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Abstract: Breast cancer is one of the most common malignancies. However, the molecular mechanisms
underlying its pathogenesis remain to be elucidated. The present study aimed to identify the
potential prognostic marker genes associated with the progression of breast cancer. Weighted gene
coexpression network analysis was used to construct free-scale gene coexpression networks, evaluate
the associations between the gene sets and clinical features, and identify candidate biomarkers.
The gene expression profiles of GSE48213 were selected from the Gene Expression Omnibus database.
RNA-seq data and clinical information on breast cancer from The Cancer Genome Atlas were used
for validation. Four modules were identified from the gene coexpression network, one of which was
found to be significantly associated with patient survival time. The expression status of 28 genes
formed the black module (basal); 18 genes, dark red module (claudin-low); nine genes, brown module
(luminal), and seven genes, midnight blue module (nonmalignant). These modules were clustered
into two groups according to significant difference in survival time between the groups. Therefore,
based on betweenness centrality, we identified TXN and ANXA2 in the nonmalignant module, TPM4
and LOXL2 in the luminal module, TPRN and ADCY6 in the claudin-low module, and TUBA1C and
CMIP in the basal module as the genes with the highest betweenness, suggesting that they play a
central role in information transfer in the network. In the present study, eight candidate biomarkers
were identified for further basic and advanced understanding of the molecular pathogenesis of breast
cancer by using co-expression network analysis.
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1. Introduction

The incidence of breast cancer continues to increase worldwide, and currently, breast cancer is a
serious disease among women. In 2017, the estimated number of new cases of invasive breast cancer
was 252,710, among which 2470 men were diagnosed. In addition, 63,410 women were diagnosed
with breast cancer in situ, and around 40,610 women and 460 men were expected to die of breast
cancer. Presently, Asia has become a high-risk region for breast cancer, ranking first among malignant
tumors in females [1,2]. Recently, with the continuous efforts and progress of modern medicine, the
treatment of breast cancer has become more effective, and the mortality rate of breast cancer has been
significantly reduced. However, the recurrence and metastasis of breast cancer have still not been
addressed comprehensively, and have become the greatest challenges in clinical treatment [3,4].

Researchers are using genetic studies to understand the functions of tumor-related genes and
roles of tumor cell signaling pathways. Therefore, we tried to understand and screen the key genes
related to breast cancer recurrence to predict the recurrence factors for breast cancer accurately, in order
to reduce the risk of cancer recurrence and metastasis. In addition, patients can be provided with more
effective and individualized treatment, which in turn reduces breast cancer mortality and improves
long-term survival.

Both bioinformatics and system biology are strong interdisciplinary fields that combine the
collection, storage, processing, and dissemination of biological information, summarize life sciences
and computer science, and collect and analyze genetic data [5,6].

The rapid technological breakthrough of genome-wide sequencing has provided a new perspective
for the study of clinical issues and related pathological mechanisms underlying various cancers. Most
studies have focused on the screening of differentially expressed genes, but not enough to understand
the high degree of interconnectivity between genes, i.e., genes with similar expression patterns may
be functionally related [7]. In this study, we used coexpression analysis as a powerful technique for
constructing free-scale gene coexpression networks. Weighted gene coexpression network analysis
has been widely used to analyze large-scale data sets and find modules of highly correlated genes.
Weighted gene correlation network analysis (WGCNA) [8] has been successfully used to evaluate the
associations between gene sets and clinical features and identify candidate biomarkers. Therefore,
we described the correlation patterns among genes using a systems biology method based on WGCNA
and identified novel biomarkers associated with breast cancer prognosis. We used WGCNA to examine
a previously published dataset (GSE48213, [9]). This dataset is a transcriptional profile of a breast
cancer cell line based on 56 samples used to identify the gene expression patterns associated with
subtype and response to therapeutic compounds.

Finally, we used three databases, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene
Ontology, and The Cancer Genome Atlas (TCGA), and completely constructed related genes and
coexpression networks. We also identified key genes to facilitate further studies into their potential as
biomarkers as well as therapeutic targets in breast cancer. We performed a comprehensive bioinformatics
analysis to further investigate the functions, pathways, regulatory mechanisms, and drug candidates
of these genes.

2. Materials and Methods

2.1. Dataset Download

The pipeline of this study is presented in Figure 1. The gene expression profiles of GSE48213
were stored in the Gene Expression Omnibus (GEO) database. It is a transcriptional profiling of a
breast cancer cell line based on 56 samples associated with subtypes (basal, claudin-low, luminal,
nonmalignant, and unknown).
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2.2. Data Preprocessing

Firstly, normalized data were downloaded from the GEO database, and then we converted each
Ensembl gene to Ensembl Gene ID with the biomaRt package [10,11] in R. However, a large number of
these genes did not have different expression between samples. Therefore, the data was processed
by focusing on the 4655 most variant genes for WGCNA analysis by using a robust method called
median absolute deviation (MAD) [12]. The remaining genes were not used for analysis, because those
showed no or very low changes in expression between different samples.

2.3. Gene Coexpression Network Construction

The expression data profiles of these 4655 genes were constructed to a scale-free coexpression
network using the WGCNA package in R [8,13].

The adjacency coefficient aij was calculated as follows:

si j =
∣∣∣∣cor

(
xi, x j

)∣∣∣∣ai j = Sβi j

where xi and x j are vectors of expression value for gene i and j. si j represents the Pearson’s correlation
coefficient of the two vectors. ai j is the adjacency coefficient between gene i and gene j. In the presented
study, the power of β = 6 (scale free R2 = 0.88) was selected as the soft-thresholding parameter to
ensure a scale-free network. In the coexpression network, genes with high absolute correlations were
clustered into the same module. The WGCNA method not only considers the association between
two connected genes, but also takes associated genes into account. Modules were also identified via
hierarchical clustering of the weighting coefficient matrix. To further identify functional modules in
the coexpression network with these 4655 genes, the topological overlap measure, representing the
overlap in shared neighbors, was calculated using the adjacency coefficient. It calculates the weighting
coefficient Wi j from ai j as follows:

Wi j =

∑N
k=1 aik·ai j + ai j

min
(
ki, k j

)
+ 1− ai j
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where a is the weighted adjacency coefficient given ai j and β = 6 is the soft thresholding power.
According to the Wi j measure with a minimum size (gene group) of 30 for the gene dendrogram,
average linkage hierarchical clustering was conducted, and genes with similar expression profiles were
classified into the same gene modules using the DynamicTreeCut algorithm.

In this study, an appropriate soft threshold power (soft power = 6) was selected to construct
a standard scale-free network using the pickSoftThreshold function [14,15]. Then, the network
construction and module detection were performed by the one-step function “blockwiseModules” [15].
It can handle the splitting into blocks automatically, and just needed to specify the largest number of
genes that can fit in a block. The R function of blockwiseModules has many parameters; parameters
were implemented with the following: power = 6, maxBlockSize = 6000, minModuleSize = 30,
and networkType = “unsigned” in our study.

2.4. Identification of Clinically Significant Modules

To identify key modules that are significantly associated with clinical subtypes of breast cancer,
the expression profiles of each module were summarized by the module eigengene (ME) and the
correlation between the module and clinical subtypes was calculated. The associations of individual
genes with each subtype (basal, claudin-low, luminal, and nonmalignant) were quantified by Gene
Significance (GS) value. Module significance (MS) refers to the average GS of all genes in the module.
Modules with an absolute MS ranking first or second in all modules are considered candidates relevant
to clinical traits. Finally, the module highly correlated with clinical subtypes of breast cancer was
selected for further analysis.

2.5. Candidate Hub Genes Identification

Hub genes in the coexpression network were highly interconnected with nodes in a module,
and they have been shown to have significant function. In this study, the connectivity of genes was
measured by the absolute value of the Pearson’s correlation (module membership > 0.8). The module
membership (MM) was defined as the correlation of gene expression profile with module eigengenes
(MEs). Also, we identified hub genes in modules that were highly related to certain clinical traits,
which were measured by the absolute value of the Pearson’s correlation. Thus, the intramodular hub
genes were chosen based on GS (gene significance) > 0.2 and MM > 0.8. The common hub genes in the
coexpression networks were regarded as “real” hub genes for further analysis.

2.6. Network Analysis and Visualization

Gene coexpression modules identified by clustering are often large; therefore, it is important to
identify which gene in each module best explains its behavior. A widely used approach is to identify
highly connected genes in a coexpression network, called hub genes [16]. In this study, we identified
hub genes by betweenness centrality. Genes with high betweenness centrality are important as
shortest-path connectors through a network [17]. Connectivity is often used to measure network
robustness and indicates how many genes need to be removed from the network before the remaining
genes are disconnected.

The hub genes detected by WGCNA can be analyzed with other tools. We performed network
analysis by using the R package tidygraph (Version: 1.1.2; CRAN: MIT, MA, USA). The node centrality
in networks is useful to detect genes with important functional roles. Specifically, the weighted
degree of a node was used to identify potential biologically meaningful genes based on betweenness
centrality [18].

2.7. Pathway Enrichment Analysis and Gene Ontology

To investigate a comprehensive set of functionally annotated hub genes, Gene Ontology term
enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were
performed by using “FunRich”. FunRich is a functional enrichment and interaction network analysis
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tool. GO enrichment analysis and KEGG pathway analysis were performed with the FunRich functional
enrichment analysis tool (version 3.1.3; ExoCarta: Victoria, Australia). The top ten terms with p < 0.05
and more than two enrichments were selected [19].

3. Results

3.1. Weighted Coexpression Network Construction and Key Modules Identification

Fifty-six samples with subtype data were included in the coexpression analysis. The samples of
GSE48213 were clustered using the average linkage hierarchical clustering method (Figure 1). In this
study, the power of β = 6 (scale-free R2 = 0.88) was selected as the soft thresholding parameter to
ensure a scale-free network (Figure 2).

1 

 

 
(a) (b) 

 
(c) (d) 

 

  
Figure 2. Determination of soft-thresholding power in WGCNA analysis. (a) Analysis of the scale-free
fit index for various soft-thresholding powers β. (b) Analysis of the mean connectivity for various
soft-thresholding powers. (c) Histogram of connectivity distribution when β = 6. (d) Checking the
scale free topology when β = 6.

A total of 27 modules were identified based on average linkage hierarchical clustering (Figure 3a).
Furthermore, module eigengenes (MEs) of the black, dark red, brown, and midnight blue modules were
found to have the highest correlation with the subtypes (basal, claudin-low, luminal, and nonmalignant,
respectively; Figures 3b and 4). These modules were selected as clinically significant modules for the
identification of hub genes.
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Figure 3. (a) Clustering dendrogram of 56 breast cancer cell lines and the clinical trial. (b) Dendrogram
of all differentially expressed genes clustered based on a dissimilarity measure. Dynamic tree cutting
was applied to identify modules by dividing the dendrogram at significant branch points. Modules are
displayed with different colors in the horizontal bar immediately below the dendrogram.
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Figure 4. Distribution of average gene significance in the modules based on different subtypes.
(a) Black modules—highest association with basal. (b) Dark red modules—association with claudin-low.
(c) Brown modules—highest association with luminal. (d) Midnight blue modules—highest association
with nonmalignant.



J. Clin. Med. 2019, 8, 1160 7 of 14

3.2. Identification of Candidate Genes with High Weighted Degree Score

Highly connected hub genes were defined by module connectivity (module membership > 0.8)
and clinical trait relationship (gene significance > 0.2). Next, the hub genes of each module were
visualized as networks by using the R package tidygraph, and the top candidate genes were screened
and ordered in ranks by using weighted degree scores for further analysis (Figure 5).
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Each column contained the corresponding correlation and p value.

3.3. Pathway Enrichment Analysis and Gene Ontology

The genes in the clinically significant modules were categorized using the FunRich tool. Findings
with higher scores are more significant than those with low scores. The GO database provides
information on the associated biological processes, molecular functions, and cellular components.
The GO analysis results revealed that the black module (basal) genes in the BP group were mainly
enriched in cell communication, signal transduction, and cell growth and/or maintenance; the genes in
the MF group were mainly enriched in molecular function unknown, translation regulator activity,
and receptor activity; the genes in the CC group were significantly enriched in cytoplasm, exosomes,
and nucleus. The brown module (luminal) was enriched in the BP, including regulation of nucleobase,
nucleoside, nucleotide, and nucleic acid metabolism. The genes in the MF group were mainly enriched
in molecular function unknown and transcription factor activity. The genes in the CC group were mainly
enriched in cytoplasm, nucleus, and plasma membrane; the dark red module (claudin-low) genes in
the BP group were mainly enriched in cell growth and maintenance. The genes in the MF group were
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mainly enriched in structural constituent of cytoskeleton and extracellular matrix structural constituent.
The genes in the CC group were enriched in extracellular, cytoplasm, and extracellular space; the
midnight blue module (nonmalignant) genes in the BP were mainly enriched in protein metabolism.
The gene in the MF was enriched in calcium ion binding. The genes in the CC group were enriched in
centrosome, exosomes, cytosol, and nucleolus. The hub genes were also over-represented in these top
KEGG pathways: the black module (basal) included the integrin family cell surface interactions and
beta-1 integrin cell surface interactions; brown module (luminal), mesenchymal-to-epithelial transition;
dark red module (claudin-low), signal transduction; and midnight blue module (nonmalignant),
peptide chain elongation. Among the functional and pathway enrichment analyses, cell division and
cell cycle were the most significantly enriched.

3.4. Identification and Validation of Hub Genes

Based on the cut-off criteria (|MM| > 0.8 and |GS| > 0.2), 42 genes with high connectivity in the
four modules (including basal, luminal, claudin-low, and nonmalignant) were identified as hub genes,
and centrality measures, mainly betweenness centrality, were used. Hub genes with high betweenness
centrality are important as the shortest path connectors through a network. Connectivity is typically
used to measure network robustness and indicates how many genes need to be removed from the
network before the remaining genes are disconnected (Figure 6). Moreover, based on the TCGA data,
the expression levels of these eight genes were significantly higher in breast cancer tissues. As tumor
progression always affects tumor prognosis, we also validated the eight hub genes by investigating
their roles in breast cancer prognosis, including overall survival time (Figure 7).
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Figure 7. Survival analysis of eight hub genes in breast cancers. Overall survival analysis TXN, ANXA2, TPM4, LOXL2, TPRN, ADCY6, TUBA1C and CMIP. (Red lines
represent the samples with a highly expressed gene and the blue line represents samples with a lowly expressed gene. HR: hazard ratio).
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4. Discussion

The progression and prognosis of breast cancer are quite variable. Although many prognostic
models have been proposed, most are based on clinical parameters and lack accuracy. In the era
of precision medicine, there is an urgent need for better cancer-specific prognosis and progression
biomarkers to provide accurate clinical information that could significantly enhance decision-making
for patient management [20].

This study is based on the gene expression profile of breast cancer, and our main aim was to analyze
the molecular mechanisms underlying breast cancer. We analyzed the data from both single- and
multigene layers to find differential genes involved in breast cancer development.

(1) Construction and analysis of the gene coexpression network

First, we used WGCNA, which is commonly used to construct gene coexpression modules,
to explain the mechanism of breast cancer on a multigene level [21,22]. The coexpression module
aggregates genes with similar expression levels into one class, but the biological pathways involved
in these modules and the changes in expression levels are unknown. To address these problems,
we mainly performed differential correlation analysis, functional enrichment analysis, and differential
gene correlation analysis of the modules [23]. First, the module was subjected to differential correlation
analysis. The gene expression spectrum was used to analyze the differences in the average expression
levels of the genes in the module. Simultaneously, displacement analysis was used to calculate the false
discovery rate (FDR) and four modules with significant differences in expression were found [24,25].
Next, functional analysis of the significantly different modules was performed, and the biological
significance of each module was analyzed to evaluate the biological processes and functional pathways
involved in breast cancer. This study is based on the gene expression profile of breast cancer to analyze
the molecular mechanism underlying breast cancer. We analyzed the data from both single- and
multigene layers to find differential genes involved in breast cancer development.

(2) Screening of differential genes

In this study, we downloaded the counts for breast cancer RNA sequencing and fragments per
kilobase per million mapped reads gene expression data from the TCGA cancer database [22,26].
By using the cluster analysis method to remove the outlier samples, genes were restricted to
protein-encoding genes and the data were regularized for preprocessing and constructing an accurate
gene expression profile. Next, the differential gene analysis method was used to screen differential
genes, which directly revealed the relationship between gene expression changes and breast cancer
development. Our results showed a high coincidence rate with the differentially expressed genes
associated with breast cancer. Noncoincident parts included the genes TXN, ANXA2, TPM4, LOXL2,
TPRN, ADCY6, TUBA1C, and CMIP.

WGCNA was performed to identify the gene coexpression modules associated with breast cancer
progression. The modules were identified, and several central genes were obtained from the modules.
Therefore, TXN, ANXA2, TPM4, LOXL2, TPRN, ADCY6, TUBA1C, and CMIP in the common networks
may be the key genes, indicating that they are highly correlated with clinical features and important
biological processes.

The eight genes predicted by us have been reported for other cancers, but not for breast cancer.
ANXA2 is a member of the annexin family. Members of this calcium-dependent phospholipid-binding
protein family play a role in the regulation of cell growth and signal transduction pathways. ANXA2
has been reported to be associated with cervical, gastric, colorectal, ovarian, and liver cancers [27,28].

TPM4, a gene that encodes a member of the tropomyosin family of actin-binding proteins,
is involved in the contractile system of streak and smooth muscles as well as the cytoskeleton of
nonmuscle cells. It has been reported to be associated with lung cancer metastasis and cervical and
ovarian cancers [29–31].
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LOXL2 is a gene that encodes a member of the lysyl-oxidase gene family. Prototype members
of this family are essential for the biosynthesis of connective tissue, which encodes an extracellular
copper-dependent amine oxidase. LOXL2 can also confer additional effects on developmental
regulation, aging, tumor (prostate and liver cancer) inhibition, cell growth control, and chemotaxis to
each member of the family [32,33].

The locus TPRN encodes a sensory epithelial protein. Mutations of this locus are associated with
autosomal recessive deafness. To date, few cancer-related functions of TPRN have been reported. It has
great potential as a biomarker for breast cancer.

ADCY6 encodes a member of the adenylate cyclase protein family, and it is required for the
synthesis of cAMP. ADCY6 promotes increased phosphorylation of various proteins, including AKT.
It plays a role in regulating Ca2+ uptake and storage in the cardiac sarcoplasmic reticulum and is
required for normal ventricular contraction [34].

TUBA1C, a tubulin, is the main component of microtubules. It binds two molecules of GTP,
one at the exchangeable site on the beta strand and the other at a nonexchangeable site on the alpha
chain. The α-2-HS-glycoprotein precursor and tubulin β chain may be involved in the pathogenesis of
colorectal cancer and serve as potential biomarkers for serological diagnosis [35].

CMIP is a DNA-binding, leucine-containing transcription factor that acts as a homodimer or
heterodimer. It plays a role in the T-cell signaling pathway. Depending on the binding site and binding
partner, CMIP may encode a transcriptional activator or repressor protein. This protein plays a role in
the regulation of several cellular processes, including cell development in embryonic lens, increased
T-cell susceptibility to apoptosis, and chondrocyte terminal differentiation. CMIP has been reported to
be associated with gastric cancer and glioma [36,37].

To further study the mechanisms underlying regulation of tumorigenesis, we performed GO and
KEGG pathway and GSEA analyses. We found that the hub genes showed significant differences
in cell membrane, cytoskeleton, immune cells, and ion regulation. KEGG analysis revealed that cell
structure is the most important pathway (Table 1). Interestingly, we found that the central genes are
often rich in cellular structures and ion signaling pathways (Supplementary Figure S1). Previous
studies have demonstrated that calcium regulates the cytoskeleton, and thus promotes the migration
and metastasis of cancer cells [38]. Therefore, the eight hub genes may be involved in the progression
of breast cancer and may influence its prognosis through calcium-regulated immune and molecular
signaling pathways, contributing to the poor prognosis of breast cancer.
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Table 1. The KEGG pathways in the enrichment analysis of TXN, ANXA2, TPM4, LOXL2, TPRN,
ADCY6, TUBA1C and CMIP.

Gene Name Subtype KEGG Pathways

TXN Nonmalignant
• Fluid shear stress and atherosclerosis
• NOD-like receptor signaling pathway

ANXA2 Nonmalignant • No Data Available

LOXL2 Luminal • No Data Available

TPM4 Luminal

• Adrenergic signaling in cardiomyocytes
• Cardiac muscle contraction
• Dilated cardiomyopathy (DCM)
• Hypertrophic cardiomyopathy (HCM)

TUBA1C Basal

• Apoptosis
• Gap junction
• Phagosome
• Tight junction

CMIP Basal No Data Available

TPRN Claudin-low No Data Available

ADCY6 Claudin-low

• Adrenergic signaling in cardiomyocytes
• Dilated cardiomyopathy (DCM)
• Gap junction
• Aldosterone synthesis and secretion
• Apelin signaling pathway
• Bile secretion
• cAMP signaling pathway

5. Conclusions

Our study used weighted gene coexpression analysis to construct a gene coexpression network
and to identify and validate network hub genes associated with the progression and poor prognosis
of breast cancer. Eight hub genes, namely, TXN, ANXA2, TPM4, LOXL2, TPRN, ADCY6, TUBA1C,
and CMIP, were identified and validated as associated with the progression and poor prognosis of
breast cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/8/1160/s1,
Figure S1: Protein–Protein network of TXN, ANXA2, TPM4, LOXL2, TPRN, ADCY6, TUBA1C, and CMIP based
on the STRING website. Orange is eight key genes, blue connects ADCY6 and ANXA2.
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