.4]

Extended Data Table 6 |
Summary statistics for the data.

A breakdown of training (80%), validation (5%), calibration (5%) and test (10%) datasets by 

both unique patients and individual admissions. Where appropriate, percent of total dataset 

size is reported in parentheses. The dataset was representative of the overall VA population 

for clinically relevant demographics and diagnostic groups associated with renal pathology. 

*Average age after taking into account exclusion criteria and statistical noise added to meet 

HIPAA Safe Harbor criteria. **CKD stage 1 is evidence of renal parenchymal damage with 

a normal glomerular filtration rate (GFR). This is rarely recorded in our dataset; instead the 

numbers for stage 1 CKD have been estimated from admissions that carried an ICD-9 code 

for CKD, but where GFR was normal. For this reason these numbers may under-represent 

the true prevalence in the population. ***172 VA inpatient sites and 1,062 outpatient sites 

were eligible for inclusion. 130 data centres aggregate data from one or more of these 

facilities, of which 114 such data centres had data for inpatient admissions used in this study. 

While the exact number of sites included was not provided in the dataset for this work, no 

patients were excluded based on location.

Training Validation Calibration Test

Patients

Unique patients 562,507 35,277 35,317 70,681
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Training Validation Calibration Test

Average age* 62.4 62.5 62.4 62.3

Ethnicity Black 106,299(18.9%) 6,544(18.6%) 6,675(18.6%) 13,183 (18.7%)

Other 456,208 (81.1%) 28,733 (81.4%) 28,642 (81.4%) 57,498 (81.3%)

Gender Female 35,855 (6.4%) 2,300 (6.5%) 2,252 (6.4%) 4,519 (6.4%)

Male 526,652 (93.6%) 32,977 (93.5%) 33,065 (93.6%) 66,162 (93.6%)

Diabetes 56,958(10.1%) 3,599(10.2%) 3,702(10.5%) 7,093 (10.0%)

Admissions within a five year period

Data center sites 130*** 130*** 130*** 130***

Unique admissions per 
patient

2,004,217 124,255 125,928 252,492

Average 3.6 3.5 3.6 3.6

Median 2 2 2 2

Duration (days) Average 9.6 9.6 9.6 9.6

Median 3.2 3.2 3.2 3.2

ICU admissions 214,644(10.7%) 13,161 (10.6%) 13,411 (10.6%) 26,739 (10.6%)

Medical admissions 971,527 (48.5%) 60,762 (48.9%) 61,281 (48.7%) 121,675 (48.2%)

Surgical admissions 354,008(17.7%) 21,857(17.6%) 22,093(17.5%) 44,766 (17.7%)

Renal replacement therapy 22,284(1.1%) 1,367(1.1%) 1,384(1.1%) 2,784 (1.1%)

No creatinine measured 408,927 (20.4%) 25,162 (20.3%) 25,503 (20.3%) 51,484 (20.4%)

Chronic Kidney Disease Any 746,692 (37.3%) 46,677 (37.5%) 46,622 (37.0%) 94,105 (37.3%)

Stage 1** 8,409 (0.4%) 515 (0.4%) 576 (0.5%) 1,103 (0.4%)

Stage 2 429,990 (21.5%) 27,162 (21.9%) 26,927 (21.4%) 54,476 (21.6%)

Stage 3A 156,720 (7.8%) 9,837 (7.9%) 9,803 (7.8%) 19,548 (7.7%)

Stage 3B 77,801 (3.9%) 4,675 (3.8%) 4,823 (3.7%) 9,760 (3.9%)

Stage 4 50,535 (2.5%) 3,004 (2.5%) 3,066 (2.5%) 6,223 (2.5%)

Stage 5 31,646(1.6%) 1,999(1.6%) 2,003(1.6%) 4,098 (1.6%)

AKI present Any AKI 267,396(13.3%) 16,671 (13.4%) 16,760(13.3%) 33,759 (13.4%)

Stage 1 207,441 (10.4%) 12,794(10.3%) 12,951 (10.3%) 26,215(10.4%)

Stage 2 43,446 (2.2%) 2,780 (2.2%) 2,783 (2.2%) 5,575 (2.2%)

Stage 3 66,734 (3.3%) 4,267 (3.4%) 4,162 (3.3%) 8,453 (3.3%)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AE Autoencoder

AKI Acute Kidney Injury

AKIN Acute Kidney Injury Network

AUC Area Under Curve

BIDMC Beth Israel Deaconess Medical Center

CDF Cumulative Distribution Function

CKD Chronic Kidney Disease

CNN Convolutional Neural Network

COPD Chronic Obstructive Pulmonary Disease

CPT Current Procedural Terminology

DNC Differentiable Neural Computer

ED Emergency Department

EHR Electronic Health Record

ER Emergency Room

GAM Generalised Additive Model

GBT Gradient Boosted Trees

GFR Glomerular Filtration Rate

GRU Gated Recurrent Unit

GP Gaussian Processes

HIPAA Health Insurance Portability and Accountability Act

ICD-9 International Statistical Classification of Diseases and Related Health 

Problems

ICU Intensive Care Unit

IRB Institutional Review Board

ITU Intensive Treatment Unit

IV Intravenous Therapy
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KDIGO Kidney Disease: Improving Global Outcomes guidelines

LOINC Logical Observation Identifiers Names and Codes

LR Logistic Regression

LSTM Long Short-Term Memory Network

MANN Memory-Augmented Neural Network

MDP Markov Decision Process

MLP Multilayer Perceptron

NHSE National Health Service England

NPV Negative Predictive Value

NTM Neural Turing Machine

PPV Positive Predictive Value

PR Precision/Recall

ReLU Rectified Linear Unit

RF Random Forest

RIFLE Risk, Injury, Failure, Loss of kidney function, and End-stage kidney 

disease

RNN Recurrent Neural Network

RMC Relational Memory Core

ROC Receiver Operating Characteristic

RRT Renal Replacement Therapy

SMC Stanford Medical Centre

SRU Simple Recurrent Unit

TRIPOD Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis

UGRNN Update Gate Recurrent Neural Network

VA US Department of Veterans Affairs

VAE Variational Autoencoder

WCC White Cell Count
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Figure 1 |. Illustrative example of risk prediction, uncertainty and predicted future laboratory 
values.
The first 8 days of admission for a male patient aged 65 with a history of chronic obstructive 

pulmonary disease. (a) Creatinine measurements showing AKI occurring on day 5. (b) 

Continuous risk predictions; the model predicted increased AKI risk 48 hours before it was 

observed. A risk above 0.2, corresponding to 33% precision, was the threshold above which 

AKI was predicted. Lighter green borders on the risk curve indicate uncertainty, taken as the 

range of 100 ensemble predictions once trimmed for highest and lowest 5 values. (c) 

Predictions of the maximum future observed values of creatinine, urea, and potassium.
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Figure 2 |. Model performance illustrated by Receiver Operating Characteristic (ROC) and 
Precision/Recall (PR) curves.
(a) ROC and (b) PR curves for the risk that AKI of any severity will occur within 48 hours. 

Blue dots: different model operating points (A, 20% precision; C, 33% precision; E, 50% 

precision; see Extended Data Table 4). Grey shading: area corresponding to operating points 

with greater than four false positives for each true positive. Blue shading: performance in the 

more clinically applicable part of the operating space. The model significantly (p-value of 
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<1e-6 outperformed the gradient-boosted tree baseline, shown in (b) for operating point C 

using two-sided Mann–Whitney U test on 200 samples per model (see Methods).
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Figure 3 |. The time between model prediction and actual AKI event.
The models predict AKI risk within a particular time window. Within this the time in hours 

between prediction and AKI can vary (error bars: bootstrap pivotal 95% confidence 

intervals; n=200). a, b, Prediction performance for any AKI (a) and AKI stage 3 (b) 48 h 

ahead of time, shown for different precisions. A greater proportion were correctly predicted 

closer to the time step immediately prior to the AKI. The available time window for 
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prediction is shortened in AKI events which occur <48 hours after admission; for each 

column the boxed area shows the upper limit on possible predictions.
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