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With the advent and increased accessibility of deep neural networks (DNNs), complex properties of
histologic images can be rigorously and reproducibly quantified. We used DNN-based transfer learning
to analyze histologic images of periodic acid-Schiffestained renal sections from a cohort of mice with
different genotypes. We demonstrate that DNN-based machine learning has strong generalization
performance on multiple histologic image processing tasks. The neural network extracted quantitative
image features and used them as classifiers to look for differences between mice of different genotypes.
Excellent performance was observed at segmenting glomeruli from non-glomerular structure and sub-
sequently predicting the genotype of the animal on the basis of glomerular quantitative image features.
The DNN-based genotype classifications highly correlate with mesangial matrix expansion scored by a
pathologist (R.E.C.), which differed in these animals. In addition, by analyzing non-glomeruli images,
the neural network identified novel histologic features that differed by genotype, including the pres-
ence of vacuoles, nuclear count, and proximal tubule brush border integrity, which was validated with
immunohistologic staining. These features were not identified in systematic pathologic examination.
Our study demonstrates the power of DNNs to extract biologically relevant phenotypes and serve as a
platform for discovering novel phenotypes. These results highlight the synergistic possibilities for
pathologists and DNNs to radically scale up our ability to generate novel mechanistic hypotheses in
disease. (Am J Pathol 2019, 189: 1786e1796; https://doi.org/10.1016/j.ajpath.2019.05.019)
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Kidney dysfunction is associated with many histologic
changes encompassing glomerular, vascular, and tubulointer-
stitial diseases.1 For example, although diabetic nephropathy
can result in lesions, such as glomerular hypertrophy, hyper-
plasia, mesangial matrix expansion (MME), hypercellularity,
and glomerular basement membrane thickening, it can also
alter the histology of the Bowman space, arterioles, arteries,
tubules, and the interstitium.2 Current approaches to
measuring histologic changes in the kidney are difficult to
quantify and have a low throughput. Many alterations, such as
MME in the glomerulus, require a trained observer to
manually segment histologic images and subjectively score
the extent of MME.3 Therefore, trained pathologists are often
only able to score a limited number of phenotypes on a limited
number of slides.
stigative Pathology. Published by Elsevier Inc
Traditionally, histologic scoring falls into two broad
categories: automatic scoring, using relatively simple mea-
sures, such as staining intensity per unit area, that are
mathematically rigorous, but can be biologically imprecise4;
and complex heuristic scoring, using biologically precise
patterns, such as loss of capillary lumen, that are detectable
by trained human observers, but are more difficult to
quantify.5 In the latter case, pathologists use subjective
. All rights reserved.
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Figure 1 Glomerulus versus tubule classification
strategy. A: To train a classifier to distinguish glomeruli,
100 image patches were sampled from eight hand-
segmented example images (red lines). Fifty image
patches per image whose center pixels were inside
glomeruli (yellow dots) and 50 images patches whose
center pixels were outside glomeruli (blue dots) were
sampled. Yellow boxed area represents glomeruli patch,
and blue boxed area represents non-glomeruli patch. B:
The receiver operating characteristic curve for glomerular
versus non-glomerular predictions shows strong general-
ization performance, achieving 92% true-positive rate for
10% false-positive rate. C and D: An example segmenta-
tion of a testing image shows that the model correctly
identifies regions with glomeruli. Moreover, incorrectly
classified pixels lie near the boundary of glomeruli,
highlighting that the model correctly identifies contig-
uous regions containing glomeruli. Original magnification,
�40 (A, C, and D).
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scoring systems with a low throughput. Moreover, both
strategies require an a priori specification of the relevant
image features to quantify, which leaves no room for the
discovery of novel phenotypes.

Histologic structures are complex and can have immense
variability. Until recently, this variability has been a barrier
to automated analysis. The ability to rigorously quantify
multiple complex image properties with high throughput
and integrate them into a judgment about morphologic state
is an unresolved computer vision problem. However,
advances in computer vision, called deep neural networks
(DNNs), have radically expanded the properties of complex
images that can be quantified. Humans can readily distin-
guish, for example, a cat from a dog, but training a computer
at this task remained a problem until the development of
DNNs.6 DNNs are trained using a data-driven strategy
called deep learning to identify complex features from tens
of millions of natural images representing thousands of
labeled objects.6 DNNs transform raw images into a high-
dimensional signature of abstract quantitative image fea-
tures (QIFs) that quantify complex image properties, such as
textural patterns. More important, these QIFs are transfer-
able among image classification problems, allowing a DNN
trained on natural images to be transferred to other settings,
a process called transfer learning.7 Recent work has
demonstrated that DNNs achieve human-expert level per-
formance at natural and biomedical image classification
tasks.7,8 These DNNs can substantially augment histologic
scoring and enable more robust quantitative analysis.

In this work, we demonstrate the power of DNNs to
identify and quantify specific features in renal tissue struc-
tures and discover novel histopathologic features that are
missed by human observation. Transfer learning was
The American Journal of Pathology - ajp.amjpathol.org
applied to dissect complex histopathologies of the kidney as
a proof of principle that DNN analysis is a mature discovery
platform for histologic analysis. DNNs were used to auto-
matically segment glomeruli in histologic images obtained
by standard bright-field light microscopy using the high-
dimensional DNN outputs. This could be done in a robust
manner, processing each slide in approximately 40 minutes
using the Vermont Advanced Computing Center. It was
further shown that the DNN-based QIFs are relevant to
histopathology by using them to predict the genotype of
mice that are either wild type (WT) or knockout (KO) for
the Far2 gene.

Materials and Methods

Animals and Samples

B6N(Cg)-Far2tm2a(KOMP)Wtsi/2J male mice were generated by
the Knockout Mouse Phenotyping Program (KOMP2) at The
Jackson Laboratory (Bar Harbor, ME) using C57BL/6N-
derived embryonic stem cells provided by the International
Knockout Mouse Consortium, as previously described.9 At 6,
12, and 18 months of age, animals [wild-type, heterozygous
(HET), and knockout mice] were euthanized and kidneys
were collected. Left kidneys were cut in half along the sagittal
plane and placed in 4% paraformaldehyde in phosphate-
buffered saline for 24 hours at room temperature. The kid-
neys were embedded in paraffin, divided into section (4 mm
thick), stained with periodic acid-Schiff, and counterstained
with hematoxylin using a Leica autostainer XL ST5020
(Leica Biosystems, Buffalo Grove, IL). All 90 slides were
scanned at 40� objective using a Hammamatsu nanozoomer
2.0HT digital slide scanner (Hammamatsu, Bridgewater, NJ).
1787
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Figure 2 Glomerular segmentation strategy. To perform glomerular
segmentation, the trained segmentation model was applied (Figure 1) to a
square grid of points spaced 100 pixels (px) apart to classify grid points as
inside glomeruli (large red dots) or outside glomeruli (large black dots).
Human annotation of glomeruli is represented by red lines. For pixels
classified as glomeruli, the segmenter returned to those locations to sample
more finely at 20 px to determine glomerular boundaries (small dots). A
final mask is generated through nearest-neighbor interpolation. Original
magnification, �40.
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Bright-field individual Tagged Image File Format (TIFF)
images were obtained using the NDPtools macro.10 Animal
experiments were approved by the Institutional Animal Care
and Use Committee.

DNN Feature Extraction

To extract quantitative image features, the AlexNet DNN,5

which is available through the MATLAB Deep Learning
Toolbox (Mathworks, Natick, MA), was used. AlexNet uses a
cascade of mathematical transformations (image filtering,
averaging, and rectified linear thresholding) to transform the
raw input image into a series of numbers that quantify different
patterns.11 These transformations are arranged in a sequence of
26 layers. The lowest layers correspond to primitive features,
such as boundaries between light and dark, whereas the higher
layers correspond to progressively more abstract features, such
as textures and patterns. AlexNetwas trained to classify images
into one of the 1000 classes (eg, boat or cat), representing a
wide spectrum of natural images. However, higher-layer in-
termediate features capture complex structures that are present
in many image classes, and not just natural images. For this
study, features were extracted from the 17th layer of AlexNet,
called fully connected layer 6, which reports 4096 distinct
quantitative features. AlexNet has a fixed input size of
227 � 227 pixels (px), where 1 px corresponds to 226 nm of
tissue in our images. Therefore, AlexNet was applied to
227� 227-px image patches to obtain 4096 features per patch
that were used to train subsequent classifiers. Feature values
were standardized (mean subtracted and normalized to SD) and
subsequently used by support vector machine (SVM) classi-
fiers. All feature extraction was performed on the Vermont
Advanced Computing Core’s central processing unit (CPU)
cluster via torque server submission.
1788
SVM Training

All SVM classifiers were trained with the MATLAB
Statistics and Machine Learning Toolbox (Mathworks,
Natick, MA). Kernel SVM classifiers, which are nonlinear
learning algorithms that have three hyperparameters (box
constraint, kernel scale, and cost), were used. The box
constraint parameter controls how much a model penal-
izes an incorrect prediction in the training data. The kernel
radius determines how much the model extrapolates a
given training data points class to nearby points. The cost
parameter controls how much the model penalizes a false
positive relative to a false negative. All hyperparameters
were fit using MATLAB’s built-in optimization in which
many putative models are built with various parameters
and the resulting accuracies are compared using cross
validation (Mathworks). For the segmentation pipeline, a
gaussian kernel was used with a kernel scale of 150 and a
box constraint of 377. A 5-to-1 cost penalty of false
negatives to false positives was used, as false positives
were readily identified in post-processing (see below). For
the genotype comparisons, a polynomial kernel was used,
which had an additional hyperparameter, polynomial
order. Polynomial order was also selected automatically
using MATLAB’s built-in tools, and polynomial orders of
three and two were selected for the glomerular and tubular
analysis, respectively. For reproducibility, all computa-
tions were performed with the default random number
generator seed, and all analysis code is available on
GitHub (https://github.com/TheJacksonLaboratory/Image
Feature, last accessed March 12, 2019).
SVM models produce a final classification as well as a

confidence score, which quantifies how strongly the classi-
fier weighs the evidence for either class. SVM model per-
formance was visualized using a receiver operating
characteristic curve, which plots the true-positive rate versus
the false-positive rate as a function of the confidence score.
Ideally, the receiver operating characteristic curve should
climb steeply to a high true-positive rate (near 1) at low
false-positive rate (near 0) before leveling off and reaching
the point (1, 1) in the upper right. Random guessing cor-
responds to a 45-degree line. Receiver operating character-
istic curves shown use a set of images not included in the
training data specifically held out for validation.

Automatic Segmentation of Glomeruli Using Support
Vector Machines

Our strategy to automatically segment glomeruli was as
follows. After intensity normalizing all images using the
MATLAB histeq function to account for differing stain in-
tensities between sections, an SVM was trained to classify
image patches according to whether their center pixel was
inside or outside a glomerulus using the 4096 AlexNet
features for that image patch (Figure 1A). For training data,
glomeruli were hand segmented in eight training images and
ajp.amjpathol.org - The American Journal of Pathology

https://github.com/TheJacksonLaboratory/ImageFeature
https://github.com/TheJacksonLaboratory/ImageFeature
http://ajp.amjpathol.org


Figure 3 Classifying glomeruli by Far2 genotype. A:
Glomeruli are typically larger than the 227 � 227-pixel
squared input for AlexNet. To obtain features for classi-
fying glomeruli by genotype, feature vectors obtained by
taking nine image patches sampled in a grid around the
center-of-mass pixel (center red dot) of the glomerulus
were averaged. The human annotation of glomeruli is
represented by a red line. B: The receiver operating
characteristic curve for wild-type (WT) versus knockout
(KO) predictions shows strong generalization perfor-
mance, achieving an 87% true-positive rate at a 10%
false-positive rate. C: The six most confidently predicted
WT glomeruli show extensive mesangial matrix expansion
(MME), whereas the six most confidently predicted KO
glomeruli did not. D: The deep neural network (DNN)
ebased glomerulus score significantly correlates with MME
scored by a pathologist (R2 Z 0.72; P Z 9.03 � 10�8) in
heterozygous glomeruli, which were not used to train the
model, demonstrating that the DNN identified a known
histopathology to classify genotype. Original magnifica-
tion, �40 (A and C). AU, arbitrary unit.
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100 image patches sampled from each image balanced be-
tween glomerular patches and tubule patches (Figure 1A).
One image was held out for testing. To enrich the training
data for edge cases close to a glomerular boundary, non-
glomerular image patches inversely proportional to their
distance from a glomerulus were sampled (Figure 1A),
which ensured many training images that overlapped a
glomerulus with center pixels on either side of the
boundary.

To automatically segment glomeruli in a new image, a
two-step classification process was applied. First, a coarse-
grained scan that sampled image patches in a square grid
every 100 px (approximately 23 mm) was used, and the
above classifier was used to classify patches into glomerulus
versus tubule (Figure 2). The second step returns to the
glomerulus predictions and samples more finely at 20 px
(approximately 4.5 mm) to determine the exact boundary of
the detected glomerulus (Figure 2). Final predictions were
filtered to include only predicted points that formed
contiguous regions of >35 pixels. This cutoff was selected
by visual inspection of the distribution of region sizes on the
training images (data not shown). Nearest-neighbor inter-
polation was used to extrapolate from the sampled pre-
dictions to a pixel-by-pixel mask of detected glomeruli
within the image. Eight images were selected from the
analysis set and hand sectioned to validate both the scanning
method as well as transferability of the classifier.
SVM Classification of Genotype Using AlexNet Features
from Glomeruli

To classify glomeruli on the basis of genotype, 98 glomeruli
(25 KO, 41 HET, and 32 WT) were analyzed from 45
The American Journal of Pathology - ajp.amjpathol.org
kidney sections (17 KO, 16 HET, and 12 WT) from 17
animals (6 KO, 6 HET, and 5 WT). Because a typical
glomerulus is larger than the fixed 227 � 227-px size for
AlexNet, features were computed for nine overlapping
patches around the center-of-mass pixel of the identified
glomerulus (Figure 3A). These features were averaged
together to produce a final 4096-dimensional feature vector
for each glomerulus. An SVM was trained to distinguish
KO from WT glomeruli using these averaged features.
Seventy-eight glomeruli were held out to test the general-
ization performance of our classifier (Figure 3B).

SVM Classification of Genotype Using AlexNet Features
from Tubules

To classify tubules on the basis of genotype, 500 image
patches of tubule structure were sampled from the same set
of images as the glomeruli above. An SVM was trained to
distinguish KO versus WT tubules on the basis of the 4096
features of each of these image patches. Thirty-five histo-
logic slides were held out to test the generalization perfor-
mance of our classifier (Figure 4B).

Pathologic Scoring of Glomeruli

Mesangial matrix expansion was assessed in the glomeruli,
as previously described.12 Briefly, renal pathologists eval-
uated 50 glomeruli per animal to score the mesangial matrix
[0 indicates no MME; 1, increase in extracellular material
(mesangial matrix) and/or cellularity (mesangioprolifera-
tion) such that the width of the intercapillary space exceeds
two mesangial cell nuclei but does not exceed the mean area
of the glomerular capillary lumen; 2, the expanded mesan-
gial area exceeds the mean area of a capillary lumen and
1789
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Figure 4 Classifying tubules by Far2 genotype. A: Image patches of non-glomerular structure from wild-type (WT) and knockout (KO) animals were
classified according to genotype. The Support Vector Machine (SVM) scores from the model in held-out testing data show that the model confidently
distinguishes WT from KO and that heterozygotes (HETs) had an intermediate phenotype. B: The receiver operating characteristic curve for the model
shows strong generalization performance, achieving a 95% true-positive rate at a 10% false-positive rate. C: To identify the histopathologic features
distinguishing genotype, montages were generated. A total of 100 WT images around the mean of the SVM score (�1.01) showed a range of images
with a minimum SVM score of -1.02 and a maximum SVM score of -0.99 (A, blue distributions, median values). D: A total of 100 KO image patches from
around the mean of the SVM score (1.00) showed a range of images with a minimum SVM score of 0.99 and a maximum SVM score of 1.01 (A, green
distributions, median values). E: Montages were also generated. A total of 100 WT images with the most extreme SVM score are shown (average value,
-2.88; minimum SVM score, -3.89; and maximum SVM score, -2.52). F: A total of 100 KO image patches with the highest SVM scores are shown (average,
2.64; minimum SVM score, 2.45; and maximum SVM score, 3.38). These images suggest differences in vacuolization and nuclear counts around
the tubule. Original magnification, �40 (CeF).

Sheehan et al

1790 ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Renal Histology and Neural Networks
often distorts/compresses the capillaries (microaneurysms
are sometimes observed); and 3, the mesangium is expanded
and/or sclerosed to such extent that capillary lumens are
completely collapsed and can no longer be distinguished
(collapsing glomerulosclerosis and completely sclerosed
obsolescent glomeruli also fall into this category)].

Pathologic Scoring of Tubules

Vacuolization was quantified using ImageJ software version
1.51h (NIH, Bethesda, MD; http://imagej.nih.gov/ij) on
representative and extreme image patches classified in the
Support Vector Machine (Figure 5). Briefly, a measure of
the image covered by tissue is taken by preforming a blur on
the images and then using a threshold on the grayscale
image. The area of an image covered by vacuoles is
measured by using the gray morphology tool with a radius
of 10, looking for open circles. Nuclear counts and area
were obtained using cell profiler. Specific settings,
macros, and cell profiler pipelines can be found on GitHub
(https://github.com/TheJacksonLaboratory/ImageFeature,
last accessed March 28, 2019).

Sodium/Glucose Cotransporter Member 2 (SGLT2)
Staining

The kidneys were collected and divided into sections (4 mm
thick), as described in the Animals and Samples subsection of
Materials and Methods. The slides were processed on the
Leica Bond system using an slgt2 antibody (dilution 1:250;
85626; Abcam, Cambridge, UK), 20 minutes of antigen
retrieval, and Leica Bond polymer refine detection kit
(1298873; Leica Biosystems). Scoring was done by assessing
100 tubuli per animal and scoring each tubule as having a
nonconnecting brush boarder or an intact brush boarder. A t-
test was performed to determine statistical significance.
Figure 5 Vacuole score and Support Vector Machine (SVM) in non-glomerul
vacuole scores determined on the same images, calculated using ImageJ version 1.
Montage of examples of wild-type (WT) images with a vacuole score of zero. C: M
Original magnification, �40 (B and C). HET, heterozygous.

The American Journal of Pathology - ajp.amjpathol.org
Results

DNN analysis was applied to examine if histologic light
microscopy image features could be linked with genotype.
DNNs were applied to histologic images of kidneys from a
previous study in which differences in mesangial matrix
expansion were identified (Figure 1).9 The study cohort
consisted of C57BL/6N males with different alleles for the
Far2 gene: i) Far2tm2a(KOMP)Wtsi, hereafter called KO; ii)
Far2B6N, hereafter called WT; and iii) HETs produced by
mating the two strains homozygous for both alleles. SVM
classifiers were trained using DNN-based QIFs of kidney
image patches to make three distinctions: i) between
glomerulus and tubule structure, ii) between WT and KO
glomeruli, and iii) between WT and KO tubuli.
Glomerular Segmentation

It was first determined if DNNs could perform high-quality
glomerular segmentation. The glomerular segmentation
SVM model classified pixels within an image as being either
inside or outside of a glomerulus (Figure 1). The model was
trained on eight example images containing a total of 13
glomeruli that were hand annotated (Figure 1A). Using
these training examples, the SVM learned differences in the
QIF signatures, distinguishing images whose center pixel is
contained within a glomerulus and those whose center pixel
is outside of a glomerulus (Figure 1A). The model was then
tested on images that were not used for training, including
images from animals with different Far2 genotypes than the
training examples. The automated pipeline reliably extracted
glomerulus locations in images that were not used to train
the classifier (Figure 1B). The prediction model is highly
accurate, achieving a 92% true-positive rate per pixel at a
10% false-positive rate. Moreover, false-positive pixels
ar images. A: Correlation of SVM scores from non-glomerular images with
51h. Black line represents the regression line; gray shading, the 95% CI. B:
ontage of examples of knockout (KO) images with a vacuole score of zero.

1791

http://imagej.nih.gov/ij
https://github.com/TheJacksonLaboratory/ImageFeature
http://ajp.amjpathol.org


Sheehan et al
cluster around true glomeruli (Figure 1C) rather than being
spurious hits in the middle of images. Likewise, false-
negative pixels lie just inside the boundary of identified
glomeruli (Figure 1C). This model can reliably identify
glomeruli, and erroneous predictions are not spurious pre-
dictions in tubular tissue, but lie near the boundary of true
glomeruli. This allows the model to scan large images of
multiple patches to localize glomeruli, which will arise as
contiguous blocks of predicted positive pixels (Figure 1D),
with few predicted regions not overlapping any glomerulus.

Distinguishing Genotypes Using DNNs

It was next tested whether the DNN features encode mea-
sures of kidney histopathology. Aged Far2 KO mice have
significantly less MME than WT controls.9 Thus, KO and
WT mice represent two extremes of glomerular histopa-
thology. An SVM was trained to predict KO versus WT
genotype using DNN-based QIFs. For each glomerulus,
Figure 6 Number of nuclei and Support Vector Machine (SVM) in non-glomeru
shading, the 95% CI. A: Correlation between SVM score and number of nuclei for
vacuole score, nuclear count, and SVM score. An interactive plot is available (Th
histological-phenotyping-and-neural-networks, last accessed March 28, 2019). C a
nuclei for all non-glomerular images. HET, heterozygous; KO, knockout; WT, wild
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QIFs were averaged for nine image patches around the
center pixel of the glomerulus and an SVM was trained to
distinguish WT from KO animals using these averaged
glomerular signatures (Figure 3A). The model was trained
on 20 example glomeruli (10 from KO animals and 10 from
WT animals) and tested on 78 glomeruli from held-out
images. The trained model generalized well, achieving an
87% true-positive rate at a 10% false-positive rate
(Figure 3B), suggesting that the DNN is sensitive to image
features distinguishing the genotypes. In addition to a pre-
dicted classification into KO or WT, the SVM classifier
reports a score (glomerulus score) quantifying how similar a
glomerulus is to the WT versus KO. Large positive scores
indicate that a glomerulus is more WT like, and large
negative scores indicate that a glomerulus is more KO like.
The six glomeruli with the highest scores were from WT
animals, and their glomeruli show extensive MME
(Figure 3C). Likewise, the six glomeruli with the lowest
scores were from KO animals (Figure 3C), and these
lar images. Black line represents the regression line for correlations; gray
images with a vacuole score of zero. B: Depiction of relationship between
e Jackson Laboratory, https://www.jax.org/research-and-faculty/resources/
nd D: Correlation between SVM (C) and vacuole (D) score and number of
type.
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Figure 7 Albumin/creatinine ratio (ACR) and Support Vector Machine
(SVM) in non-glomerular image correlation between SVM score and physi-
ological measure of urinary ACR. Black line represents the regression line;
gray sharing, the 95% CI.
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glomeruli show less MME. Thus, the SVM classification
appeared to be specifically sensitive to the MME differences
between WT and KO animals. Therefore, glomerulus scores
were analyzed for 41 glomeruli from HET animals, which
were not used to train the classifier. MMEs were manually
scored by eye for these 41 example glomeruli, according to
a standard four-point ordinal scaled0 (no damage) through
3 (severe damage).9 The DNN-based glomerulus score
strongly correlated with the manual MME score (R2 Z 0.72;
P Z 9.03 � 10�8) (Figure 3D), indicating that the model
trained to distinguish WT versus KO genotype is implicitly
sensitive to MME severity, which it uses to distinguish the
genotypes.

Using DNNs for Non-Glomerular Pathology

Because the DNN could distinguish glomeruli from non-
glomerular tissue and was sensitive to known histopathol-
ogy in glomeruli, it was studied whether the DNN could
further detect novel pathologic changes in non-glomerular
structures. Although MME is well established and widely
measured in kidney histopathology, especially in diabetic
nephropathy, it is unlikely to be the case that histologic
lesions are limited to the glomerulus.13 In the original
characterization of the Far2 KO renal phenotype, no
obvious tubular differences were found on the basis of the
manual scoring by a pathologist.9 The DNN was applied to
image patches outside of glomeruli (ie, images of tubule
structures) to test the hypothesis that QIF signatures of non-
glomerular structure also differed between the genotypes.
An SVM model was trained on 1000 QIF signatures from
image patches from KO and WT animals (500 KO, 500
WT), and 21,500 image patches from held-out images of
mice from all three different genotypes were tested
(Figure 4A). Again, the classifier had strong generalization
performance, achieving a 95% true-positive rate at a 10%
The American Journal of Pathology - ajp.amjpathol.org
false-positive rate (Figure 4B), demonstrating that QIFs of
non-glomerular structure are sufficient to discern genotype.
As with classifying glomeruli as WT or KO, the SVM
model reports a confidence score (SVM score) that is
significantly different between WT and KO image patches.
As with the glomeruli, the HET image patches have an in-
termediate phenotype, where some HET images classify as
WT and others as KO (Figure 4A).

Identification of Differences in Vacuolization and
Nuclear Count

To visualize the differences observed by the DNN, mon-
tages of 100 representative image patches were generated by
selecting the 100 images closest to the mean of the SVM
score distributions for KO and WT animals (Figure 4, C and
D). These montages show a difference in the number of
vacuoles present in the WT proximal tubules compared with
the KO tubules. Likewise, montages of the 100 most
extreme examples from the KO and WT distributions were
generated (Figure 4, E and F), and the difference in vacuoles
was confirmed. The extreme examples from WT animals are
in the sagittal orientation, whereas the extreme examples
from the KO animals are in the transverse orientation.
Training and testing data sets for both WT and KO animals
contained both sagittal and transverse sections, and the
SVM classifier generalized well, demonstrating that it was
not confounded by section orientation. Thus, the difference
between WT and KO is most easily distinguished in the
sagittal plane for the WT and in the transverse plane for the
KO. This can be visualized by looking at Figure 4, C and D,
which contain representative images for WT and KO ani-
mals, respectively. Both montages in Figure 4, C and D,
have images in the sagittal and transverse orientation,
indicating that the mean SVM score per genotype has ex-
amples of each orientation. The separation of sagittal and
transverse orientation by genotype only occurs when look-
ing at the extreme examples.

To validate that the SVM classification was sensitive to
the presence of vacuoles in non-glomerular tissues, the
percentage of non-glomerular tissue covered by vacuoles
was quantified using ImageJ. This is referred to as the
vacuole score. There is a strong correlation
(P < 2.2 � 10�16) between the saturation-based vacuole
score and the SVM score (Figure 5A), demonstrating that
the SVM score is sensitive to vacuolization.

Although the vacuolization result is statistically signifi-
cant, there was a large range of SVM scores among the
image patches that had a vacuole score of zero. When the
montages of these images were analyzed, differences in
nuclear area and nuclear number were observed (Figure 5, B
and C). These differences are quantifiable using standard
threshold analysis (GitHub, https://github.com/
TheJacksonLaboratory/ImageFeature/tree/master, last
accessed March 12, 2019), and they differ between
genotypes (Figure 6A). To test whether differences in
1793
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Figure 8 SGLT2 staining. A: Quantification of proximal tubule integrity
by genotype (P Z 0.003139). B: Representative image of a knockout (KO)
tubule with loss of SGLT2 positive staining in the lumen of the brush
boarder. C: Representative image of a wild-type (WT) tubule stained with
SGLT2, depicting an intact brush boarder. Original magnification, �40 (B
and C).
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nuclear count explain differences in the SVM score for
images where the vacuole score is not zero, a three-way
correlation was performed (Figure 6B) (interactive version
available at The Jackson Laboratory, https://www.jax.org/
research-and-faculty/resources/histological-phenotyping-
and-neural-networks, last accessed March 12, 2019).
Figure 6C shows the full cohort of image patches from
Figure 5 and that there is a correlation between the SVM
score and nuclear count. A combination of vacuole score
and nuclear number explains 70% of the variance contained
in the SVM score. The nuclear count and vacuole score
correlate but not well, and the SVM score is a mixture of
both measures (Figure 6D).

Relationship between SVM Score and Physiological
Measurements

To determine whether the differences in SVM score
correlated with renal physiology, non-glomerular SVM
scores were studied in relation to glomerular filtration rate
data; no relationship was observed. The relationship be-
tween non-glomerular SVM scores and urinary albumin/
creatinine ratio, however, highlights some interesting
findings (Figure 7). There is a threshold of albumin/
creatinine ratio/tubular SVM score that separates the KO
animals with higher SVM score (>0) and albumin/creat-
inine ratio (>16 mg/g) from the WT and HET animals.
Looking at montages of this separation, a difference was
observed in the sharpness of the tubular membranes, with
membranes from KO animals having a sharper appear-
ance. This might be due to changes in the integrity of the
proximal tubule brush border. Therefore, brush border
integrity was studied by staining for SGLT2, and WT
animals showed a more intact brush border than KO an-
imals (P Z 0.003139) (Figure 8). This clearly links the
SVM score from the DNN with a histologic finding
relating background genotype to quantifiable differences
in the histology and subsequent alterations in physiology.
These differences were missed on a labor-intensive
traditional scan by trained pathologists (R.E.C.).
Discussion

There is untapped information in medical images. Much like
crime scene investigators on television using information
hidden in an image to solve a crime, medical images can be
used to explore structure and function beyond traditional
clinical and pathologic scores. However, the maximal use of
histologic images requires rigorously scoring as much tissue
as possible for as many phenotypes as possible. In this
study, DNNs were shown to be a significant aid to rigor,
throughput, and discovery for histologic analysis. In
particular, DNNs were shown to aid in the segmentation and
pathologic scoring of kidney tissue and to facilitate the
discovery of novel histopathology.
1794
DNNs overcome the time- and labor-intensive rigors of
quantitative phenotyping using a reproducible sequence of
mathematical transformations without any human-user
intervention. The high-dimensional DNN signatures cap-
ture thousands of subtle properties of histologic images that
can be used to predict other end points, including disease
status and physiological outcomes. More important, DNN
signatures are unbiased. A significant amount of histologic
scoring requires identifying image features of interest and
quantifying variation in these features by eye. This process
necessarily starts with a researcher’s a priori understanding
of the relevant histology. In contrast, DNN features were
learned by analyzing millions of natural images and learning
common patterns.6,14 The signature of an image across all of
these quantitative features encodes histologic features that
are not a priori specified, but can be tested for disease
relevance. This is analogous to the difference between
measuring the expression of a candidate RNA by real-time
quantitative PCR and unbiased, genome-wide RNA
sequencing. A DNN signature is a holistic readout of a
histologic image. As in the genomic revolution, these sig-
natures can be used for both hypothesis testing and hy-
pothesis generation.
In this study, DNN signatures could robustly segment

glomeruli from kidney images. Automatic image segmen-
tation is a major field of computer vision research that is
currently benefiting greatly from DNN technologies.15 A
pretrained deep neural network is being used to extract
features for the downstream machine learning analyses
using minimal training data, important for transferring this
process to other image problems. These results show that the
DNN-based techniques are excellent candidates for general-
purpose glomerular segmentation models. The glomerular
segmentation pipeline can segment a full-sized mouse kid-
ney section in approximately 40 minutes using 200 cores on
ajp.amjpathol.org - The American Journal of Pathology
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the Vermont Advanced Computing Cluster. This makes it
possible to analyze more glomeruli than could be accom-
plished manually. The clustering of incorrect pixel classifi-
cation around true glomeruli indicates that the boundaries
are more difficult for the computer to recognize, but this can
be overcome easily when subsequently analyzing the
glomeruli themselves. For example, using a box surround-
ing the detected glomerulus, the genotype classifiers could
robustly distinguish genotypes (Figure 3A). Critically, the
DNN had few predicted false-positive regions (as opposed
to pixels), so post-processing methods are sufficient to
address incorrectly classified pixels. At this scale, it is
possible to eliminate any technical variation due to sub-
sampling glomeruli from a user-defined region of interest, as
effectively all glomeruli in a section can be detected and
analyzed. This property makes DNN-based scoring an
attractive option for quantitative trait locus mapping and
integration into systems biological analysis.

The DNN signatures of both glomeruli and tubule
structure were sufficient to classify the Far2 genetic back-
ground of the animal. These results demonstrate that DNN
signatures encode pathologically relevant features, as these
animals are known to differ in both kidney structure and
function.9 Far2 leads to mesangial matrix expansion through
increased production of platelet-activating factor precursors.
Increased FAR2 expression in human patients is associated
with diabetic nephropathy, lupus nephritis, and IgA ne-
phropathy.9 In the case of glomeruli, the DNN signatures
specifically encoded MME (Figure 3). The Far2 KO ani-
mals are known to have less MME at 12 months of age
compared with wild-type controls,9 but the traditional
scoring system for MME is a subjective ordinal scale.12 In
contrast, the SVM model developed using DNN signatures
transformed the categorical distinction between genotypes
(WT and KO) into a quantitative glomerular score that
strongly correlated with standard MME scores when tested
on HET glomeruli. Intuitively, this model asserts that the
more similar a HET glomerulus is to a KO glomerulus, the
more likely it is to have little MME, and vice versa. An
important next step for DNN-based glomerular quantifica-
tion will be to explicitly model specific glomerular pheno-
types as an end point in a multivariate regression using
DNN signatures as predictors. Ideally, such a model would
be trained using thousands of examples spanning a wide
range of models with a spectrum of disease. Our results
concerning automatic segmentation and MME demonstrate
the feasibility of such efforts.

Machine learning applied to biological image analysis is
powerful and advancing rapidly but is often referred to as a
black box. This lack of a direct link to definable histology is
unsettling to many.16 The major result of this study is that
DNN signatures can distinguish between WT and KO kid-
ney in non-glomerular (mostly tubular) structures. Previous
analyses of the tubule structure of these animals by our
group and a renal pathologist did not uncover any overt
differences.9 The DNN signatures, in contrast, robustly
The American Journal of Pathology - ajp.amjpathol.org
distinguished between genotypes (Figure 4). Thus, the DNN
is sensitive to subtle patterns that are difficult to pick out
from a large set of images but represent true biological
differences. However, the DNN signatures have no a priori
biological meaning; an image goes in, and a series of
numbers comes out. To open the black box and determine
the features that the model was using to distinguish the
groups, montages of representative and extreme images
were used to visualize the subtle distinctions by genotype
(Figure 4). This allowed identifying gestalt differences be-
tween the groups, including a vacuolization score, number
of nuclei, and brush boarder integrity. Renal tubular
simplification has been proposed as a response to stress
(specifically, hyperglycemia in diabetic conditions).13 This
difference between WT and KO might be a method of
damage control, as MME is delayed in the same mice with
the increased tubular damage. The finding that nuclear count
correlates with SVM score (Figure 6C) also highlights that
the knockout mice have more tubular epithelial cell loss
and/or less epithelial proliferation compared with the WT
animals. This dovetails nicely with the overall protective
mechanisms proposed by the increased vacuoles found in
these samples (Figure 5A) and the delayed onset of MME.
In addition, with the progression of diabetic nephropathy,
tubular membranes can become thick.17,18 In the KO ani-
mals, the DNN has highlighted the presence of tubular
simplification, as shown by a lack of SGLT2 staining
(Figure 8), which has been shown to occur in diabetic
ketoacidosis.19 In our study, the KO mice lack fatty acyl-
CoA reductase 2, a reductase enzyme involved in the con-
version of fatty acids to fatty alcohols.20 Albumin reab-
sorption has been shown to occur in the tubules,21 albumin
is a normal carrier for free fatty acids, and fatty acid co-
uptake in the tubules has already been proposed as a dis-
ease mechanism.22 It is possible that the altered lipid profile
in the Far2 KO mice causes lipid reabsorption along with
albumin, and they increase and accumulate in the tubules.
The presence of the vacuoles hampers albumin uptake,
resulting in increased urinary albumin. Thus, the tubule
alterations observed by the DNN are likely related to
functional changes and are consistent with the pathobiology
of diabetic nephropathy. All together, these results demon-
strate the power of the DNN as an intermediate, hypothesis-
generating step that highlights important parts of the image
data for deeper analysis (Figure 6B) and points the
researcher toward novel mechanistic questions to further
explore. Specifically, in this case, non-glomerular changes
that make sense in our model were completely missed. The
observations were supported by follow-up immunohisto-
chemistry and the enhanced understanding of the role of
Far2 in renal function.

The benefits of DNN analysisdrigor, throughput, and
discoverydare not limited to kidney histology. These re-
sults highlight a paradigm in which histologic images from
genetically different strains can be systematically mined for
relevant histologic features. The DNN does the grunt work
1795
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and allows the researcher to hone in on the most relevant
features, even those that may have been missed on careful
inspection. The DNN is, therefore, a tool to orient us in
histologic images and maximize our efforts to those features
that are critical for disease processes. As DNN technology
steadily improves, more such labor can be moved to ma-
chine processing, whereas researcher’s effort can be focused
on characterizing and validating the most discriminating
histologic features.
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