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Abstract 

Background:  Fine-tuning the aeration for cultivations when oxygen-limited conditions are demanded (such as the 
production of vaccines, isobutanol, 2–3 butanediol, acetone, and bioethanol) is still a challenge in the area of biore-
actor automation and advanced control. In this work, an innovative control strategy based on metabolic fluxes was 
implemented and evaluated in a case study: micro-aerated ethanol fermentation.

Results:  The experiments were carried out in fed-batch mode, using commercial Saccharomyces cerevisiae, defined 
medium, and glucose as carbon source. Simulations of a genome-scale metabolic model for Saccharomyces cerevisiae 
were used to identify the range of oxygen and substrate fluxes that would maximize ethanol fluxes. Oxygen supply 
and feed flow rate were manipulated to control oxygen and substrate fluxes, as well as the respiratory quotient (RQ). 
The performance of the controlled cultivation was compared to two other fermentation strategies: a conventional 
“Brazilian fuel-ethanol plant” fermentation and a strictly anaerobic fermentation (with ultra-pure nitrogen used as 
the inlet gas). The cultivation carried out under the proposed control strategy showed the best average volumetric 
ethanol productivity (7.0 g L−1 h−1), with a final ethanol concentration of 87 g L−1 and yield of 0.46 gethanol g

−1
substrate. 

The other fermentation strategies showed lower yields (close to 0.40 gethanol g
−1
substrate) and ethanol productivity around 

4.0 g L−1 h−1.

Conclusion:  The control system based on fluxes was successfully implemented. The proposed approach could also 
be adapted to control several bioprocesses that require restrict aeration.

Keywords:  Metabolic flux control, Micro-aeration, Bioreactor advanced control, Alcoholic fermentation, 
Saccharomyces cerevisiae
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Introduction
The performance of bioreactors depends on the control of 
several cultivation conditions (e.g.: pH, temperature, dis-
solved oxygen), in order to direct cell metabolism towards 
the improvement in yield, selectivity, and productivity of 

the target product. For example, the control of the oxy-
gen supply to facultative microorganisms plays a key role 
in driving metabolic routes towards the production of 
biomass (favored under aerobic conditions) or the syn-
thesis of some fermentative products (favored by low or 
zero oxygen availability) [1].

Conventional strategies in aerobic processes are essen-
tially based on measurements of the dissolved oxygen 
concentration (DOC), which is then controlled by adjust-
ing the stirrer speed and, occasionally, the composition of 
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the gas supplied to the reactor (for instance, enrichment 
with pure oxygen) or the total gas flow rate [2, 3]. Some 
improvements have been made over time including more 
refined DOC controls through the use of mechanistic 
models [3] or neural networks [4], to mention a few.

However, the application of these strategies may be not 
effective under microaerobic conditions, because ordi-
nary probes are not accurate at low dissolved oxygen ten-
sion [5]. Under oxygen-limited conditions, DOC < 1.5% 
[6], the control strategies previously mentioned may 
become unstable. Nevertheless, micro-aerobic condi-
tions are required to produce many biotechnological 
products, including vaccines used against H. influenzae, 
S. pnemoniae, and N. meningitidis [7–9], and bioethanol 
production by S. cerevisiae [10], by E. coli [11], and by 
P. stipitis [12]. The production of advanced biofuels and 
bio-based chemical intermediates, including n-butanol 
[13], 2,3-butanediol [14] and acetone [15], important in 
the context of the emerging low carbon economy also 
relies on micro-aerobic cultivations. Bio-based processes 
can be used to convert agricultural residues’ biomass into 
industrially valuable products such as lactic acid [16] and 
bioethanol [17], serving as alternative routes to petro-
chemical products. Thus, the need for updated, robust, 
and low-cost control strategies for microaerobic fermen-
tations in industrial bioreactors is likely to increase soon.

In the context of bioethanol production using S. cer-
evisiae, the catabolism of sugars is a key factor affecting 
process performance and is strongly influenced by oxygen 
availability. If the oxygen supplied is below a threshold 
value, glycerol will be produced, decreasing the ethanol 
yield [18]. On the other hand, if respiration is activated, 
greater substrate fluxes will be directed towards biomass 
formation [18], also leading to reduced ethanol yields. 
Providing a suitable oxygen flux seems important for 2nd 
generation ethanol production from xylose because it 
helps to relieve observed redox imbalances through cofac-
tor regeneration [19] and to maintain sufficient amino 
acids and protein synthesis, necessary for growth [20, 21]. 
Furthermore, micro-aeration helps to preserve cell viabil-
ity, hence affecting ethanol productivity [10, 22].

Despite the importance of the control of micro-aerobic 
conditions in fermentations, there are not many studies 
addressing this topic in the literature. The use of a con-
stant (sparged or headspace) air flow, without any con-
trol, to cultivate S. cerevisiae under oxygen limitation was 
reported in a couple of works [10, 22, 23]. Even RQ-based 
control, extensively studied to adjust feeding supply for 
aerobic S. cerevisiae cultures [24, 25], was little explored 
to set up micro-aeration control strategies. In fact, this 
approach was applied to continuous fermentations using 
S. cerevisiae and consisted in the manipulation of the inlet 

gas stream composition to maintain RQ at the desired 
level and enforce microaerobic conditions [26]. Easily 
estimated from off-gas measurements and available on-
line, RQ provides valuable information about S. cerevisiae 
respiratory activity [24, 25]. Furthermore, when RQ is 
integrated with other inputs within a suitable framework, 
a more complete control system, able to tune both oxygen 
and carbon source supplies, can be implemented.

In this context, genome-scale metabolic models (GSMs) 
can also be employed for bioreactor control. They are a 
source of in silico data reproducing the cell metabolism. 
With these models, it is possible to estimate intracellular 
and extracellular fluxes of metabolites at steady-state for 
different environmental conditions, considering the inlet 
fluxes of substrate and oxygen—which in fact drive the 
metabolic reactions occurring within the cell. Saccharo-
myces cerevisiae, in particular, has been extensively stud-
ied, with at least 12 GSMs published ever since 2003 [27]. 
S. cerevisiae GSMs have been employed with satisfactory 
results to improve the understanding of yeast physiology, 
as well as to predict targets for metabolic engineering in 
order to overproduce chemicals such as succinic acid [28], 
fumaric acid [29], bioethanol [30], 2,3-butanediol [31] and 
l-tyrosine [32]. Still, the application of metabolic models 
is not restricted to understanding cell pathway networks 
or improving them. Indeed, metabolic models may be 
powerful tools for process improvement and for biore-
actor’s control. With this kind of information, estimated 
metabolic fluxes can be used to develop cultivation strate-
gies better tuned with the cell actual metabolism.

GSMs are stoichiometric models, which assume 
steady-state behavior. Usually, this is not the case in 
real fermentations, especially in industrial scale, but 
the information concerning metabolic fluxes may 
delimit regions of operation for the reactor. Following 
this concept, the GSMs output can be understood as a 
pseudo-stationary response to the environmental con-
ditions observed during the process. These estimates 
of substrate/product fluxes may provide useful infor-
mation for the control system, even though the biore-
actor does not operate at steady-state.

An innovative bioreactor control system is herein 
reported, based on metabolic fluxes estimated using 
a GSM. This new approach is evaluated using the 
production of bioethanol under microaerobic condi-
tions as a case study. Indeed, an important problem 
in industrial fermentations is to increase bioethanol 
production at the expense of biomass and glycerol, and 
this was the focus of this work. A novel supervisory 
system is also presented, which combines advanced 
strategies for bioprocess control, on-line data acquisi-
tion, and a flux-oriented control model.
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Results
The development of the metabolic flux-oriented control 
involves several steps including GSM simulations, selec-
tion of suitable simulated data, and their integration with 
model equations to configure the control system. Addi-
tionally, it is important to assess the control performance 
by applying it to a real process. In the present work, etha-
nol production in S. cerevisiae fermentation operated in 
fed-batch mode was chosen as a case study to test the 
flux-based micro-aeration control (FMC).

Initially, simulations using the genome-scale metabolic 
model of S. cerevisiae iND750 [33] and the Optflux 3.2.7 
software [34] were run. From this in silico study, simulated 
metabolic fluxes (Ji

MM) for different species (substrate, eth-
anol, CO2, O2, etc.) were collected and used to generate 
mathematical correlations (MC), which in turn provided 
estimations of substrate 

(

JMC
S

)

 and oxygen 
(

JMC
O2

)

 fluxes, to 
be used by the control algorithm (Fig.  1a). Results con-
cerning the use of the metabolic model simulations to 

obtain JMM, as well as the mathematical correlations to 
predict JMC, are presented in the following section.

In the next step, the controller was set up. In brief, from 
a set of on-line (or at-line) inputs (including volume, N2 
flow rate, cell mass, temperature, pressure and outlet gas 
composition), combined with equations derived from 
mass balances, the selected outputs, inlet O2 mol fraction 
( yO2 in

 ) and control action fluxes 
(

JCAO2
, JCACO2

)

 , were esti-
mated. Control action fluxes were used as inputs to the 
RQ loop, which delivered JMC

S  and JMC
O2

 . Together with the 
other inputs, JMC

O2
 was used to update the air flow rate 

(Qair) whereas JMC
S  updated the volumetric flow rate of 

feeding medium (F) (Fig. 1b).
The control performance is also described below. The 

detailed description of the control strategy is available in 
the methods and the main equations and control logic 
are given at Boxes 2 and 3, respectively (the equations 
derivations are available in Additional file 1). The agree-
ment between experimental and model estimated fluxes 

Fig. 1  Schematic representation of the proposed control strategy for the Flux-based Micro-aerated control fermentation (FMC). a Simulated 
ethanol fluxes using the genome-scale metabolic model (GSM) of S. cerevisiae iND750 for different glucose and oxygen fluxes as inputs. The gray 
shaded area in A represents the maximum GSM simulated JMM

EtOH region. JMM
O2

—simulated oxygen flux; JMM
EtOH—simulated ethanol flux; JMM

S —simulated 
substrate flux. b FMC control framework, with RQ as the controlled variable, and both QAIR and F as manipulated variables. Fluxes: JMC

S  and JMC
O2

—mathematical correlation substrate and O2 flux; JCAO2
 and JCAO2

—O2 and CO2 fluxes calculated on-line by the control algorithm; RQCA—respiratory 
quotient calculated on-line. Equipment: As-computational monitoring and supervision system SuperSys_Ferm; Bs—Bath; C—CO2 analyzer; D—O2 
analyzer; E—cFP-FieldPoint; K—Impeller speed controller; G—Air flow controller; H—Nitrogen flow controller; I—feed pump. Dashed lines—
information. Control loops: control of oxygen consumption (Air flow rate—QAIR, Eq. B2.3; Nitrogen flow rate—iQN2) (in red); control of substrate 
consumption (Feed flow rate—F, Eq. B2.1) (in lilac); Controlled variable (RQ) (in green). Some lines of acquisition and communication with the field 
point are omitted. All fluxes in mmol gDW

−1 h−1. *Mathematical correlations in Results Metabolic Models Simulations and Correlations (Eqs. 1 and 2, 
respectively)
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is also used herein to evaluate the proposed control strat-
egy. To do so, experimental fluxes ( JExpi  ) for ethanol, sub-
strate, and biomass were calculated from off-line data 
using component mass balances (as depicted in Box  1) 
and compared to the corresponding Ji

MM fluxes.
Finally, the performance of the fermentation carried 

out under the Flux-based Micro-aeration Control (FMC) 
was compared to other fermentation strategies: a conven-
tional fermentation strategy, used in Brazilian Bioethanol 
Plants (BBP), and another cultivation carried out under 
strictly anaerobic conditions (SAC).

Metabolic model simulations and correlations 
implemented in the control algorithm
To select the most suitable oxygen levels to be imple-
mented by the proposed flux-based micro-aeration 

control, a more detailed view of the influence of oxygen 
on yeast metabolism is required. Several simulations of 
the genome-scale metabolic model (GSM) of S. cerevi-
siae iND750 [33] were run, using the software Optflux 
3.2.7 [34]. Different combinations of inlet fluxes, JMM

S  
and JMM

O2
 , were used as inputs to Optflux, and the corre-

sponding output fluxes for ethanol, biomass, CO2, and 
glycerol were generated for each simulated condition 
(Fig. 2a).

Figure 2b shows the metabolic shifts that occur when 
the flux of oxygen is increased (see also Additional file 1: 
Table  S1), for a specified flux of substrate (in this case, 
for example, the substrate flux was 3  mmol gDW

−1  h−1). A 
first shift occurs at a minimum critical value of JMM

O2
 

(Fig. 2b, Shift I—condition: JMM
O2

< 7E−4 ∗ JMM
S  ). Simula-

tions with smaller values than this critical JMM
O2

 resulted 

Fig. 2  Metabolic shifts predicted by the GSM for different oxygen and substrate fluxes. a Metabolic fluxes predicted by the genome-scale 
metabolic model (GSM) of S. cerevisiae iND750 [33]. b An example of the metabolic shifts predicted by the GSM, for a glucose flux of 
3 mmol gDW

−1 h−1. Shift I: increase of JMM
Gly  and decrease of JMM

EtOH ; Shift II: increase of JMM
X  and decrease of JMM

EtOH
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in a decrease in ethanol fluxes, also triggering an increase 
of the fluxes of glycerol and other metabolites. As JMM

O2
 is 

increased, a second metabolic shift is predicted by the 
model: substrate fluxes were directed towards biomass 
formation and JMM

EtOH decreased (Fig. 2b, Shift II—condi-
tion: JMM

O2
> 2.44 ∗ JMM

S ).
The responses of the metabolic model were consistent 

with the changes in S. cerevisiae metabolism that were 
expected under the influence of different fluxes of oxygen: 
biomass formation was favored at higher oxygen fluxes, 
while glycerol production was intensified at low oxygen 
fluxes, as already reported [35]. From the results displayed 
in Fig. 2, it is possible to define a range for operation of 
the reactor, aiming at maximizing ethanol production: the 
grey area seen in Fig. 1a, constrained by the glycerol shift 
(Shift I). However, operation close to Shift I would be too 
unstable to be considered for control purposes. So, sub-
optimal JMM

S  and JMM
O2

 values were used to set up the pro-
posed control strategy, corresponding to approximately 
90% of the maximum predicted JMM

EtOH (the dotted line 
in Fig.  1a, constraining the right side of the operational 
region).

In order to implement the information mapped 
through GSM simulations (Figs.  1a, 2a) in the control 
algorithm (further details in Methods Control Algorithm 
Design), a linear correlation between JMM

S  and JMM
O2

 was 
fitted, see Eq. 1 and Additional file 1: Figure S1. The set 
of fluxes that provide 85–100% of the maximum flux of 
ethanol was used for this purpose.

(1)JMC
S = (3.9± 0.2) ∗ JMC

O2
+ (1.2± 0.8)

Equation  1 was used to estimate JMC
S  , given the flux 

of oxygen, which was provided by a second correlation, 
a hyperbola, between RQMM and JMM

O2
 (Additional file 1: 

Figure S2), see Eq.  2. The inlet air flow rate (QAIR) was 
updated using Eqs.  2 and B2.3 (as described in Box  2). 
Higher ethanol fluxes were achieved for RQ values in the 
range 7–8 (available in Additional file 1: Figure S2) and, 
therefore, the RQ control loop was set to operate within 
this range.

These two correlations, which absorbed the informa-
tion provided by the metabolic model, were at the core of 
the FMC algorithm. The supervisory program used these 
correlations to estimate on-line the metabolic fluxes JMC

O2
 

and JMC
S  . Then, these fluxes were converted into air flow 

rate (QAIR) and fresh medium feed rate (F), respectively 
(by the series of equations given in Boxes 1 and 2). Both 
were manipulated to control RQ within the range 7.2–
8.4. The overall performance of the FMC fermentation 
strategy is presented in the next section.

Performance of the flux‑based control (FMC)
Using the control logic previously summarized (and fur-
ther details in the methods and Boxes 1, 2 and 3), imple-
mented within the LabView® (version 2015) framework, 
experiments were carried out in fed-batch mode, using 
defined medium containing glucose as the sole carbon 

(2)JMC
O2

=
(0.37± 0.06) ∗ RQCA

RQCA − (7.04 ± 0.04)

Box 1.  Calculation procedures for experimental fluxes. The values for constants and other conditions are: yCO2, in
 = 0.04 * 10−2; Tin = 294.25 K; 

Pout = 1 atm; R = 0.08206*10−3 L atm mmol−1 K−1. The variables yCO2, out
 , yO2, out

 and Tout were measured on-line and accessed through the 
supervisory software. JExps  , JExpEtOH , JExpGly  , JExpX  are expressed in mmol gDW

−1 h−1 and were obtained from off-line data. Volume (V, in L) was estimated at-line 
after integration of feed flow rate and subtraction of medium withdrawals. Mass and mole data are expressed in g and mmol, respectively
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source. Glucose, biomass, ethanol and glycerol profiles 
for the reactor operating under FMC can be seen in Fig-
ure SM3 (Additional file 1). The cultivation strategy was 
split into three stages: (i) a batch, aerobic phase (until 
2.6  h) to increase biomass concentration; (ii) the fed-
batch phase carried out under micro-aeration condi-
tions implemented by the proposed control strategy to 
supply glucose and O2 (from 2.6 to 10.6  h); (iii) a final 
batch phase (from 10.6 to 12.6 h), started when glucose 
feeding was stopped (at 10.6 h), still carried out under 
micro-aeration conditions implemented by the pro-
posed control strategy for O2 supply.

The overall performance of the controller, particu-
larly in sustaining a micro-aerated environment, can be 
assessed from JCAO2

 , JCACO2
 and RQCA data (Fig. 3a) as well as 

from the profiles of the manipulated air and N2 flow rates 
(Fig. 3b).

After 2.6 h the dissolved oxygen was set to zero (Addi-
tional file  1: Figure S3) by injecting N2, and the control 
action started. The gas phase control action consisted 
of correcting the air inlet flow to keep RQ between 7.2 
and 8.4. Within this control range, the inlet air flow was 
updated using Eq. 2 and the other equations are given at 
Box 2. QN2 was increased in steps during the cultivation 

to keep the outlet CO2 mol fraction within the gas ana-
lyzer maximum detection limit (20% CO2). The micro-
aeration control remained active until all glucose was 
consumed at the end of the 3rd stage of the FMC experi-
ment in order to get a full picture of its performance.

The controlled variable (RQCA) (Fig.  3a) followed the 
proposed control logic throughout the experiment. RQCA 
remained close to the lower boundary of 7.2 until 6.8 h. 
At this moment, RQCA values presented oscillations, 
and subsequently, they remained above the upper RQCA 
boundary of 8.4 mol CO2 mol O2

−1. The observed oscilla-
tions matched the increase in the dissolved oxygen ten-
sion (Additional file 1: Figure S3).

A reduction of the cell fermentative capability, proba-
bly caused by ethanol inhibition or viability loss, as dis-
cussed later, may have contributed to decreasing the 
specific growth rate (or biomass flux JX) and, conse-
quently, the oxygen uptake flux 

(

JCAO2

)

 , as well (Fig.  3a). 
Once RQ is calculated by the ratio 

(

JCACO2
∗ JCA

−1

O2

)

 (Box 2, 
Eq. B2.6), low JCAO2

 values would result in the increasing 
RQ pattern observed from 8.5 to 11.5 h of FMC fermen-
tation (Fig.  3a). The change in RQ trajectory in the last 
30 min of experiment could be attributed to the activa-
tion of the respiratory metabolism, once Additional file 1: 

Box 2.  Flux-based micro-aerated control (FMC): equations for updating fresh medium feeding and air flow rates. The values for constants and 
other conditions are: yCO2, N2

 = 0.01*10−2; Tin = 294.25 K; Pout = 1 atm; R = 0.08206*10−3 L atm mmol−1 K−1. Qgas,out, yCO2, in
 , and yO2, in

 were estimated 
through mass balance. The variables yCO2, out

 , yO2, out
 and Tout were measured on-line and accessed through the supervisory software. JMC

s  , JMC
O2

 , JCAO2
 , 

JCACO2
 are expressed in mmol gDW

−1 h−1. QN2, QAIR and F were manipulated and are expressed in L h−1. *Mathematical correlations in Results Metabolic 
Models Simulations and Correlations (Eqs. 1 and 2, respectively)
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Figure S3 showed an increase in the biomass concentra-
tion close to the ending of the cultivation.

The control loop, which slightly increased or decreased 
the air flow (as can be seen in Box 3 and further explained 
in Methods Control Adjustments and Heuristics), was 
activated only for RQ values below or above the bounda-
ries (shown as dotted lines in Fig. 3a). Thus, 75% of con-
trol action time was solely based on the correlation given 
by Eq. 2 (Boxes 2 and 3), which is directly derived from 
the metabolic model simulations. After 8.5 h, the control 
loop was deactivated because the dissolved oxygen ten-
sion remained over 4.5%. When it happens, the inlet air 
flow was kept at the last calculated value by the control 
code.

Similarly, the overall performance of the controller on 
supplying glucose can be assessed from JMC

S  data as well, 
as from the profile of the manipulated fresh medium flow 
rate (Fig. 3c). The feeding stage lasted up to 10.6 h when 
all fresh medium prepared (~ 2.0  L) was added to the 

bioreactor (Fig. 3c, Additional file 1: Figure S3). The fresh 
medium flow (F) (Fig. 3c) was updated according to JMC

S  
values given by Eq.  1, using the Optical Density (OD600 

nm) values obtained at-line, and the on-line calculated 
volume (V) (Box 2).

Regarding the manipulated variables within the control 
framework, the manipulation of the air flow rate worked 
efficiently (Fig. 3b) until the observed oscillations. From 
this moment on, the air flow rate was fixed at the last 
updated value by the controller. The fresh medium flow 
rate (F) was calculated by Eq. B.2.1 (Box  2) using the 
overestimated values for JMC

S  (Fig. 3c), which were higher 
than the actual substrate consumption flux (represented 
by the JExpS  at Fig.  3c) throughout the feeding phase. 
Consequently, F was overestimated too, and substrate 
accumulated in the broth (Additional file  1: Figure S3). 
The overestimation of JMC

S  is due to the use of overesti-
mated values of JMC

O2
 in Eq. (1). Figure 3c shows that misfit 

between JMC
S  and JExpS  increased after 8.6 h of fermenta-

tion because, at this moment, the air flow rate was set to 
a fixed value. Consequently, JMC

O2
 and JMC

S  started to fol-
low constant patterns, too. The intensification of ethanol 
inhibition after 8.5  h contributed to a further decrease 
the actual JExpS  (Fig.  3c) and, in turn, aggravated glucose 
accumulation (Additional file 1: Figure S3).

Comparison of experimental and simulated fluxes 
for ethanol, biomass and substrate in FMC fermentation
As previously discussed, the performance of the pro-
posed control strategy depends on how well the met-
abolic model predictions reproduce the actual cell 
behavior. Thus, after the FMC fermentation was per-
formed, off-line data describing the trends in the con-
centrations of biomass, glucose, and ethanol became 
available and they were used to estimate the experimen-
tal fluxes by using component mass balances (according 
to equations in Box  1 and further detailed in Methods 
Experimental Flux and Cultivation Parameters Calcula-
tion). Then, the experimental fluxes JExpX  , JExpEtOH,JExpS  could 
be compared to the corresponding fluxes estimated by 
the metabolic model JMM

X  JMM
EtOH , and JMM

S  (Fig. 4). To ena-
ble this comparison, the metabolic model fluxes JMM

X  and 
JMM
EtOH were calculated by using the same values of JExpO2

 and 
J
Exp
S  as inputs for the Optflux simulations. Whereas for 
JMM
S  , the values of JExpO2

 and JExpEtOH were used as inputs for 
these simulations.

The experimental and simulated fluxes for ethanol and 
substrate showed similar profiles (Fig. 4b, c), whereas the 
experimental biomass fluxes were always lower than the 
corresponding metabolic fluxes (Fig.  4a). This overesti-
mation of biomass fluxes in the simulation of metabolic 
models is inherent to the use of the objective function 
that maximizes growth. Biomass fluxes generated from 

Box 3.  RQ control heuristics and framework
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metabolic model simulations for this objective function, 
in fact, represent the theoretical upper limit for the maxi-
mum specific growth rate that could be attained by the 
cells under the model constraints. So, as expected, in vivo 
biomass fluxes remained below these maximum theoreti-
cal values. As further detailed at the Methods Metabolic 
Model Simulations, the maximization of growth was cho-
sen as the objective function because it provides a better 
emulation of the actual yeast cell metabolism than other 
options, such as maximization of ethanol flux.

The decrease in JExpX  , JExpEtOH , and JExpS  as ethanol concen-
trations increased (Fig.  4a–c) is another notable trend. 
The observed decreasing pattern for cells and substrate 
uptake was probably related to ethanol inhibition, which 
is intensified at ethanol concentrations above 0.75 M [36, 
37]. This threshold value for the ethanol concentration 

that triggers inhibition can vary according to the strain 
and cultivation conditions [37]. Besides experimen-
tal fluxes, the fluxes JMM

X ,JMM
EtOH and JMM

S  estimated from 
model simulations also showed decreasing trends at high 
ethanol concentrations (Fig.  4a–c), because smaller val-
ues of JExpO2

 were observed at this cultivation condition, 
and provided as inputs to Optflux.

Regarding glycerol production, there was an accumula-
tion of 9 g L−1 at the end of the fermentation (Additional 
file 1: Figure S3). Experimental glycerol fluxes decreased 
from 1.4 to 0.7 mmol gDW

−1 h−1 from the beginning to the 
end of the fermentation (data not shown). This produc-
tion is higher than the values predicted by the metabolic 
model, which would vary from 0 to 0.12  mmol gDW

−1  h−1 
(data not shown) for the values of JExpO2

 and JExpS  used as 
inputs. Thus, the metabolic model iND750 developed 

Fig. 3  Overall performance of the flux-based Micro-aerated Control. a Respiratory quotient (RQ), oxygen flux ( JCAO2
 ), and carbon dioxide flux 

(

JCACO2

)

 in 

FMC fermentation. The arrows indicate the activation of the RQ loop, which was deactivated when RQ returned to the set boundaries (lower 
boundary: red dashed line, upper boundary: blue dashed line) or when DOT ≥ 4.5%. b QN2 and QAIR flow rates during the feeding phase and up to 
the end of the cultivation. c Fresh medium feed flow rate and substrate flux 

(

JCAS
)

 in FMC fermentation
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by Duarte and coworkers (2004) seems to reproduce cell 
metabolism in terms of ethanol production and substrate 
uptake, under the studied conditions, but it failed to 
describe glycerol production. Nevertheless, it should be 
once again stressed that GSMs are stoichiometric mod-
els, and their results must be seen as indicators of trends 
when transient cultivations are processed in real bioreac-
tors. Moreover, the GSMs predictions were inputs for a 
control action that provided overall performance indices 
superior to conventional fermentation strategies, as dis-
cussed in the next section. Besides, the control variable, 
RQ, could also be effectively controlled adequately dur-
ing most of the fed-batch, as shown in Fig. 3a. And the 
insights provided by the simulations were very important 
to define the bioreactor operational strategy.

Performance of different cultivation strategies
In the previous topics, the flux-based micro-aeration 
control (FMC) was detailed and its implementation was 
described. However, the embracement of the FMC strat-
egy in real life cultivations will depend on its ethanol 
productivity and yield, when compared to other fermen-
tation strategies. So, two additional reference cultivations 

were performed. The first reference fed-batch cultivation 
represented the conventional fermentation process in 
a Brazilian Bioethanol Plant (BBP), which is carried out 
without aeration. The second reference cultivation was 
conducted under strictly anaerobic conditions (SAC). 
The same experimental conditions employed in FMC fer-
mentation, including FMC’s fresh medium feeding pro-
file, were reproduced for both BBP and SAC. Thus, after 
BBP and SAC experiments were carried out, the results 
from the three cultivations strategies can be compared to 
further evaluate the performance of the micro-aeration 
control based on the metabolic fluxes.

The experimental data showing the changes in the con-
centrations of glucose, biomass, ethanol, and glycerol 
obtained in the FMC, BBP and SAC experiments (avail-
able in Additional file 1: Figs. S3–S5 respectively) were used 
to obtain the performance indexes for all the experiments 
(Table 1) and estimate all the experimental metabolic fluxes 
(Box 1).

In all fermentations, the glucose supplied was totally con-
sumed (conversion higher than 95%) and converted mainly 
to ethanol, with overall yields ranging from 0.46 to 0.40 
gethanol g−1

substrate, whereas overall biomass yields around 0.1 

Fig. 4  Simulated and experimental fluxes for FMC fermentation during the fed-batch phase. Metabolic fluxes of a biomass, b ethanol and c 
substrate
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gbiomass g−1
substrate were observed (Table 1). However, SAC and 

BBP lasted longer than FMC (Additional file 1: Figures S4, 
S5), which means that micro-aeration increased produc-
tivities for both ethanol and biomass (Table 1). In addition, 
the ratio between ethanol and glycerol concentrations at 
the end of the fermentation strategies (SIndex, Eq. 5) of FMC 
(9.9) is superior to the corresponding values for BBP’s and 
SAC’s (6.6 and 6.2, respectively), confirming that metabolic 
flux towards glycerol (Fig. 2 and Additional file 1: Table S1) 
was reduced under controlled micro-aeration.

Regarding metabolic fluxes, the ethanol fluxes during the 
feeding stage for BPP and SAC were similar and remained 
below 10  mmol  gDW

−1  h−1 throughout the fed-batch phase 
(Fig.  5a). On the other hand, for FMC, the ethanol flux 
remained around 14 mmol gDW

−1 h−1 during the feeding. A 
better explanation for the different volumetric produc-
tivities (Table 1) can be obtained by comparing the ethanol 
concentrations (Fig. 5b). For FMC, the ethanol concentra-
tion increased steadily during the feeding phase, surpassing 
the dilution effect. Consequently, FMC ethanol produc-
tivity was 1.5-fold the values observed for BPP and SAC 
(Table 1). These results emphasize the potential benefits of 
a flux-based cultivation strategy. Indeed, high ethanol con-
centration and productivity were achieved in FMC due to 
the high ethanol flux policy successfully applied to this cul-
tivation, as will be further discussed in the next section.

Discussion
The modulation of oxygen fluxes following the pattern 
defined by the data obtained in silico using Saccharo-
myces cerevisiae iND750 GSM was effective in direct-
ing the yeast metabolism towards ethanol formation. 

Furthermore, the values of experimental and simulated 
ethanol fluxes differed by less than 15% on average 
(Fig.  4a), validating the initial assumption of applying 
the GSM steady-state simulated fluxes as a pseudo-
stationary response. The proposed control strategy 
was successful because, in micro-aerated condition, 
the fluxes for biomass formation, substrate uptake, and 
ethanol production were limited by the oxygen supply, 
which, in turn, was defined by the control action.

Regarding ethanol production, the highest experi-
mental ethanol flux achieved was 17 mmol gDW

−1 h−1 for 
FMC (Fig. 5a), applying JCAS  of 9 mmol gDW

−1 h−1 and JCAO2
 

of 1.5  mmol  gDW
−1  h−1, which agrees with model pre-

dictions (Fig.  1a). However, this JEXPEtOH value is almost 
half of the highest reported ethanol fluxes (up to 
32 mmol gDW

−1 h−1) in chemostat cultures under anaero-
bic/micro-aerated conditions using S. cerevisiae CBS 
8066 [35]. This fast-growing S. cerevisiae lab strain 
(maximum specific growth rate of 0.45  h−1 at 30  °C) 

Table 1  Performance indexes for  controlled fermentation 
FMC and  for  the reference fermentation strategies (BBP 
and SAC)

Ethanol and glycerol concentrations at the end of the cultivation. Overall 
cultivation parameters estimated: Yx/s biomass yield, YEtOH/S ethanol yield, PrX 
volumetric cell productivity, Prp,Ethanol volumetric ethanol productivity, SIndex 
selectivity index, STotal total glucose mass fed

Performance indexes FMC BBP SAC

Ethanol (g L−1) 87 ± 2 62.1 ± 0.3 57.2 ± 0.8

Glycerol (g L−1) 8.76 ± 0.01 9.33 ± 0.02 9.3 ± 0.1

Yx/s (gcells g
−1
substrate) 0.11 ± 0.001 0.08 ± 0.01 0.08 ± 0.01

YEtOH/s
(gethanol g

−1
substrate)

0.46 ± 0.01 0.38 ± 0.03 0.39 ± 0.02

Prx (g L−1 h−1) 1.2 ± 0.2 0.59 ± 0.01 0.77 ± 0.01

Prp,Ethanol (g L−1 h−1) 7.0 ± 0.2 3.75 ± 0.02 4.05 ± 0.02

SIndex 9.9 ± 0.8 6.6 ± 0.1 6.2 ± 0.7

Total glucose mass fed (g) 616 ± 4 552 ± 2 544 ± 2

Conversion (%) 99.6 ± 0.4 97.88 ± 0.02 99.00 ± 0.02

Fig. 5  Experimental fluxes (a) and concentrations (b) of ethanol 
during the fed-batch phase for FMC, BBP, and SAC. a Experimental 
fluxes of ethanol 

(

J
Exp
EtOH

)

 . b Concentrations of ethanol (CEtOH) . FMC 

flux-based micro-aeration control, BBP “Brazilian Bioethanol 
Plant”-type fermentation, SAC strictly anaerobic condition
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shows high glucose uptake fluxes (up 20 mmol gDW
−1 h−1) 

under anaerobic conditions [38]. Thus, the use of high 
ethanol producing S. cerevisiae strains would certainly 
lead to larger experimental ethanol fluxes.

In this case, the control action proved to be sufficiently 
robust in managing with the limited capability of the 
commercial baker’s yeast used for ethanol production. 
Higher inlet fluxes of oxygen led to increased biomass 
fluxes, resulting in an RQ decrease, which was satisfac-
torily corrected by the implemented control loop (Fig. 1b 
and Box 3).

Concerning substrate feeding, glucose accumula-
tion was observed in FMC, SAC and BBP cultures. As 
mentioned before, the accumulation was caused by the 
overestimation of the JMC

S  by Eq.  1 (Fig.  3c) due to the 
influence of overestimated JMM

X  (Fig.  4a) used for the 
calculation of JMC

O2
 in Eq. 2. Glucose accumulation (Addi-

tional file  1: Figure S3) was intensified for ethanol con-
centrations over 40 g L−1, most certainly due to product 
inhibition and viability loss. This increase in glucose 
concentration was a consequence of misleading biomass 
information provided by the at-line optical density meas-
urements, which reflected the concentrations of viable 
and non-viable cells. High ethanol concentrations can 
trigger viability loss, but the OD600 readings (updated at-
line; Box 2) used as inputs led to overestimated Cx values 
and, consequently, to exaggerated feeding rates. Other 
effects of ethanol inhibition were also observed, includ-
ing increased dissolved oxygen concentrations (Addi-
tional file  1: Figure S3) as well as reduced experimental 
substrate and biomass fluxes (Fig.  4a–c). However, no 
increase in glycerol metabolic flux was observed (data 
not shown).

Even at low concentrations (5% (v/v)), ethanol can act 
as an inhibitor of yeast growth, while high ethanol con-
centrations (10% (v/v)) greatly reduce cell viability [39]. 
One of the main effects of the exposure to this metabo-
lite is an increased membrane fluidity and consequently a 
decrease in membrane integrity [40].

In addition, other assumptions, such as the pseudo-
stationary state for substrate balance and the constant 
value for biomass yield, could also influence the feed 
flow rate calculated by the expression F (Box 2). Never-
theless, although undesirable, glucose accumulation did 
not hamper ethanol productivity or yield. The reason 
is that the cultivations were continued after the feeding 
of fresh medium was ended until the residual glucose 
was completely assimilated by the cells. Substrate accu-
mulation is a common problem observed for different 
control approaches involving supplementary medium 
feeding in fed-batch cultures [41, 42]. The robustness of 
the proposed control system could be improved by on-
line viable cell quantification (using a biomass sensor) or 

its inference using a softsensor, which should reduce the 
glucose accumulation.

Table  2 summarizes the main results of this work 
and other reported studies employing micro-aeration 
strategies.

The cultivations performed according to the meta-
bolic flux-based control logic showed higher pro-
ductivity (7.0  gethanol  L−1  h−1, respectively) than those 
obtained in any other reported study, while the prod-
uct yield (0.46 gethanol g−1

substrate) was similar to the values 
achieved in four [23, 43–45] out of the five previously 
reported studies. To help contextualize these results 
it should be again noted that the present study used a 
minimum medium and a wild yeast strain.

Overall, the integration of on-line/at-line data acqui-
sition with the trajectory predicted for the metabolic 
fluxes from GSM simulations within the control logic 
provided suitable oxygen fluxes for running a micro-
aerated fermentation. The structure of the proposed 
control system is more flexible and comprehensive than 
micro-aeration tuning schemes based just on RQ meas-
urements. The control algorithm and the mathemati-
cal model can be easily modified to handle different 
inputs (JX, JS, JCO2

 , and others, besides RQ), according 
to their availability or better matching of the meta-
bolic response of each organism under oxygen-limited 
growth, both for those exhibiting homofermentative 
pathways (such as S. cerevisiae) and others following 
heterofermentative patterns.

Conclusions
The proposed control system based on fluxes estimated 
from a genome-scale metabolic model (GSM) for S. cer-
evisiae was successfully implemented. A new supervi-
sory system (SuperSys_Ferm) was developed and was 
evaluated under real fermentation conditions, with 
biomass concentrations ranging from 4 to 16 gDW  L−1, 
ethanol concentrations over 70  g L−1, and fed-batch/
batch bioreactor operation mode. The efficacy of the 
control strategy was confirmed by the high ethanol 
yield (YP/S,FMC = 0.46 gethanol  g−1

substrate) and productivity 
(PrEtOH,FMC = 7.0 g L−1 h−1) that were achieved relative to 
controls.

This work has applied GSM simulations for control-
ling a bioprocess, manipulating both feeding and inlet gas 
flow rates to meet cell requirements for the desired prod-
uct. As already mentioned, tuning of the control action 
and estimation of experimental fluxes by the supervisory 
system would greatly benefit from the use of an in-line 
biomass sensor able to determine the actual active cell 
concentration, which was not employed in this study. 
The proposed control approach is rather general and can 
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be adapted to control several bioprocesses that require 
restricted aeration.

Materials and methods
Microorganism and cultivation media
Fed-batch cultures were carried out using fresh com-
mercial Saccharomyces cerevisiae (baker’s yeast, Itaiquara 
brand) and minimal medium (5.0  g  L−1 KH2PO4, 2.0 
g  L−1 MgSO4  7H2O, 1.5  g  L−1 urea, for both batch and 
feeding stages), with glucose as carbon source (30 g L−1 
for batch cultivations and 300  g  L−1 for the feeding 
medium) [46].

Cultivation strategies
Three cultivation strategies were evaluated: (i) Metabolic 
Flux oriented based micro-aeration Control (FMC); (ii) 
“Brazilian Bioethanol Plant” type fermentation (BBP); 
(iii) Strictly Anaerobic Condition (SAC).

The BBP strategy reproduced the current combined 
fed-batch/batch cultivations used for ethanol produc-
tion in most of the Brazilian sugarcane mills. Briefly, in 
the usual Brazilian bioethanol production process, also 
known as Melle-Boinot [47] a stream of concentrated 
yeast suspension (to achieve cell densities of 10–15% 
w/v) and a stream of molasse are supplied until the ves-
sel is filled (fed-batch stage). After filling is completed, 

the process continues as a batch fermentation until sugar 
exhaustion (batch stage). During both stages no inlet gas 
stream is supplied [47–49]. For SAC, ultrapure nitrogen 
was continuously flushed into the bioreactor to ensure 
“true” anaerobic conditions. The description of FMC 
strategy is given in Methods Control strategy for FMC 
Cultivation. One replication of each cultivation strategy 
was carried out and the experiments are reproducible 
and representative within an expected variance for an 
operation of bioreactors for glycerol, ethanol and bio-
mass concentrations (less than 15% deviation, on average, 
for ethanol concentrations, and less than 10% for glycerol 
and biomass).

Bioreactor operation, instrumentation, and automation
The experiments were conducted in a 5-L stirred tank 
bioreactor (fabricated in-house) with a working volume 
of 3.5 L. The pH was automatically controlled (on/off, in-
line GLI PRO pH meter) at 4.5 by the addition of NH4OH 
(7%) and H3PO4 (20%). Ammonium solution added dur-
ing all cultures, doubling as a nitrogen source [50, 51]. 
The temperature was set at 30  °C. The dissolved oxygen 
concentration (DOC) was measured in-line using a Met-
tler Toledo Inpro 6800 probe connected to a CE O2 4050 
transmitter. The exhaust gas composition was measured 
on-line using a Sick/Maihak S.710 system for CO2 and an 

Table 2  Main performance indexes for  micro-aeration cultures carried out  with  S. cerevisiae using different substrates 
and medium compositions

All the cited experiments were carried at 30 °C, with exception of López-Abelairas et al. [10], which was at 32.5 °C

Source Yp/s 
(gethanol g

−1
substrate)

PrP, EtOH 
(gethanol L

−1 h−1)
Final 
CEtOH 
(g L−1)

Medium Carbon source Cultivation 
conditions

Yeast strain (S. 
cerevisiae)

This work (FMC) 0.46 7.0 87.2 Defined Glucose Fed-batch, micro-
aerated

Itaiquara baker’s yeast

This work (BBP) 0.38 3.8 62.1 Defined Glucose Fed-batch, no gas 
supplied

Itaiquara baker’s yeast

This work (SAC) 0.39 4.1 57.2 Defined Glucose Fed-batch, strictly 
anaerobic

Itaiquara baker’s yeast

Ben Chaabane et al. 
[23]

0.44 41 65.0 Defined Glucose Two-stage con-
tinuous with cell 
recirculation, 
second stage 
micro-aerated

CBS 8066

Brandberg et al. [43] 0.47 ~0.2 18.5 Defined Glucose Continuous with 
cell recirculation, 
micro-aerated

ATCC 96581

López-Abelairas et al. 
[10]

0.38 3.3 46.9 Complex Maltose Continuous, periodi-
cal micro-aerated

Commercial Fermentis 
yeast

Joannis et al. [44] 0.47 2.3 118.7 Complex Sucrose Very high gravity 
fed-batch, constant 
aeration (1 vvh)

C10

Deesuth et al. [45] 0.49 2.7 127.9 Complex Sucrose Very high gravity 
batch, constant 
aeration (0.31 vvm)

NP01
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additional Mettler Toledo Inpro 6800 probe for O2. The 
feed supply was provided by an Ismatec BVP pump. In 
all the experiments, data acquisition and monitoring/
control of the instruments were achieved using Super-
Sys_Ferm, an in-house computational tool for flux-based 
control of micro-aerated fermentation processes. Super-
Sys_Ferm was implemented in LabView, via a Compact 
FieldPoint (Model cFP-2020, National Instruments), and 
was based on SuperSys_HCDC, which was developed 
to assist fed-batch bioreactor operation during high cell 
density cultivations [52, 53].

For all experiments, 41 g (wet mass, ~ 70% humidity) of 
fresh commercial baker’s yeast was suspended in 0.6 L of 
defined medium. This inoculum was transferred to the 
bioreactor leading to an initial biomass concentration of 
about 3.5 g L−1. After inoculation, the cultivations were 
split into three stages, as described in the following.

The first stage was a batch phase used for activation 
of the yeast cells and increase of the biomass concen-
tration up to the desired range (8–12 gDW  L−1). In this 
stage, the oxygen saturation was kept at 30% by means of 
a PID controller that adjusted the stirrer speed between 
200 and 1000 rpm. The air was supplied to the bioreac-
tor at flow rates ranging from 0.5 to 5 L min−1, adjusted 
using a mass flow controller (Model GFC, Aalborg). For 
all experiments, as soon as the biomass concentration 
reached the desired range, air supply was shut down and 
industrial nitrogen started to be flushed to the bioreactor 
to reduce DOC.

For all experiments, the second and third stages mimic 
the current combined fed-batch/batch cultivations 
used for ethanol production in Brazil. The second stage 
started after the DOC was below 3% and was conducted 
in fed-batch mode. For FMC, the flow rate of the feed-
ing medium was defined by the control strategy (further 
detailed in Methods Control Algorithm Design). For both 
BBP and SAC cultivations, the feeding profiles repro-
duced the one automatically implemented in the FMC 
culture by the control action. Since all experiments were 
performed using the same feeding pattern and the same 
overall mass of supplied substrate, this approach enabled 
a direct comparison of the three competing strategies. 
Concerning the gas supply in this cultivation stage, for 
FMC the inlet gas stream was a mixture of air and indus-
trial nitrogen (99.99% N2 (v/v)), supplied by two mass 
flow controllers at the rates automatically defined by the 
FMC control strategy. For BBP, no gas stream was sup-
plied, whereas for SAC ultrapure nitrogen (99.999% N2 
(v/v)) was provided at a constant flow rate of 1 L min−1.

The third stage was a batch culture that followed the fed-
batch phase when the feeding supply was stopped. The 
third phase ended when the glucose accumulated during 

the feeding phase, for all experiments, was totally con-
sumed. The same strategy of gas supply already described 
for the second stage of FMC, BBP and SAC continued dur-
ing the third stage. The stirring speed was kept constant at 
400 rpm in all the experiments throughout the second and 
third stages.

Concentrations of biomass, glucose and metabolites
During the experiments, samples were withdrawn and bio-
mass formation was measured by at-line optical density 
readings (OD600) at λ = 600 nm and dry cell weight method 
[54]. A correlation (Eq. 3) was then used to convert OD600 
measurements into cell mass concentration, CX (gDW L−1), 
to be used as input to the control action (better detailed in 
Methods Control Algorithm Design).

The concentrations of ethanol, glycerol, and glucose were 
measured off-line by HPLC with refractive index detection 
(Model 410, Waters) [55], using the following conditions: 
Aminex HPX-87H column (Bio-Rad); 5 mM sulfuric acid 
solution at a flow rate of 0.6 mL min−1 as the mobile phase; 
temperature of 50 °C.

Experimental flux and cultivation parameters calculation
Determination of the experimental flux ( JExpi  ) for each i 
component was based on Eq. 4 [56], where ri is the volu-
metric production or consumption rate (obtained by mate-
rial balances for each i component), in mmol of “i” L−1 h−1, 
and Cx is the biomass concentration, in gDW L−1.

Box 1 shows the equations used off-line to estimate JExpi  . 
To obtain the derivative terms presented for each com-
ponent in Box 1, the polynomial approximation was fit to 
the experimental mass data as a function of time, which 
was further derived (Box 1, Eqs.B1.2 to B1.5). It is worth to 
point out that the components mass data were calculated 
based on the HPLC concentration results and volume cor-
rection. Besides the experimental fluxes calculated from 
off-line data given at Box  1, fluxes of oxygen uptake and 
carbon dioxide evolution were also calculated from the 
available on-line gas data. Experimental values of JO2

 and 
JCO2

 are essential for running the control algorithm and 
their estimation is given at equations B2.4 and B2.5 (Box 2).

An additional index, denominated Overall Selectivity 
Index (SIndex) was defined as the ratio between the concen-
trations of ethanol and glycerol at the end of the cultiva-
tion, as stated in Eq. 5, and represented a measure of the 
metabolic shift towards glycerol formation under the dif-
ferent policies of oxygen supply applied.

(3)Cx = (0.447± 0.007) ∗OD600(R
2
= 0.99)

(4)J
Exp
i =

ri

Cx

(5)SIndex =
CEtOH,Final

CGly,Final
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The products yields (Yi/s) (Eq.  6) and volumetric pro-
ductivities, Prp,i (Eq.  7) were obtained also as overall 
indexes, according to the definitions described below.

Control strategy for FMC cultivation
Besides experimental fluxes ( JExpi  ), three different kinds 
of fluxes are presented in this paper They were gener-
ated using data from: (1) Metabolic Model simulations 
( JMM
i  ); (2) On-line Estimation using the supervisory 

software ( JCAi  ); and (3) Mathematical Correlations ( JMC
i  ); 

these fluxes are used as inputs for the control algorithm 
to manipulate the flow rates of air (QAIR), nitrogen (QN2), 
and fresh medium feed (F). The nomenclature included 
at the beginning of the article provides a detailed descrip-
tion of all fluxes used in this work and their symbols.
JMM
i  are represented in Fig. 1a, and they were estimated 

off-line from metabolic model simulations (detailed in 
the next section). JMC

i  were the fluxes calculated on-line 
by mathematical correlations. These correlations were 
generated off-line from selected JMM

i  (Fig.  1a). JCAi  were 
the fluxes calculated on-line by the control algorithm, 
which was set up to drive the control action (Fig.  1b, 
Boxes 2 and 3).

Metabolic model simulations
The control strategy implemented in the FMC experi-
ment was based on the S. cerevisiae cell metabolic 
responses. An overview of the proposed control and 
experimental approach is shown in Fig. 1. Figure 1a pre-
sents the in silico studies of S. cerevisiae metabolism 
performed off-line with glucose as carbon source, using 
Optflux 3.2.7 software [34]. The genome-scale metabolic 
model (GSM) of S. cerevisiae iND750 [33] was used, 
together with the parsimonious flux balance analysis 
optimization method (pFBA) [57]. The objective func-
tion that maximizes the biomass flux was chosen, assum-
ing that it may provide a better emulation of the actual 
behavior of a yeast cell struggling to grow in the environ-
ment of the bioreactor. Another meaningful objective 
function would be the maximization of the ethanol flux, 
but within our concept, the actuation of the advanced 
control system would be responsible for the task of maxi-
mizing ethanol yields.

The simulations focused on mapping the metabolism, 
given inlet fluxes of oxygen and glucose ranging from 15 
(fully aerobic) to 0.001 (severely oxygen-limited) mmol 
O2 gDW

−1 h−1, and from 1 to 50  mmol glucose gDW
−1 h−1, 

(6)

Yi/S =
(Final mass− Initial mass)Product,i

(Total mass fed− Residual mass)Glucose

(7)Prp,i =
Final concentrationProduct,i

Total cultivation time

respectively [35]. Several simulations were carried out 
and the simulated responses of metabolic ethanol flux 
( JMM
EtOH ) and respiratory quotient (RQMM) were collected 

for each JMM
S  and JMM

O2
 used as the environmental condi-

tions. JMM
S  was kept constant at fixed values and JMM

O2
 was 

gradually reduced until a maximum JMM
EtOH was observed. 

This procedure was repeated for several JMM
S  (Step 1, 

illustrated in Table SM1 available in Additional file  1). 
The optimal inlet fluxes JMM

O2
 for each JMM

S  were identified 
considering the range from 85 to 100% of the maximum 
JMM
EtOH obtained in the simulations (Step 2, illustrated in 

Additional file 1: Table S2).
In Fig. 1a, it is possible to observe a gray shaded area, 

which was generated by compiling all simulation results 
for several JMM

S  and the corresponding optimal JMM
O2

 . The 
RQMM, JMM

O2
 , and JMM

S  data into the 85% to 100% bound-
ary were further used to obtain the mathematical cor-
relations presented in the results, which were used to 
support the control action (Fig. 1b).

Control algorithm design
The flux-based micro-aerated control fermentation 
(FMC) was implemented as an on-line closed-loop type 
control policy [58], with RQ as the controlled variable 
( RQCA ) (Fig. 1b), having the O2 and CO2 molar fractions 
in the exhaust gas as input variables (Box  2). The link 
between metabolic model simulations and the control 
action can be seen in Eqs. B2.1 and B2.3, where JMC

O2
 (on-

line estimated by the RQ-based correlation given at Eq. 2) 
and JMC

S  (on-line estimated by Eq.  1) were input vari-
ables used to update air and feeding medium flow rates, 
respectively. In addition, the control actuated to keep RQ 
at the desired range. The entire supervisory system was 
assembled in SuperSys_Ferm.

The algorithm which was set up to run the on-line 
flux-based control for the FMC experiment is outlined in 
Box 2. The rO2 equation was based on the combination 
of the metabolic flux definition and mass balance (Box 2, 
Eq. B2.2). Thus, the QAIR was manipulated according to 
Eq. B2.3 and the QN2 increased automatically (observing 
the CO2 molar fraction upper detection limit provided 
by the gas analyzer) during the experiment’s second and 
third stages (as described in Methods Cultivation Strat-
egies). The respiratory quotient (Box  2, Eq. B2.6) was 
calculated on-line as the ratio between carbon dioxide 
evolution rate (CER) ( rCO2 ) and the oxygen uptake rate 
(OUR) ( rO2 ) or, similarly, JCACO2

 and JCAO2
 . Both JCAO2

 and JCACO2
 

were obtained on-line by a pseudo steady-state material 
balance for the continuous gas phase (Box  2, B2.4 and 
B2.5, respectively). The flow rate of fresh medium (F) as 
a function of JMC

S  was calculated using Eq. B2.1 (Box 2). 
The F equation is the solution of a second-order poly-
nomial, which was obtained from a pseudo steady-state 
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material balance for the substrate, together with the cell 
yield definition.

Cell masses mX and mX,0 (Box  2, Eq. B1.1) were 
obtained at-line using OD measurements. The biomass 
yield (YX/S) and the volume (V) were estimated at-line 
by the supervisory system. The value of CSF was set to 
the actual glucose concentration in the feeding medium 
(~ 300  g  L−1) measured before the experiment was 
started.

Control adjustments and heuristics
Several adjustments were made to provide better perfor-
mance for the control system. The first modification was 
the insertion of an 80-point moving average filter [59] on 
the input variables: inlet pressure (Pin), outlet tempera-
ture (Tout), outlet oxygen fraction ( yO2, out

 ), outlet carbon 
dioxide fraction ( yCO2, out

 ), inlet oxygen fraction ( yO2, in
 ), 

and inlet carbon dioxide fraction ( yCO2, in
 ). This was done 

in order to maintain system stability and protect the 
equipment (e.g.: mass flow controllers, peristaltic pump) 
against sudden changes or oscillations [26]. The sec-
ond adjustment was the addition of a control delay with 
Δtlag = 60 s. This value refers to the time interval required 
for a given change in the gas stream composition to travel 
through the entire piping system and to be detected by 
the gas analyzer.

The pseudo-code of the RQ control implemented in the 
FMC cultivation is shown in Box  3. It can be separated 
into three conditions, as follows.

In condition (1), the heuristics first determine if the 
on-line calculated RQ ( RQCA) is between the estab-
lished boundaries. If this statement is true, JMC

S  and JMC
O2

 
are updated along with F and QAIR (Box 2, Eqs. B2.1 and 
B2.3, respectively). If the statement in (1) is false, then 
conditions (2) and (3) are examined.

Condition (2) is true when RQCA is lower than the 
lower boundary, with the heuristics then calculating JCACO2

 
at an instant (n) ( JCACO2

 _new) and comparing it to JCACO2
 at 

an instant (n-1) ( JCACO2
 _previous). If 

(

JCACO2

)

 n < 
(

JCACO2

)

 n−1 is 
true, the last JMC

S  , JMC
O2

 , QAIR, and F are maintained. If 
false, it means that respiration might be under increasing 
activation. So, JMC

O2
 is decremented by 0.5 mmol gMS

−1 h−1 to 
increase RQ at the next iteration, and JMC

S  , QAIR, and F 
are updated. The RQCA ’s lower boundary is based on the 
90% region of the maximum JMM

EtOH (explained in Methods 
Metabolic Models Simulations).

Condition (3) is true when RQCA is higher than the 
upper boundary. In this case, JMC

O2
 undergoes an incre-

ment of 0.5  mmol  gMS
−1  h−1, to decrease RQ at the next 

iteration, and JMC
S  , QAIR, and F are also updated. The 

RQCA ’s upper boundary was established due to the mass 
flow meters operational restrictions.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1293​4-019-1198-6.

Additional file 1: Figure S1. Linear correlation used to estimate JMC

S
 from 

J
MC

O2
 input data. Each state in Fig SM1 corresponds to a different solution 

of the GSM, which provides different fluxes of ethanol and biomass. 
The multiplicity of metabolic states in this figure reflects the use of an 
85–100% range of JMM

EtOH
 . Figure S2. Hyperbolic correlation employed to 

estimate JMC

O2
 from RQCA (control loop action). The influence of RQCA on 

J
MM

EtOH
 is also shown. Figure S3. FMC cultivation profile: biomass (black 

square), ethanol (red circle), glycerol (brown inverted triangle), glucose 
(blue triangle), dissolved oxygen (green line). (a) Beginning of control 
action; (b) end of fresh medium feeding. Figure S4. BBP cultivation profile: 
biomass (black square), ethanol (red circle), glycerol (brown inverted 
triangle), glucose (blue triangle), dissolved oxygen (green line). (a) Begin-
ning of fresh medium feeding (F profile reproduced from FMC); (b) end 
of fresh medium feeding. Figure S5. SAC cultivation profile: biomass 
(black square), ethanol (red circle), glycerol (brown inverted triangle), 
glucose (blue triangle), dissolved oxygen (green line). (a) Beginning of 
fresh medium feeding (F profile reproduced from FMC); (b) end of fresh 
medium feeding. Table S1. Results of in silico studies (Step 1) using the 
IND750 metabolic model (DUARTE, HERRGÂRD and PALSSON, 2004). 
Influence of the oxygen inlet fluxes on the biomass, CO2, and ethanol 
production fluxes (for an inlet glucose flux of 3 mmol gDW

−1 h−1). *Condi-
tions for the maximum ethanol flux production. Table S2. Ethanol fluxes 
for different oxygen inlet fluxes (Step 2) (considering an inlet glucose flux 
of 3 mmol gDW −1 h−1). *Inlet O2 flux that led to 90% of the maximum 
ethanol production flux observed. + Maximum ethanol flux production 
J
MM

EtOHMAX
.
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cFP: Compact Fieldpoint; CSF: feed flow substrate concentration (g L−1); Cx: at-line 
dry cell mass concentration (gDW L−1); DOC: In-line dissolved oxygen concentration 
(% saturation); BBP: “Brazilian Bioethanol Plant”-type fermentation; EtOH: ethanol; F: 
fresh medium feeding flow (L h−1); FMC: flux-based micro-aeration control; GSM: 
genome-scale metabolic model; Gly: glycerol; HPLC: high performance liquid 
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: control on-line estimated O2 flux (mmol gDW

−1 h−1); JCA
CO2

: 
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 at a moment 

(n − 1); JMC

S
 _new: JMC

S
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control estimated Inlet O2 fraction; yO2 out
: on-line Outlet O2 fraction; YP/S: product 

yield (gP  g substrate−1); YX/S: biomass yield (gDW g substrate−1); Δt: time interval 
(program iteration) (h); Δtlag: time delay (s).
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