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Helicobacter pylori infection (HPI) is a prevalent infectious disease associ-

ated with gastric ulcer, gastric cancer, and many nongastrointestinal dis-

orders. To identify genes that may serve as microbial markers for HPI, we

performed shotgun metagenomic sequencing of fecal samples from 313

Chinese volunteers who had undergone a C14 breath test. Through com-

paring differences in intestinal microbial community structure between

H. pylori-positive and H. pylori-negative individuals, we identified 58 HPI-

associated microbial species (P < 0.05, Wilcoxon test). A classifier based

on microbial species markers showed high diagnostic ability for HPI

(AUC = 0.84). Furthermore, levels of gut microbial vitamin B12 (VB12)

biosynthesis and plasma VB12 were significantly lower in H. pylori-positive

individuals compared with H. pylori-negative individuals (P < 0.05, Wil-

coxon test). This study reveals that certain alterations in gut microbial spe-

cies and functions are associated with HPI and shows that gut microbial

shift in HPI patients may indirectly elevate the risk of VB12 deficiency.

Helicobacter pylori, a microaerophilic Gram-negative

bacterium, was first isolated in 1984 from patients with

chronic active gastritis [1]. H. pylori infection (HPI) is

a prevalent infectious disease with a global prevalence

of 44.3% [2] and can lead to gastrointestinal diseases

such as peptic ulcer, atrophic gastritis, and gastric car-

cinoma [3]. Although H. pylori predominantly colo-

nizes the stomach, previous epidemiological studies

have reported that HPI correlates with certain extra-

gastric diseases [4], including vitamin B12 (VB12) defi-

ciency [5–7], iron deficiency anemia [8], inflammatory

bowel disease [9], and even neurodegenerative diseases

[4].

Several previous studies have revealed that HPI cor-

relates with a shift in gastrointestinal microbiota [10–

13], immune responses [14], and metabolic imbalances

of host [6,7]. The microbiota of Mongolian gerbil gas-

trointestinal tracts were distinctly altered after long-

term infection with the H. pylori B8 wild-type strain,

with the luminal loads of Escherichia coli and entero-

cocci in the cecum and Bacteroides/Prevotella spp. in

the colon strikingly elevated [10]. In mice, continuous
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HPI alters the gastric and intestinal microbiota com-

munity structure. Additionally, the infection causes

increased expression of immune response-related genes

in gastric and pulmonary tissues [13]. In humans, the

relative abundances of dominant phyla in the gut of

HPI-positive individuals, including Bacteroidetes, Fir-

micutes, and Proteobacteria, are significantly different

from HPI-negative individuals and may correlate with

gastric lesions [12]. Usually, alterations in the micro-

biome are accompanied by differences in microbial

functions; the relative abundance of 19 predicted gut

microbial pathways is significantly different between

H. pylori-positive and H. pylori-negative individuals

[11]. Besides the effect on host gastrointestinal

microbes, persistent infection with H. pylori can cause

detrimental inflammatory processes [14], and epidemio-

logical studies have revealed that HPI correlates with

lower VB12 levels in the blood [6,7].

Previous HPI-related intestinal microbiome studies

used 16S rRNA amplicon sequencing, which may be

limiting because of the inadequate resolution for

microbial taxonomy and function [15]. In addition,

primer selection and PCR amplification can introduce

bias when quantifying taxa abundance [16]. Therefore,

it remains unclear how many bacterial genes and spe-

cies could serve as microbial markers for HPI and

how a shift in gut microbiome alters the host’s meta-

bolism and immune responses.

In this study, we performed a shotgun metagenomic

sequencing of fecal samples from 313 Chinese volun-

teers who had undergone a C14 breath test. We com-

pared the differences in intestinal microbial

community structure between H. pylori-positive and

H. pylori-negative individuals and identified the gut

microbial species and functions associated with HPI.

In addition, the blood metabolite data of the 313 vol-

unteers were collected. To further investigate how HPI

influences host health, we analyzed the alterations of

blood metabolite levels to explore the potential physio-

logical effects of HPI mediated by gut microbes.

Materials and methods

Study samples

Fresh stool samples for the metagenomic sequencing were

obtained from volunteers recruited in the Yantian District,

Shenzhen, China. The C14 breath test to determine HPI

status and other blood biochemistry level assessments were

performed in a local hospital, and plasma VB12 levels were

quantified using LC-MS/MS (Table S1). None of the vol-

unteers had taken any antibiotics within the previous

3 months. In addition, volunteers with serious illnesses,

metabolic diseases, and pregnancies were excluded from the

study. The samples were divided into H. pylori-positive and

H. pylori-negative groups according to the C14 test results.

The summary statistics of the study samples are provided

in Table 1.

Written informed consent was obtained from all patients

in accordance with the Declaration of Helsinki. This study

was approved by the Institutional Review Board on

Bioethics and Biosafety of BGI (BGI-IRB, Shenzhen

518083, China) with approval number BGI-IRB 15079.

Comparisons of phenotypes and biochemical

levels

Body mass index (BMI), age, clinical indices, and plasma

levels of VB12 were compared between the H. pylori-posi-

tive and H. pylori-negative groups using the Wilcoxon test.

The gender ratio of each group was compared using the

chi-square test.

Metagenomic sequencing

Fecal DNA was extracted following the MetaHIT protocol

[17], and then, single-end metagenomic sequencing was per-

formed using the BGISEQ-500 platform. The low-quality

reads were discarded, and the host DNA was removed

based on the human reference genome hg19 using

SOAP2.22 [18] (identity ≥ 0.9).

Profile generation

The clean reads were mapped to the integrated gene catalog

(IGC, http://meta.genomics.cn) using SOAP 2.22 (identity

≥ 0.95) [19], relative gene abundance profiles were pro-

duced; then, the species, genus, KEGG module, and path-

way relative abundance profiles were generated, according

to the Integrated Microbial Genome reference database

(IMG, https://img.jgi.doe.gov/) [20].

Rarefaction analysis

Rarefaction analysis was performed to assess the gene rich-

ness of H. pylori-positive and H. pylori-negative samples.

For a given number of samples, we performed random

Table 1. Basic information of study volunteers. F, females; M,

males

All Positive Negative

Number 313 (148 F,

165 M)

128 (59 F, 69 M) 185 (89 F, 96 M)

Age 20–66 (28.14) 20–44 (27.77) 21–66 (28.39)

BMI 15–38.6 (21.39) 15–38.6 (21.63) 15.8–29.1 (21.23)
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sampling 100 times in the cohort with replacement and esti-

mated the total number of genes that could be identified

from these samples.

Enterotype and diversity analysis

The enterotype of each stool sample was analyzed using a

PAM-based method on genus profiles [17,21]. The Shannon

index was used to determine within-individual alpha-diver-

sities in gene, species, genus, and phylum level. The Bray–
Curtis distance, calculated in R 3.4.2 (vegan package) [22],

was used to estimate the between-individuals beta-diversity

at the gene level.

Metagenome-wide association study and

metagenomics linkage group-based analysis

The marker genes that were significantly different in rela-

tive abundance between the H. pylori-positive and H. py-

lori-negative groups were identified using the Wilcoxon test.

The marker genes were then clustered into metagenomics

linkage groups (MLGs) according to their abundance varia-

tion across all samples. The taxonomic assignment and

abundance profiles of the MLGs were then obtained

[17,23]. The MLGs with gene cluster number ≥ 100 were

selected. To identify confounding factors, we first calcu-

lated correlations of MLG abundances with age, BMI, and

gender. Wilcoxon test would be used for MLGs which are

not correlated with any one of the three factors, to com-

pare the abundance between HPI-positive and HPI-negative

groups. Otherwise, logistic model would be used to remove

confounding effects. The co-presented relationships among

the MLGs were calculated using Spearman’s rank correla-

tion and visualized in Cytoscape 3.6.0.

A classification model using MLG abundance profiles in

gut microbiome was established for the prediction of HPI

status. Tenfold cross-validation was performed, based on a

random forest model (R 3.4.2, randomForest 4.6-10 pack-

age [24]). The training set consisted of 250 randomly

selected samples (152 negative and 98 positive) from a total

of 313 samples, and the test set was comprised of the

remaining 63 samples (33 negative and 30 positive). The

performance of the classifier was assessed by ROC curve

separately in the training set and test set. The probability

of being H. pylori-positive was calculated, and the ROC

curve was drawn using the pROC package [24] for R 3.4.2.

KEGG analysis

Differentially enriched KEGG modules were identified

according to their reporter scores [23]. A reporter score of

Z ≥ 1.6 (90% confidence according to a normal distribu-

tion) was used as the detection threshold for significantly

differentiating modules.

Results

Overview of gut microbiome

To determine whether HPI accompanies with changes

in the gut microbiome, metagenomic sequencing was

performed on 313 stool samples from volunteers, of

which 128 were H. pylori-positive, and 185 were

H. pylori-negative (Table 1). The distribution of BMI

and age in the HPI-negative and HPI-positive groups

is shown in Fig. S1, and there was no significant dif-

ference in BMI and age between the two groups,

whereas there was a significant difference (v2 test,

P < 0.05) in gender ratio between the two groups. The

shotgun metagenomic sequencing was carried out

using the BGISEQ-500 platform and generated an

average of 42 million single-end reads per sample. To

ensure that our sample size was sufficient for this

study, rarefaction analysis was carried out for the

H. pylori-positive and H. pylori-negative groups, and

the results showed that the gene richness approached

saturation in each group and showed higher richness

in the H. pylori-positive group (Fig. 1A). Referring to

previous human gut microbiome metagenomic studies,

we determined that the sample size in our study was

sufficient [17,23,25].

The richness and diversity of the gut microbiota in

the two groups were investigated. In contrast to the

results of stomach microbial communities, there was

no significant difference in the gene richness, species

richness, and the within-sample diversity between the

H. pylori-positive and H. pylori-negative groups (Wil-

coxon test, P > 0.05; Fig. S2). On the other hand, at

the gene level, the intersample diversity was signifi-

cantly higher in the H. pylori-positive group compared

with the H. pylori-negative group (Wilcoxon test,

P < 0.05; Fig. 1B). Enterotype is also a general char-

acteristic of the human gut microbiota [21,23,26]. We

divided the samples into two enterotypes (or clusters)

using a PAM-based method; the H. pylori-positive and

H. pylori-negative groups both contained two entero-

types (Fig. 1C). However, the H. pylori-positive group

had a higher proportion of enterotype 1, which con-

tains a high level of Prevotella, whereas the healthy

H. pylori-negative group had a higher proportion of

enterotype 2, which is dominated by Bacteroides (v2

test, P < 0.05; Fig. 1D).

Metagenome-wide association study and

metagenomics linkage group-based analysis

In order to investigate the HPI-related signatures of

the gut microbiome, we adopted the MLG method to
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cluster the genes with significant abundance differences

into taxa. We identified 189,771 genes that were differ-

entially enriched in H. pylori-positive or H. pylori-

negative groups (adjusted P < 0.1, Wilcoxon test),

approximately 1.9% of the total gene numbers in the

integrated gene catalog (IGC). Approximately 56.3%

and 43.7% of the gene markers were significantly

enriched in the H. pylori-positive group and H. pylori-

negative group, respectively. There were 58 MLGs that

had significantly different relative abundances between

the H. pylori-positive and H. pylori-negative groups

(adjusted P < 0.05, Wilcoxon test; Fig. 2A,B; Tables

S2 and S3). Among the differential MLGs, 31 were

enriched in the H. pylori-positive group and 27 were

enriched in the H. pylori-negative group.

We observed that the MLGs that were annotated as

Prevotella copri, which is a proinflammatory bacterium

and has been shown to correlate with the onset and

development of rheumatoid arthritis (RA) [25], were

enriched in H. pylori-positive individuals. In addition,

the relative abundances of Enterobacter cloacae and

Klebsiella pneumoniae, two infectious pathogenic bacte-

ria that can cause bacteremia and septicemia com-

monly associated with hospital infections [27], were

clustered together and also enriched in the H. pylori-

positive group. The relative abundances of Sutterella

wadsworthensis, B. vulgatus, and E. coli were signifi-

cantly higher in the H. pylori-negative group compared

with the H. pylori-positive group. In contrast to P. co-

pri, S. wadsworthensis has been found to be enriched
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in people without RA [25]. Additionally, the P. copri

cluster that was enriched in the H. pylori-positive

group negatively correlated with H. pylori-negative-

enriched MLGs (Fig. 2B), indicating that, in H. pylori-

positive individuals, the gut microbial network shifts via

interspecies interactions.

To evaluate the possibility of determining HPI using

gut microbial markers, we constructed a classifier

based on the random forest model. The validated opti-

mal model selected 30 MLG markers, and the area

under the ROC was 86.82% in the training set and

84.09% in the test set (Fig. 3A–D), indicating that gut

microbial MLGs can be used to classify whether a

subject has been infected with H. pylori.

KEGG analysis

To explore the association between the HPI and alter-

ations in human gut microbiome function, the

microbial genes were mapped to KEGG modules and

pathways; the KEGG pathways and modules with

levels significantly different between the H. pylori-posi-

tive and H. pylori-negative groups are listed in Tables

S4 and S5. The genes with functions related to cofac-

tor and vitamin biosynthesis, cellular processes, and

human diseases were enriched in different groups

(Fig. 4A–C). In particular, the level of KEGG mod-

ules for VB12 biosynthesis was significantly diminished

in the H. pylori-positive group (Fig. 4A). After then,

comparison of the plasma VB12 concentrations

between the two groups revealed that the H. pylori-

positive group had significantly lower VB12 levels than

the H. pylori-negative group (Fig. 4D), indicating that

infection with H. pylori may increase the risk of VB12

deficiency. The differential genes assigned to KEGG

pathways involved in flagella assembly and bacterial

chemotaxis were diminished in the HPI-associated

microbiome (Fig. 4B), indicating the weaker mobility
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and chemotaxis of intestinal microbes in H. pylori-

positive individuals. Additionally, among the 11

enriched disease-related KEGG pathways, nine were

enriched in the H. pylori-positive group, of which four

were related to infectious diseases (Fig. 4C).

Discussion

The current study identified HPI-related gut micro-

biome alterations and provided a catalog of changes

for further research. In addition, a classifier to discrim-

inate HPI status using microbial markers was con-

structed and evaluated. Further analyses on microbial

functional profiles and metabolite level comparisons,

revealed the diminished level of blood VB12 and

decreased microbial VB12 biosynthesis capacity in

HPI-positive individuals, indicating that HPI-related

VB12 deficiency could be caused by imbalance of the

gut microbiome.

The relative abundance of MLGs, annotated as

P. copri, was significantly enriched in H. pylori-

positive individuals. P. copri is an immune-relevant

gut microbe. It has been reported that the continuous

colonization of H. pylori in the stomach induces the

host immune response [4,10]. There is a complex inter-

action between the intestinal microbes and the host;

gut microbial communities are crucial for host immune

system function, and in turn, the immune environment

affects the gut microbial structure [28]. P. copri is very

prosperous in a proinflammatory gastrointestinal
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environment and further increases the level of inflam-

mation [29]. RA, which is a prevalent systemic autoim-

mune disease, has been shown to associated with gut

microbiome dysbiosis, and P. copri is associated with

the onset and severity of rheumatoid arthritis [25,30].

The enrichment of P. copri in H. pylori-positive indi-

viduals may correlate with the change of intestinal

immune environment.

We observed that the VB12 biosynthesis module

was depleted in the H. pylori-positive group, and

plasma VB12 concentration was also significantly

lower in the H. pylori-positive group compared with

the H. pylori-negative group. Biologically, VB12 is a

type of cobalt corrinoid, and as humans and most

other animals are incapable of VB12 production, it is

exclusively produced by the microorganisms, particu-

larly anaerobes [31]. Substantial previous epidemiologi-

cal studies have revealed that HPI correlates with

lower VB12 levels and even VB12 deficiency [6,7]. Our

current results suggest that the HPI-related dysbiosis

of intestinal microbiota can affect the production of

VB12 in the human intestine. Previous research infers

that gastric sinusitis, caused by HPI, may progress to

type B chronic gastritis, accompanied by decreased

gastric acid secretion, which leads to malabsorption of

VB12 [7,32]. Therefore, both the production and

absorption capacity of VB12 can be weakened by HPI,

increasing the risk of VB12 deficiency.

There are some limitations to this study that need to

be addressed. The effects of HPI on the host have

individual and population variations, and strain speci-

ficity. These differences need to be addressed in subse-

quent studies with a larger sample size. Further studies

should also include host proteomics, metabolomics,

and other data for multiomics integrated analysis,

which could then furtherly reveal the mechanisms by

which H. pylori impacts the host.

In conclusion, our study sequenced 313 fecal sam-

ples using the metagenomic shotgun method and ana-

lyzed the differences between H. pylori-positive and

H. pylori-negative groups. It shows that HPI is associ-

ated with changes in human intestinal microbial com-

position and function in the Chinese population. Also,

the abundance of the immunologically related bacteria

P. copri was significantly different between the two

groups. In the H. pylori-positive group, the levels of

flagella assembly and bacterial chemotaxis-related

pathways were significantly depleted, and these intesti-

nal changes in the H. pylori-positive group may have

further effects on the host. The lower level of VB12

biosynthesis module was associated with the lower

VB12 concentrations in the blood of H. pylori-positive

individuals, indicating that HPI-related gut microbiota

dysbiosis can increase the risk of VB12 deficiency. Our

study provides new clues into the interactions between

H. pylori and host gastrointestinal microecology.
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