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Abstract

We consider the problem of performing dimension reduction on heteroscedastic functional data 

where the variance is in different scales over entire domain. The aim of this paper is to propose 

a novel multiscale functional principal component analysis (MFPCA) approach to address such 

heteroscedastic issue. The key ideas of MFPCA are to partition the whole domain into several 

subdomains according to the scale of variance, and then to conduct the usual functional principal 

component analysis (FPCA) on each individual subdomain. Both theoretically and numerically, we 

show that MFPCA can capture features on areas of low variance without estimating high-order 

principal components, leading to overall improvement of performance on dimension reduction for 

heteroscedastic functional data. In contrast, traditional FPCA prioritizes optimizing performance 

on the subdomain of larger data variance and requires a practically prohibitive number of 

components to characterize data in the region bearing relatively small variance.

1 Introduction

Functional principal component analysis (FPCA) is a key tool for performing dimension 

reduction on functional data that features infinite dimensionality and emerges in many 

machine learning applications (Ghebreab, Smeulders, and Adriaans 2008; Ramsay and 

Silverman 2005; Ferraty and Vieu 2006; Hsing and Eubank 2015). In classic FPCA 

referred to as single-scale FPCA in this paper, a single eigen-analysis is conducted for 

observed functions on the entire domain. Specifically, FPCA is built on eigen-analysis of the 

covariance function of functional data, analogous to the covariance matrix, from which we 

derive functional principal components. For the purpose of dimension reduction, only the 

principal components corresponding to the first few largest eigenvalues are retained. Related 

works include early development of FPCA (Rao 1958; Dauxois, Pousse, and Romain 1982; 

Besse and Ramsay 1986), and more recent advances such regularization techniques (Rice 

and Silverman 1991; Silverman 1996), estimation and theory (Yao, Müller, and Wang 2005; 

Hall, Müller, and Wang 2006; Li and Hsing 2010; Zhang and Wang 2016) for functional 

data that are sparsely observed, and interpretability (Chen and Lei 2015; Lin, Wang, and Cao 

2016), to name a few. All of these works adopt the single-scale paradigm, which is briefly 

described in the next section.

Such one-size-fits-all scheme, as we show in Section 2, inevitably comes with a side effect 

that the leading principal components prioritize producing good approximation quality for 

functions on the subdomain that holds large data variance. However, for heteroscedastic 
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functional data, where the variance of the data has substantially different scales over the 

domain, single-scale FPCA approach often needs a large number of principal components 

in order to characterize the behavior of the data on the subdomain with relatively small 

variance. However, it is notoriously difficult to accurately estimate high-order principal 

components. For example, for a fixed sample size, the estimation error for the kth principal 

components is approximately of the order k2 (Mas and Ruymgaart 2015). This quadratic 

decay in estimation quality prohibits one from obtaining reliable estimates of principal 

components for a moderate sample size except for the first few leading ones. Consequently, 

for heteroscedastic functional data, single-scale FPCA may not be able to discover useful 

features in the area of low variance.

To address the issue of FPCA for heteroscedastic functional data, we consider a question, 

which states

“Could we modify standard FPCA to efficiently deal with heteroscedastic functional data?”

Our solution to the above question is the development of a novel multiscale FPCA 

framework. The key ideas of MFPCA are to partition the whole domain into several 

subdomains in the way that the variance of the data within a subdomain is approximately on 

the same scale, and then to conduct FPCA on each subdomain separately. Compared with 

the existing methods in the literature, three major methodological contributions in this paper 

are as follows:

• Our MFPCA approach is simple and yet powerful. Specifically, compared to 

single-scale FPCA, the multiscale approach alleviates the issue of estimating 

high-order principal components and leads to overall improvement of data 

representation, since fewer components are required for sufficient approximation 

of the data within each subdomain.

• Our MFPCA is able to discover useful patterns in the area of low variance, as 

demonstrated in the analysis of the brain microstructure in relation to multiple 

sclerosis using diffusion tensor imaging techniques; see Section 4 for details.

• Theoretically, we show that MFPCA has larger capacity of representation for 

functional data and yields higher estimation quality for principal components 

than singlescale FPCA. The theoretical analysis is complemented by numerical 

simulation in Section 4.

2 Classic Functional Principal Component Analysis

Without loss of generality, let X be a random process defined on an interval I such that 

E X ℒ2
2 < ∞ and EX = 0. FPCA is built on the concept of Karhunen-Loève expansion of X. 

Specifically, X (t) admits the following representation

X(t) = ∑
k = 1

∞
ξkϕk(t), (1)
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where ξk are centered uncorrelated random variables, ϕk(·) are normalized eigenfunctions 

of the covariance function C(s, t) = Cov{X(s), X(t)}, and Var(ξk), often denoted by λk, is the 

eigenvalue of C corresponding to ϕk, i.e.,

∫
I

C( ⋅ , t)ϕk(t)dt = λkϕk( ⋅ ) . (2)

It is also conventionally assumed that λ1 > λ2 > · · · > 0. The eigenfunctions ϕ1(·), ϕ2(·),…, 

referred to as principal components in the context of FPCA, form an orthonormal basis of 

ℒ2(I).

The above FPCA is a single-scale approach in the sense that both (1) and (2) are defined 

on the entire interval I. It has the following global optimality of Karhunen-Loève expansion 

for approximation of X using the first few eigenfunctions. For any fixed K > 0, let B = 

{B1,…, BK} be a collection of K orthonormal real-valued functions in ℒ2(I), and define 

PB the projection operator of the space spanned by B1, …,BK, i.e., PBX = ∑k = 1
K Bk, X Bk, 

where ⟨Bk, X⟩ = ∫I Bk (t)X(t)dt. In principle, PBX is the approximation of X using the basis 

functions B1,…, BK. The approximation error is often measured by ε(B) = E( X − PBX ℒ2
2 ). 

It can then be shown that ε(Φ) ≤ ε(B) for Φ = {ϕ1,…, ϕK} and any B of K orthonormal 

functions in ℒ2(I).

Although such optimality of single-scale FPCA is attractive for approximating functional 

data, it has an undesired side-effect for functional data with different scales of variability on 

the interval I. To elaborate, we divide I into J equal subintervals I1,…, IJ that form a partition 

of I, in the sense that ⋃j = 1
J  Ij = I and Ij ∩ Ik = ∅ for 1 ≤ j ≠ k ≤ J. Denote X(j)(t) as the 

restriction of X(t) to the subinterval Ij, i.e., X(j)(t) = X(t) if t ∈ Ij and X(j)(t) =0 if t ∉ Ij.

Then, we have

ε(B) = E ( X − PBX ℒ2
2 )

= ∑
j = 1

J
E X(j) − (PBX)(j)

ℒ2
2

= E ( X ℒ2
2 ) ×

∑
j = 1

J E( X(j) − (PBX)(j)
ℒ2
2

)
E( X(j)

ℒ2
2

)
E( X(j)

ℒ2
2

)
E( X ℒ2

2 )
,

where (PBX)(j) denotes the restriction of PBX to Ij. Let wj = E( X(j)
ℒ2
2

) E( X ℒ2
2

) for all 

j ≤ J, which are constants that are independent of B. We interpret the weights wj as the 

variance density of X on Ij. Then, finding B to optimize ε(B), which the single-scale FPCA 

does, prioritizes minimizing the approximation error for the pieces with larger weights, i.e., 

with relatively larger variance density. Therefore, in order to capture features of pieces that 

have small weights, one needs a large number of principal components. As the principal 

components ϕk are unknown, one needs to estimate them from a finite sample. However, 

it is difficult to estimate the high-order principal components, in light of the fact that 
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any estimate for ϕk based on n independently and identically distributed (i.i.d.) samples 

of X cannot have an estimation error less than ck2 /n for some constant c > 0 (Mas and 

Ruymgaart 2015). Thus, if one applies single-scale FPCA to X(t) that exhibits multiscale 

variability over I, then the features in the area with low variance density might be concealed 

by those in the region of high variance density.

3 Multiscale Karhunen-Loève Expansion

To overcome the aforementioned shortcoming of singlescale FPCA, for heteroscedastic 

functional data, we adopt the following simple divide-and-conquer strategy to conduct 

FPCA: divide the interval I into several subintervals according to the scale of variance 

on I, and then perform FPCA on each subinterval. To be more precise, let I1,…,IJ and 

X((),…,X(J) be defined as in Section 2. Applying single-scale FPCA to each X(j) on Ij, 

we can obtain the Karhunen-Loève approximation X(j)(t) ≈ ∑k = 1
Kj ξk

(j)ϕk
(j)(t), where ϕk

(j) is the 

kth leading eigenfunction of the multiscale covariance function C(j) that is defined by 

C(j)(s, t) = Cov{X(j)(s)X(j)(t)} on the square Ij × Ij. The approximation for X is then obtained 

by

X(t) ≈ ∑
j = 1

J
∑

k = 1

Kj

ξk
(j)ϕk

(j)(t) . (3)

Although there are ∑j = 1
J  Kj terms in (3), for each t ∈ Ij, only Kj of them are nonzero 

as ϕk
(j) is zero outside Ij. The number of principal components, Kj required for a good 

approximation of X(j) can vary among the subintervals, which allows for the adaptive 

approximation of X over different subintervals. For example, if sample paths of X are rough 

on Ij, then a relatively larger number of principal components can be used to obtain a good 

approximation, while for relatively smooth pieces, X(k), a small number might be sufficient. 

In contrast, single-scale FPCA uses the same number of principal components for each t 
∈ I and hence does not enjoy such extra adaptivity. Note that (3) automatically takes into 

account the fact that the sub-domains where the data have small variance contribute less 

than others to approximating the process X(t), by observing that the principal component 

scores ξk
(j) have different scales of variance on different sub-domains. For those sub-domains 

with small variance, the scale of the corresponding principal component scores is also small. 

Nevertheless, the features of a small scale could be influential in supervised learning tasks, 

as demonstrated in Section 4.

As stated previously, single-scale FPCA has the global optimality property, which can be 

equivalently stated as E PΦX ℒ2
2 ≥ E PBX ℒ2

2 , where Φ and B are defined in Section 2. The 

quantity E PΦX ℒ2
2  is often interpreted as the amount of variance explained by the principal 

components in Φ. The optimality property essentially asserts that the first K eigenfunctions 

explain the variance of X more than any other K orthonormal functions for any K ≥ 1. 

However, by exploring local adaptivity, our MFPCA enjoys larger capacity of representation 

of functional data, i.e., it can explain larger variance than single-scale FPCA when the same 

number of principal components is used to approximate X (t) for each t ∈ I. The following 

proposition illustrates this point for K = 1.
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Proposition 1. Let I1,…, Ij form a disjoint partition of I. Suppose that X is a random process 
satisfying E X ℒ2

2 < ∞ and (without loss of generality) EX = 0. Let Sj be the collection of 

function f such that f ℒ2
2 = 1 and support(f) ⊂ Ij. Then

E‖Pϕ1X‖ℒ2
2 = E X, ϕ1

2
≤ sup

ψ(j) ∈ Sj

∑
j = 1

J
E X, ψ(j)

2
.

The equality is possible only if E X, ϕ1
(j) = E X, ϕ1

(k)  for all 1 ≤ j, k ≤ J, where ϕ1
(j) denotes the 

restriction of the single-scale eigenfunction ϕ1 onto Ij.

Proof. It is easy to see that the conclusion holds for J > 2 if it is true for J = 2. Suppose 

‖ϕ1
(1)‖ℒ2 > 0 and ‖ϕ1

(2)‖ℒ2 > 0; otherwise, the conclusion is trivial. Set ϕ1 = ϕ1
(1) ‖ϕ1

(1)‖ℒ2 and 

ϕ2 = ϕ1
(2) ‖ϕ1

(2)‖ℒ2. Then

E X, ϕ1
2 = E X, ϕ1

(1) + ϕ1
(2) 2

= E X, ϕ1
(1) 2 + E X, ϕ1

(2) 2 + 2E( X, ϕ1
(1) X, ϕ1

(2) )

= ‖ϕ1
(1)‖ℒ2

2 E X, ϕ1
2 + ‖ϕ1

(2)‖ℒ2
2 E X, ϕ2

2

+2‖ϕ1
(1)‖ℒ2‖ϕ1

(2)‖ℒ2E( X, ϕ1 X, ϕ2 )

≤ ‖ϕ1
(1)‖ℒ2

2 E X, ϕ1
2 + ‖ϕ1

(2)‖ℒ2
2 E X, ϕ2

2

+‖ϕ1
(1)‖ℒ2

2 E X, ϕ2
2 + ‖ϕ1

(2)‖ℒ2
2 E X, ϕ1

2

= E X, ϕ1
2 + E X, ϕ2

2,

where the last equality is due to ‖ϕ1
(1)‖ℒ2

2 + ‖ϕ1
(2)‖ℒ2

2 = 1. The equality holds if 

E X, ϕ1
(1) = E X, ϕ1

(2) . The fact that ϕ1 ∈ S1 and ϕ2 ∈ S2 concludes the proof. □

Principal components are unknown and need to be estimated from data in practice. Given 

n i.i.d. samples X1, X2,…, Xn, the single-scale covariance function C is estimated by its 

empirical version C(s, t) = n−1∑i = 1
n Xi(s)Xi(t). The kth single-scale principal component ϕk is 

then estimated by the kth principal component ϕk of C. The quality of the estimator ϕk is 

quantified by the error E‖Pϕk − Pϕk‖∞
2 , where ‖ · ‖∞ denotes the operator norm on ℒ2(I). It 

is shown that E‖Pϕk − Pϕk‖∞
2 ≥ ck2 n for all k ≥ 1 and a universal constant c > 0 (Mas and 

Ruymgaart 2015). In Section 2, we point out that singlescale FPCA focuses on the region of 

high variance density. For heteroscedastic functional data, if one needs to learn features in 

the area of low variance density, then a potentially large number of principal components are 

required. However, due to the quadratic growth in estimation error, it is notoriously difficult 

to obtain reliable estimates for high-order principal components.

The difficulty of handling high-order principal components might be alleviated or 

even avoided if one takes a multiscale perspective. To give a more concrete 

example, we assume X = ∑j = 1
J ∑k = 1

j ξk
(j)ϕk

(j) + X⊥, where ϕk
(j) are orthonormal, X⊥ is 

orthogonal to all ϕk
(j), and ξk

(j) are uncorrelated and centered random variables with 
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variance λk
(j) ≡ E(ξk

(j))2 ≍ {J(J + 1) 2 − j(j − 1) 2 + (k − j)}−α for some constant α > 1, 

i.e., λ1
(J) > λ2

(J) > ⋯λJ
(J) > λ1

(J − 1) > λ2
(J − 1) > ⋯ > λ1

(1). Also, if φ ∈ ℒ2(I) and φ ℒ2 = 1, then 

E X⊥, φ 2 < min{λk
(j): j = 1, …, J , k = 1, …, j} = λ1

(1). In other words, ϕk
(j) are the first J (J 

+ 1)/2 principal components of X. If one applies single-scale FPCA to obtain 

an estimate ϕk, S
(j)

 for each principal component ϕk
(j), then the estimation error for 

ϕ1
(1) is E‖Pϕ1, S

(1) − Pϕ1, S
(1) ‖∞

2 ≥ cJ2(J + 1)2 (4n). For multiscale FPCA, given the partition 

I1, I2,…, IJ, the multiscale estimator for C(j) is given by its empirical version 

C(j)(s, t) = 1
n ∑i = 1

n Xi
(j)(s)Xi

(j)(t) and the principal component ϕk
(j) is estimated by the kth leading 

principal components ϕk, M
(j)

 of C(j)
. In particular, ϕ1, M

(1)
 is the first leading principal component 

of C(1)
. The estimation error of ϕ1, M

(1)  is E‖Pϕ1, M
(1) − Pϕ1, M

(1) ‖∞
2 ≤ c log2n n (Mas and Ruymgaart 

2015), which contrasts with the error cJ2(J + 1)2/(4n) for the single-scale estimate ϕ1, S
(1)

 when 

J ⪢ log n.

To conduct the dimension reduction in (3), X is approximated by its projection onto 

the principal components ϕk
(j) for k = 1,2,…, Kj and j = 1,2,…, J simultaneously. 

This projection, denoted by P, is equivalent to the projection onto the linear space 

span{ϕk
(j):k = 1, 2, …, Kj, j = 1, 2, …, J}. In practice, it is estimated by the projection P M onto 

the space span{ϕk, M
(j) :k = 1, 2, …, Kj, j = 1, 2, …, J}. The estimation error of P M is bounded in 

the following theorem.

Theorem 2. Let λ1
(j) > λ2

(j) > ⋯ be eigenvalues of C(j), which satisfy c1j−1 − α ≤ λk
(j) ≤ c2j−1 − α

for some constants c1, c2 > 0 and for all j and k. Then, we have

E‖P M − P‖∞
2 ≤ 2c log2 n

n ∑
j = 1

J
Kj

2, (4)

where P M is the multiscale estimate of P based on n i.i.d. samples, and c > 0 is a universal 

constant.

Proof. Let P(j) be the projection onto the linear space span{ϕk
(j):k = 1, 2, …, Kj}. Note that 

E‖P M
(j) − P (j)‖∞

2 ≤ cKj
2 log2 n n (Mas and Ruymgaart 2015), where P M

(j)
 is the multiscale 

estimate of P(j). Then (4) follows from the fact E‖P M − P‖∞
2 ≤ 2∑j = 1

J E‖P M
(j) − P (j)‖∞

2 . □

Apply the theorem to the above example, we see that the estimation error 

of P M is bounded by 2cn−1 log2 n∑j = 1
J Kj

2 ≤ 2cJ3n−1 log2 n. In particular, if we 

use P(j) and Pk
(j) to denote the projection operators for the linear spaces 

span{ϕk
(j):k = 1, 2, …, Kj} and span{ϕk

(j)}, respectively, and denote their multiscale 

estimates by P M
(j)

 and P k, M
(j)

, respectively, then supQ ∈ PE‖QM − Q‖∞
2 ≤ 2cJ3 log2 n n, 

where P = {P} ∪ {P (j): j = 1, …, J} ∪ {Pk
(j):k = 1, 2, …, Kj, j = 1, 2, …, J}, and QM is 

the multiscale estimator for Q. However, for single-scale FPCA, one has 

supQ ∈ PE‖QS − Q‖∞
2 ≥ E P 1, S

(1) − P1
(1)

∞
2

> cJ4 (4n) which is larger than the multiscale one 
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when J ⪢ log2 n, where QS is the single-scale estimator for Q. Note that the bounds in the 

above derivation are quite loose. The practical advantage of the multiscale approach could 

emerge for small J, as numerically illustrated by the simulation studies presented in the next 

section.

To apply multiscale FPCA, one needs to find a good partition of I. A simple and yet effective 

approach is to segment I according to the variance function V(t) = Var[X (t)] and in practice 

its empirical version V (t) = (n − 1)−1∑i = 1
n {Xi(t)}2. Practical functional data are often only 

recorded at some discrete points of I subject to potential measurement noise, rather than 

fully observed. There are two types of functional data, including dense data and sparse data. 

Dense functional data refer to the scenario that each Xi is recorded on a common, regular 

and dense grid t1,…,tm of I, where m denotes the number of observations for each subject 

Xi; while sparse functional data refer to the case that Xi are measured on an irregular and 

subject-specific sparse grid ti1,…, timi, where mi is the number of measurements for Xi. 

For dense data, the variance function at tj can be estimated by V (tj) = 1
n − 1 ∑i = 1

n {Xi(tj)}2. For 

sparse data, such a simple estimate does not work, and we adopt local linear smoothing 

(Zhang and Wang 2016) on the observations to obtain the estimate V (t) = b t0 with

(b t0, b t1) = arg min
(bt0, bt1) ∈ ℝ2

∑
i = 1

n 1
mi

∑
j = 1

mi
K tij − t

ℎ

× [{Xi(tij)}2 − bt0 − bt1(tij − t)}]2,

where K is a kernel function supported on [−1,1], and h > 0 is the bandwidth to be chosen 

by cross-validation. Therefore, for both dense and sparse functional data, we can obtain the 

estimate of V(t) on a dense and regular grid t1,…,tm of I. To derive a partition on I for 

MFPCA, we apply a multiple change point detection method (Niu and Zhang 2012; Frick, 

Munk, and Sieling 2014) on V (t1), …, V (tm) to discover the change points of V (t) and partition 

the interval I according to those points, or we may apply the propagation-separation method 

to partition I into disjoint regions (Polzehl and Spokoiny 2006; Spokoiny and Vial 2009; 

Zhu, Fan, and Kong 2014). These change point detection methods also provide data-driven 

approaches to select the number of change points, which determines the number J of 

subintervals of the partition. Alternatively, one can visualize the empirical variance function 

and then determine the number of change points manually, which is often sufficient and 

effective in practice. The number Kj of principal components can be selected by a threshold 

(e.g. 95%) on the fraction of variance explained (FVE) for the jth subinterval, j = 1,2,…,J. 

The complete algorithm is given below.

Algorithm 1 (MFPCA). Suppose that X1,…,Xn are functional data on a common interval I, 
either given in the dense form or sparse form.

1. Obtain the estimate V (t) on a dense and regular grid t1 < … < tm of I.

2. Apply a multiple change point detection method on V (t1), …, V (tm). Suppose there 

are J — 1 change points that are denoted by T1 < … < TJ−1. Partition I into J 
subintervals according to T1 < … < TJ−1. Denote the subintervals by I1,…,IJ.
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3. Apply single-scale FPCA on each Ij, with data X1
(j), …, Xn

(j), recalling that Xi
(j)

denotes the restriction of Xi to Ij. Suppose λk
(j)

 for j = 1, 2,…,Kj and j = 1,2,…,J 

are the first K = ∑j = 1
J  Kj empirical eigenvalues from all subintervals Ij and ϕk

(j)

are their corresponding eigenfunctions. Each function Xi is approximated by 

Xi(t) ≈ ∑j = 1
J ∑k = 1

Kj ξ i, k
(j) ϕk

(j)(t), where the scores ξ i, k
(j)

 are computed by ∫Ijϕk
(j)(t)Xi

(j)(t)dt.

The number of overall principal components, K, can be determined by a fractional variance 

explained threshold, i.e., the smallest number of leading components required to account 

for at least 95% of the variance of the data. In practice, the multiscale features might 

be buried by the first singlescale principal component ϕ1, i.e., the variance function of X 
does not exhibit multiscale features, but the variance function of X − Pϕ1 X might. In this 

case, we can estimate the first single-scale principal component, denoted by ϕ1, S, and then 

apply the above multiscale algorithm to the residuals Xi − Pϕ1, SXi. Indeed, this procedure can 

be applied recursively to each partition to form hierarchical FPCA which is a multiscale 

system. In such a hierarchical structure, different layers represent FPCA that is performed at 

different scales, with the bottom layer corresponding to the finest.

4 Numerical Illustration

We illustrate the estimation of eigenfunctions ϕ and projection PΦ via n = 50 and n = 200 

simulated samples from a Gaussian process on the interval [0,1] with mean function μ(t) 
= e−(t−0.1)2/0.003 — 2e−(t+0.1)2/0.008 + e−(t−0.95)2/0.01 − 0.5e−(t−0.7)2/0.012, variance function 

σ0
2(t) = e−(t − 0.05)2 0.01(t + 0.05) + 1.5e−(0.95 − t)2 0.015(1.05 − t) and Matérn correlation 

function ρ(s, t) = 21 − ν( 2ν ∣ s − t ∣ )νBν( 2ν ∣ s − t ∣ ) Γ(ν), where Bν is the modified Bessel 

function of the second kind of order ν, Γ is the gamma function, and we set ν = 0.1. The 

mean function and variance function are specifically designed to mimic the shape of the 

mean function and variance function in the data application that follows. For the purpose 

of comparison, we also include the case of variance function σ1
2(t) ≡ 1, which might favor 

single-scale FPCA. We repeat each simulation setting N = 100 times independently. The 

estimation quality of an estimator ϕ for an eigenfunction ϕ is quantified by the Monte Carlo 

root mean squared error (RMSE), defined by (ϕ) = 1
N ∑r = 1

N ‖ϕ(r) − ϕ‖ℒ2, while for an estimator 

P  of the projection P, the Monte Carlo RMSE is given by (P ) = 1
N ∑r = 1

N ‖P (r) − P‖∞, where 

ϕ(r) and P (r) are the estimates produced in the rth simulation replication. The results, shown 

in Figure 1 and 2, suggest that the multiscale approach produces better estimation quality 

for eigenfunctions and projections, with more prominent advantage when data exhibit a 

multiscale feature, such as in the case of σ2(t) = σ0
2(t).

We apply multiscale FPCA to analyze the brain microstructure in the corpus callosum 

of healthy subjects and patients with multiple sclerosis (MS). MS is a common 

demyelinating disease that is often caused by immune-mediated inflammation. More 

precisely, demyelination refers to damage to myelin, an insulating material that covers nerve 

cells, protects axons and helps nerve signal to travel faster. Patient with MS suffer from 

demyelination that occurs in the white matter of the brain and can lose mobility or even 
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cognitive function (Jongen, Ter Horst, and Brands 2012). Myelin damage in the brain can 

be examined by diffusion tensor imaging (DTI), which produces highresolution images of 

white matter tissues by tracing water diffusion within the tissues. Fractional anisotropy of 

water diffusion can be determined from DTI and evaluated in relation to MS (Ibrahim et al. 

2011).

The DTI dataset we used in the following analysis was collected at Johns Hopkins 

University and the Kennedy-Krieger Institute. It consists of data from n1 = 340 MS patients 

and n2 = 42 healthy subjects. All fractional anisotropy profiles are recorded on a common 

grid of 93 points, as shown in the left panel of Figure 3. It seems that these profiles 

have larger variance at both ends relative to that in the middle. This is confirmed by the 

cross-sectional variance that is plotted in the right panel in Figure 3. We see that the 

variance function can be divided into three regions, including [0, 20], [20, 70] and [70,93], 

with relatively small variance density at [20,70]. This motivates us to apply the proposed 

multiscale FPCA on these regions separately. The first three estimated eigenfunctions of 

each region are shown in Figure 4, as well as the first three single-scale eigenfunctions. For 

comparison, the restriction of these single-scale eigenfunctions to each region is normalized 

to unit ℒ2 norm. We observe that both the multiscale FPCA and single-scale FPCA yield 

similar results for the first principal component on each region, but differ substantially for 

the second and third components. For example, the first principal component on the region 

[20,70] is almost a straight line, which can be interpreted as a size component, i.e., subjects 

with a positive score have larger fractional anisotropy than an average subject on locations 

between 20 and 70. However, for the second component, the multiscale analysis is able to 

capture additional features of the data on the region [20,70], while the single-scale analysis 

still yields almost a straight line that is similar to the depiction of its first component within 

that region. This agrees with our analysis in Section 2: as fractional anisotropy has low 

variance density on [20,70], single-scale FPCA prioritizes other regions.

It is of interest to see whether the additional patterns uncovered by MFPCA are useful for 

subsequent analysis, such as predicting MS status based on fractional anisotropy. To answer 

this question, we study classification of MS patients and healthy subjects using a random 

forest classifier based on the scores derived from the first K principal components. To 

account for the imbalance of the data, we adopt a simple undersampling strategy to train the 

classifier as follows. We randomly sample 42 subjects among all 342 MS patients without 

replacement, and combine those data with the data from the 42 healthy subjects to form a 

new dataset, which we then randomly divide into two equal halves. The classifier is trained 

on one half, while the correct classification rate is computed on the other half. We repeat the 

above procedure 100 times independently for each K = 1,2,…, 12, where 12 is the number 

of components required to explain over 95% of the variance of the data. In reality, K could 

be determined by cross-validation or BIC criterion. We also compare the proposed method 

to wavelet transformation which is capable of localizing signals in time domain. Specifically, 

each fractional anisotropy profile is represented by a set of coefficients with respect to 

Daubechies’ least asymmetric wavelets (Daubechies 1992), and wavelet coefficients are fed 

into a random forest classifier. Different vanishing moments are considered, namely, from 
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db1 to db6. Roughly speaking, wavelets of more vanishing moments can represent more 

complex function with a sparser set of wavelet coefficients.

The results, shown in Table 1, clearly suggest that MFPCA outperforms single-scale FPCA 

for all values of K except K = 3. We note that the first three multiscale components, ϕ1
(2), ϕ1

(3)

and ϕ1
(1), are the first component from each region. As previously stated, the first multiscale 

principal component and the single-scale counterpart for each region are almost identical, 

which might explain why the performance of classification for both methods is quite close 

when K ≤ 3. A possible explanation for the observation that the multiscale method performs 

worse when K = 3 is that the third multiscale principal component might not be strongly 

related to MS status. In such case, including the component in the model does not reduce 

prediction bias, but increases prediction variability and thus reduces the correct classification 

rate.

As high-order components come into play, in particular when the fifth component ϕ2
(3), the 

sixth component ϕ2
(2) and the seventh component ϕ3

(1) are included, the advantage of MFPCA 

becomes more prominent. In contrast, for singlescale FPCA, the classification performance 

barely improves when more principal components are added. This demonstrates that 

MFPCA is able to discover useful features that might not be captured by single-scale 

FPCA in regions of low variance density. The MFPCA method also outperforms the wavelet 

method, likely due to the fact that principal components derived from MFPCA are innately 

data-driven, while wavelet bases are not. Such data-driven feature allows a parsimonious 

representation of functional data and is attractive in practice. For instance, in the above 

simulated functional data, on average 12 principal components are sufficient to account for 

95% of variation of data, while over 50 wavelets are required to achieve a similar level of 

representation.

5 Concluding Remark

We have presented a multiscale FPCA method for functional data and demonstrated that 

it is numerically superior to its single-scale counterpart and the well known wavelet 

transformation, thanks to its data-driven nature and the ability to localize signals in time 

domain. It is worth of noting that while principal component scores from the same segment 

are uncorrelated, those from different segments could be correlated. Such correlation indeed 

accounts for the correlation structure among different segments. This is distinct from block-

diagonal structures where functional data from different segments are uncorrelated or even 

independent for Gaussian processes. It is also of interest to apply the proposed MFPCA 

method to machine learning tasks other than classification, such as regression and clustering, 

which is one of our future research topics.
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Figure 1: 
log10(RMSE) of the multiscale (red) and singlescale (blue) estimators for the first 10 

eigenfunctions (top panels) and projection (bottom panels) onto the first k leading 

components for k = 1, 2,…,10 for n = 50.
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Figure 2: 
log10(RMSE) of the multiscale (red) and singlescale (blue) estimators for the first 10 

eigenfunctions (top panels) and projection (bottom panels) onto the first k leading 

components for k = 1, 2,…, 10 for n = 200.
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Figure 3: 
Left panel: fractional anisotropy profile of 382 subjects. Right panel: empirical variance 

function of fractional anisotropy profile.
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Figure 4: 
The first 3 principal components of each partition by multiscale FPCA (solid) and single-

scale (dashed) FPCA.
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Table 1:

Correct classification rates of the random forest classifier trained on wavelet basis coefficients, multiscale 

principal component scores and single-scale principal component scores, respectively.

K 1 2 3 4 5 6

Multiscale 66.2 71.0 69.9 70.5 72.9 73.4

Single-scale 64.7 69.8 70.5 69.8 70.7 70.9

 

K 7 8 9 10 11 12

Multiscale 74.5 73.5 73.9 72.5 72.8 72.6

Single-scale 71.1 70.9 71.1 69.5 69.7 69.9

 

db1 db2 db3 db4 db5 db6

wavelet 69.5 70.8 68.6 70.1 69.5 69.1
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