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Abstract

The use and functionality of electronic health records (EHRs) have increased rapidly in the past 

decade. Although the primary purpose of EHRs is clinical, researchers have used them to conduct 

epidemiologic investigations, ranging from cross-sectional studies within a given hospital to 

longitudinal studies on geographically distributed patients. Herein, we describe EHRs, examine 

their use in population health research, and compare them with traditional epidemiologic methods. 

We describe diverse research applications that benefit from the large sample sizes and 

generalizable patient populations afforded by EHRs. These have included reevaluation of prior 

findings, a range of diseases and subgroups, environmental and social epidemiology, stigmatized 

conditions, predictive modeling, and evaluation of natural experiments. Although studies using 

primary data collection methods may have more reliable data and better population retention, 

EHR-based studies are less expensive and require less time to complete. Future EHR 

epidemiology with enhanced collection of social/behavior measures, linkage with vital records, 

and integration of emerging technologies such as personal sensing could improve clinical care and 

population health.
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INTRODUCTION

Epidemiologic research design and inference are shaped by prevailing theories, by available 

measures of risk factors, and by the cost of obtaining relevant data. Prior to the 1950s, 

researchers commonly used vital statistics to conduct cross-sectional and time series studies 

of noninfectious disease. The lack of longitudinal data limited causal inference. In the 

second half of the twentieth century, funding allowed researchers to develop cohorts of 

individuals who were followed over time. However, in the twenty-first century, declining 

research support and participation rates (42) complicate the conduct of traditional costly and 

time-consuming prospective studies.

The recent rise in the use of electronic health records (EHRs) offers a timely alternative. 

These databases provide a low-cost means of accessing rich longitudinal data on large 

populations for epidemiologic research. Not simply a digital version of a paper record (127), 

EHRs can be linked to contextual data using geographic information systems (GIS) and 

combined with self-reported data to address questions about complex networks of causation. 

Such work has the potential to evolve epidemiologic theory in the twenty-first century (69, 

86).

In this review we describe the nature of EHRs and how they have been used in 

epidemiologic research. Since its recent inception, EHR data have made considerable 

contributions to a broad population health scholarship, from infectious disease research to 

social epidemiology. We summarize this literature and then contrast traditional and EHR-

based studies to highlight specific strengths and weaknesses of each with the goal of 

informing future research.

EHR ADOPTION AND FUNCTIONS

EHRs were originally developed for billing purposes. However, their purview has expanded, 

motivated by meaningful use requirements expressed in the Health Information Technology 

for Economic and Clinical Health (HITECH) Act, part of the 2009 American Recovery and 

Reinvestment Act. Financial incentives to professionals and hospitals for EHR use are tied to 

existing and emerging requirements. Requirements include standard capture of vital 

statistics, an up-to-date problem list, and others relevant to patient engagement and data 

sharing (34, 127). The implementation of meaningful use will likely accelerate capture and 

standardization of data and benefit epidemiologic research (14).

In 2012, 69% of primary care physicians in the United States reported using EHRs, an 

increase of 32% from 2010 (3). Parallel changes have unfolded in other industrialized 

countries, and current usage ranges from lower levels in China and South Korea (115,134) to 

nearly universal adoption in Australia, New Zealand, and northern Europe (110). Although 

the focus of this article is primarily on the use of EHR data for research in the United States, 

we draw on relevant research elsewhere.
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EHR DATA AND DEFINING EPIDEMIOLOGIC PARAMETERS

Data included in EHRs are intended for clinical and administrative use. As discussed below, 

these data can be used effectively for research purposes, but doing so requires some caution 

and creativity.

EHR Data Collection and Content

Unlike standardized primary data collection in epidemiologic research, EHR data are 

collected for the purposes of the clinical encounter. Rather than being driven by research 

needs, the data collected are directly influenced by patient health status, by how and when 

they seek care, and by variation in physician care practices and documentation. Accordingly, 

the patient and physician, not the researcher, stipulate the amount of time a patient is under 

observation (person-time), which impacts calculation of prevalence, incidence, and risk 

ratios.

EHRs used by different health systems vary in the number of domains (e.g., vital signs, 

laboratory data) of health care data that they collect. Over time, systems tend to add 

functionality to their EHR and expand the number of domains collected (Table 1). 

Longitudinal research is made possible by using the dates associated with specific EHR 

entries. Doing so allows researchers to study not only disease onset, but also disease severity 

and progression.

Diagnostic codes warrant special consideration in EHR research. Physicians use codes to 

depict a patient’s condition, to document indications for orders (i.e., medications, laboratory 

tests, imaging), and to justify the levels of service and billing. The location of a code in the 

EHR can also provide useful information. Image and laboratory order codes indicate what 

the physician suspects about the patient’s condition that requires validation or what the 

physician knows about the patient (e.g., hypercholesterolemia) and is monitoring (e.g., low-

density lipoprotein). Medication orders/dosages or scheduling of return visits may represent 

the degree of physician concern, reflected in the explicit action required to manage the 

health condition. Even though diagnostic codes provide critical information on an 

individual’s health status, providers may not use them consistently, and the meaning of any 

given code may vary among providers and across time.

Study Design and Study Population Assembly

EHR-based studies involve predominately case series, nested case-control studies, and 

prospective and retrospective cohorts. Researchers can use EHR data to rapidly identify 

cases and assess eligibility for individual or frequency matching in nested case-control 

studies (130). EHRs capture data on an open cohort in which patients may enter or leave 

care at any time. A patient can contribute person-time only if they are under observation and 

are at risk for the outcome of interest. Although the notion “under observation” will vary, at 

a minimum it requires that a patient be documented as having an encounter with a qualified 

provider (e.g., primary care physician). Researchers may find it difficult to interpret gaps in 

care in the EHR. When a patient lacks data, one cannot distinguish between patients who 

have left care, who have been well and have not sought care, or who have missed routine 
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visits for other reasons. This ambiguity in whether patients are under observation is relevant 

to the person-time documentation required for estimating incidence rates. If patients enter 

care before an EHR has been implemented in a given system, some domains or events may 

not be captured and available for study (i.e., left-censored). Conversely, if they exit care, 

EHR data will lack information on events occurring after that time (i.e., right-censored).

Constructing Epidemiologic Variables

Outcomes and exposures.—EHRs can be used to define disease onset and outcomes 

and to determine case and control status on a selected outcome, exposure measures, and 

covariates. For numerous reasons, the single appearance of a diagnostic code does not 

necessarily indicate that a patient has a disease. For example, in identifying chronic 

rhinosinusitis, Hsu and colleagues found that the positive predictive value (PPV) for the 

ICD-9 (International Classification of Diseases) code 471.x for nasal polyps was 85%, 

whereas 473.x for chronic sinusitis had a PPV of only 34% (54). With additional 

information—evaluation by an otorhinolaryngologist, for example—the PPV rose to 91%. 

The accuracy of disease definition is often improved by using ICD-9 codes and other 

information over time and is often better in relation to more severe disease (e.g., myocardial 

infarction). Aspects of the EHR may enhance data validity. For example, alerts, commonly 

used in clinical decision support (122), can also be used to notify clinicians of input errors to 

support real-time data correction.

Clinical text is also captured in the EHR, often in a notes section. It includes discharge 

summaries, treatment plans, and progress notes, which can contain information about 

patients that is useful for research purposes. However, this information may be 

inconsistently recorded. For example, Wasserman et al. (129) searched text notes for 465 

children and found fever reported in 278 different ways (e.g., “fever,” “pyrexia,” “elevated 

temp”). One approach to deal with nuanced clinical text is to use open source natural 

language processing tools. These can extract text relevant to defining disease stage, severity, 

and progression or symptoms (6, 124), which may not be well captured by diagnostic codes. 

For instance, Andersen et al. (6) used natural language processing to extract suicidal ideation 

from clinical notes on >3 million Americans from 1700 primary care physicians and found 

that only 3% of patients with recorded suicidal ideation had a corresponding ICD-9 code.

Disease etiology.—Whereas disease status is often well documented in EHRs, disease 

etiology, including fundamental causes of disease (70) (e.g., social, behavioral, 

environmental factors), is often not well documented. Some data are not retained, including, 

for example, residential addresses over time (only the current address is used for billing). 

Researchers have used health insurance status (e.g., commercial versus Medicaid) as a proxy 

for individual socioeconomic status (SES) (13, 18, 36, 44, 67, 83) and have assigned 

neighborhood SES on the basis of the median income or an index of deprivation in patients’ 

communities (13,18,29,35,38). Although data on physical activity and other important 

behaviors and social risks are not routinely captured (2, 16), the Institute of Medicine has 

recommended that these and other domains be integrated into routine EHR data collection, 

including four existing (i.e., race/ethnicity, current address, alcohol use, and tobacco use) 

and eight new domains (e.g., stress, social isolation, physical activity) (27).
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DIVERSE USES OF EHR DATA FOR EPIDEMIOLOGIC RESEARCH

Researchers have applied extract, transform, and load algorithms to EHRs to assemble study 

populations from a variety of settings (Table 2). The most successful EHR research to date 

has used deidentified databases in UK and US health care systems whose patient populations 

receive most or all of their care within the system. Researchers initially used EHRs for 

comparative effectiveness and health services research, pharmacoepidemiology and genetics 

epidemiology [e.g., the Electronic Medical Records and Genomics (eMERGE) Network], 

and disease surveillance. These efforts have been summarized elsewhere (12, 49, 66, 81, 95, 

120) and are not covered in this review.

Assembling Research Cohorts from EHR Data

Researchers can use EHRs to form standard cohorts and to assemble groups of patients with 

specific diseases. Kaiser Permanente in the United States has several EHR-based cohorts (7, 

30, 31, 89), including the Diabetes Study of Northern California (DISTANCE) study (85). 

DISTANCE involves 20,000 patients with diabetes and has addressed wide-ranging issues, 

including diabetes outcomes among Asians and Pacific Islanders (59), the impact of 

neighborhood deprivation on cardiometabolic health indicators (68), and the relationship of 

SES to risk of hypoglycemia (9).

Researchers from two or more health systems are increasingly collaborating and assembling 

multisystem cohorts; the HMO Research Network has been a leader in this type of research 

since 1994 (112). Three other US examples are the Consortium on Safe Labor (28, 78, 83, 

106), which uses EHR delivery and birth data from 19 hospitals; the Clinical Assessment, 

Reporting, and Tracking system in Veterans Administration (VA) hospitals (128); and the 

Chronic Hepatitis Cohort Study, which combined data from four health care systems on 

more than 1.6 million adults to identify a cohort of hepatitis B and hepatitis C patients (87). 

With Chronic Hepatitis Cohort data, Mahajan et al. (77) found that only 30% of hepatitis C-

positive patients who died with documented liver disease had hepatitis C on their death 

certificate, uncovering huge underestimates of the role of hepatitis C on mortality in the 

United States (77).

Researchers have also assembled study populations from central repositories of anonymized 

data including the Clinical Data Analysis Report System in Hong Kong (22) and the Clinical 

Practice Research Datalink (CPRD) (4, 50, 102), the Health Improvement Network (THIN) 

(35, 93), and QResearch in the United Kingdom (125). The CPRD, which gathers data from 

more than 500 UK general practitioners, has data on more than 5 million active pediatric and 

adult patients. Repositories provide researchers with normalized, longitudinal data, enabling 

greater opportunities for research, as evidenced by the >1,000 peer-reviewed published 

papers using CPRD data.

Parallel rise in available EHR data and concern about obesity spurred some of the first 

population health research with EHRs (13, 52, 57, 64, 72, 96, 107, 111, 131). Weight and 

height used to calculate body mass index (BMI) is recorded during many clinical encounters. 

Additionally, BMI data in EHRs have relatively low error rates; notably, errors in child BMI 

are generally < 1% (119). Not surprisingly, few studies have focused on cancer (46, 62, 114, 
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121), given the availability of cancer registries worldwide. In the following sections, we 

provide specific examples of EHR research and their major areas of contribution to date.

Reevaluating Prior Findings

Researchers have employed large EHR data sets to reevaluate conclusions drawn from 

smaller studies. For example, many small studies reported positive or inconsistent 

associations between midlife BMI and later-life dementia. Qizilbash et al. (102) used 

longitudinal CPRD data on 2 million people and found that higher midlife BMI was 

associated with a decreased risk for dementia, which suggested that obesity could be 

protective for dementia or that weight loss may result from early dementia, both important 

areas for future research. In another study, Hibbard and colleagues (28) used Consortium on 

Safe Labor EHR data (N = 233,844 deliveries) to control for factors missing from prior birth 

outcome studies (e.g., maternal medical conditions). They found that late preterm birth 

compared with birth at term was associated with increased respiratory morbidity, but the 

association was smaller than reported in prior studies (28). Similarly, studies with small 

samples from fertility clinics had previously linked celiac disease to infertility. Dhalwani et 

al. (35) calculated incidence rates of infertility in >2 million UK women and found no 

evidence of such a connection.

Multiple Risks, Subgroup Differences, and Rare Outcomes

The large patient samples from EHRs enable researchers to evaluate multiple risk factors 

and/or outcomes simultaneously, to test associations in subpopulations, and to study rare 

outcomes.

For example, researchers in the Netherlands evaluated access to green space in relation to 

disease diagnoses with >10% prevalence. Using 12 months of EHR data on more than 

300,000 patients from 195 general practitioners (74), this team found that green space was 

protective in 15 of 24 disease clusters, including musculoskeletal and neurological clusters 

with the strongest associations for anxiety and depression, especially among children and 

individuals of low SES.

In a subgroup analysis, Scherrer et al. (109) used seven years of VA EHR data and found 

that major depressive disorder and type 2 diabetes alone each increased the risk of 

myocardial infarction by about 30%. However, evidence of having both health problems 

increased risk by more than 80%, with important clinical implications. Rapsomaniki et al. 

(103) studied > 1 million UK adults using CALIBER (CArdiovascular research using 

LInked Bespoke studies and Electronic Health Record) data to evaluate age category–

specific risk of 12 acute and chronic cardiovascular diseases (CVDs) related to systolic and 

diastolic blood pressure. The study was able to provide an adequate sample size to evaluate 

important subgroups (e.g., those with low blood pressure or who were on blood pressure-

lowering drugs) and found varying associations across subgroups between systolic and 

diastolic blood pressure and CVD end points (e.g., between systolic, but not diastolic, blood 

pressure and stable angina). Because the health data covered the majority of the UK 

population, these findings had excellent external validity (103) and were in contrast to prior 

studies that evaluated fewer CVDs (132) across narrower age and blood pressure ranges.
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Rare disease research can also benefit from EHR data, which help alleviate methodological 

constraints. Thomas et al. (125) used four UK EHR databases to study chickenpox as a risk 

factor for stroke, a rare event in children. Using patients as their own controls, they observed 

a fourfold increase in risk of pediatric stroke in the first 0–6 months after chickenpox. This 

study identified avenues for future research on links between infections and vascular injury 

and their role in stroke.

Environmental and Social Epidemiology

EHR data sets have allowed environmental and social epidemiologists to leverage data on 

patients distributed across a wide range of physical, built, and social environments. Because 

patient addresses are routinely checked and updated at each encounter for billing and 

communication purposes, researchers can readily link geocoded addresses to location-

specific data and use GIS to study an individual’s proximity to hazards related to disease. 

This process can be used to study negative health impacts from both direct exposure, e.g., air 

pollution and contextual exposure, e.g., residential zip code poverty rates.

Physical environment.—EHR studies have evaluated exposures to risks and resources in 

the physical environment (e.g., air pollution, green space) and health outcomes (e.g., 

hypertension, diabetes, migraines) (72, 74, 78, 80, 88, 106). For example, in a novel study of 

exposure to acute air pollution, Mannisto et al. (78) used EHR data on 151,276 deliveries 

from 19 hospitals across the United States from the Consortium on Safe Labor and found 

elevated odds of high blood pressure at delivery in women exposed to higher levels of 4 air 

pollutants in the 4 hours preceding hospitalization. Casey et al. (19) obtained data from the 

Geisinger EHR on more than 10,000 births to evaluate objectively recorded health risks 

associated with unconventional natural gas development. They identified significantly 

increased odds of preterm birth in women exposed to more unconventional natural gas 

development activity during their pregnancies.

Built environment.—Studies of the built environment have focused on land use (e.g., 

street connectivity, population density, agriculture), food (e.g., density of fast-food 

restaurants, food deserts), and physical activity environments (e.g., access parks, diversity of 

physical activity establishments) (18, 19, 38, 71, 72, 107, 111, 118). Duncan et al. (38) 

found greater increases over time in BMI z-scores for 50,000 children and adolescents who 

were residing in less walkable neighborhoods versus those in more walkable neighborhoods, 

after controlling for age, sex, race/ethnicity, and neighborhood median household income. 

Casey et al. (18) reported that living near high-density, industrial livestock production or the 

crop fields to which manure was applied increased the risk for methicillin-resistant 

Staphylococcus aureus; this study provided the first evidence of agricultural risk for 

antibiotic-resistant infections in a general population sample.

Social environment.—Social epidemiology’s rich history of studying the influence of 

neighbor-hoods and communities on health (75,123) has expanded through the use of EHR 

data. EHR-based studies have generally used an administratively defined surrogate for 

neighborhoods, such as census tracts, and then used census data to link community-level 

exposures to EHR data through geocoded patient addresses (21, 43, 92, 100, 107, 111, 126). 
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For example, Nau et al. (92) used data on Geisinger Clinic children and adolescents (N = 

163,473) and found that community socioeconomic deprivation was associated with steeper 

BMI trajectories. Pujades et al. (100) used CALIBER data on nearly 2 million patients and 

confirmed prior associations between socioeconomic deprivation and myocardial infarction 

and CVD mortality, with new evidence of heterogeneity by age groups, CVD types, and sex. 

Most EHR social epidemiology has evaluated associations of community SES (e.g., median 

household income or education level) and health, but some have studied other exposures, 

including intimate partner violence (98, 104), sexual abuse (24), and community violence 

(116).

Predictive Modeling

The convergence of machine learning tools and big data methods is motivating development 

of predictive models that can readily use diverse, high-volume EHR data to guide decision 

making for individual patients (56). Researchers have used EHR data to assign Framingham 

Heart scores (45) and QScores (http://www.qresearch.org/), which predict the risk of 

outcomes such as cancer, diabetes, and stroke. Better cardiac prediction has been achieved 

by adding variables available in the EHR that were not included in the traditional prediction 

models (32, 63, 93, 133). Osborn et al. (93) developed an algorithm to predict CVD in 

patients with severe mental illness and found that the Framingham model overpredicted 

events in mentally ill men by 32%. Other algorithms have been developed to predict 

treatment failure among HIV-positive patients to better target interventions (101, 105). Most 

algorithms have utilized only EHR data; the addition of place-based predictors of patient 

health (i.e., social and environmental variables) could improve performance.

Research on Stigmatized Conditions

EHRs can be used to study stigmatized conditions, such as mental health outcomes or HIV, 

where patient recruitment and follow-up can sometimes pose challenges. For example, 

McCoy et al. (82) used EHR data to classify psychiatric inpatients using Research Domain 

Criteria Project criteria. Loadings on cognitive, arousal, negative valence, and social 

domains predicted the length of hospital stay and readmission, whereas ICD-9 codes did not, 

exemplifying the promise that information extracted from EHRs can improve diagnosis and 

predict health outcomes (55). In Rwanda, Betancourt et al. (10) used EHR data and 

information from community health workers to compare mental health outcomes in HIV-

positive children, children living with HIV-positive parents, and HIV-unaffected children. 

They demonstrated that children living with HIV-positive parents require the same mental 

health services as do children who are themselves infected (10).

Natural Experiments

The widespread use of EHRs enables the rapid collection of data when natural experiments 

occur. Johnson & Beal (58) exploited the isolation of Altru Health System in North Dakota, 

where a comprehensive smoke-free ordinance went into effect. Using EHR data from the 

only acute care center in a 70-mile radius, the investigators found a significant decrease in 

the heart attack rate after the ban. In the Netherlands, Dirkzwager et al. (36) assessed health 

problems one year prior and two years after a fireworks disaster using data from family 

medical practices. In addition to finding poorer health overall postdisaster, they identified 
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groups in need of priority postdisaster care: those with preexisting mental illness and those 

forced to relocate.

EPIDEMIOLOGIC PRINCIPLES: COMPARING TRADITIONAL AND EHR 

STUDIES

Compared with studies using primary data collection, EHR-based studies are considerably 

less expensive, require less time to complete, and involve substantially larger and more 

generalizable populations with fewer limitations to follow-up (Table 3). However, traditional 

studies offer more comprehensive and precise protocols for data collection and better study 

population retention. Below, we consider the comparative strengths and weaknesses of the 

two approaches.

Study Population Selection

Investigators who directly recruit study participants encounter several limitations to 

obtaining truly representative samples. One limitation is that the interest of individuals and 

groups with salient characteristics in participating in research varies (42). Women, married 

individuals, those of higher SES, and those to whom the research topic is most relevant are 

more likely to enroll, whereas those with risk behaviors such as smoking, drinking, and drug 

use are less likely to do so (42). In combination with the declining participation rates in 

recent decades, this occurrence raises concerns about selection bias and external validity of 

traditional population health studies.

EHR studies also experience challenges with representativeness and missing data. On the 

one hand, that EHR studies can include in the analysis every person who receives care 

reduces selection bias. However, patients enrolled in a given health care system may differ in 

meaningful ways from the general population. To test representativeness, researchers can 

compare the age, sex, race/ethnicity, and other relevant characteristics of their patient 

population to census data in the matching region. Missing data may introduce bias into all 

studies. Since EHR data collection is less standardized, missing data may be especially 

problematic. For example, Qizilbash et al. (102) began with CPRD data on 6.1 million 

individuals, but were forced to exclude 48% of eligible participants because of missing BMI 

data.

Issues of generalizability pose less of a problem for regional environmental or social 

epidemiology than for general disease surveillance efforts. Increasing standardization and 

interoperability of EHR records should allow for pooling of data from multiple systems, 

thereby increasing representativeness and strengthening external validity. In addition, efforts 

to implement the use of structured templates in EHR may improve data completeness (20).

Study Population Attrition

Both traditional and EHR cohorts suffer from attrition, which can be problematic for 

longitudinal research. Traditional cohort studies experience attrition if people withdraw from 

the study or are lost owing to a move, although actively managed studies can reduce loss. 

For example, participation rates in the four follow-up exams in the Multi-Ethnic Study of 
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Atherosclerosis (MESA) over an 11-year period following the initial assessment were 91%, 

87%, 84%, and 68% (84); this pattern is representative of retention in large cohort studies.

Attrition in EHR studies arises primarily because of patient disenrollment. Study subjects 

may leave care for a variety of reasons. Some instances of disenrollment may be due to 

patient or disease characteristics, whereas others may reflect modifications to insurance 

coverage due to changes in employment, legislation, or regulations. If researchers use 

sequential cohorts, there may be changes in composition. If individual patients are followed, 

those who disenroll will be lost to follow-up. For example, a study of 20–39.9-year-olds 

enrolled in Kaiser Permanente from 2007 to 2009 found that 68% of active members from 

2007 were retained at the end of 2009 (65). Retention increased with age; 76% of those 35–

39.9 years old remained.

Recall Bias

Disease diagnosis may skew a patient’s recall of prior events. This lack of reliable 

information may be especially problematic in controversial areas such as childhood 

vaccination and autism onset. Because EHRs can specify timing and risk, they may reduce 

recall bias and other types of information bias. For example, two studies used longitudinal 

data from the CPRD to assess the measles, mumps, and rubella vaccine as a risk factor for 

future autism diagnosis (61, 117), which assured no recall bias in vaccination reports. An 

additional advantage to using EHR data for social and environmental research is a reduction 

in possible diagnostic and reporting biases. Outcome data are obtained from reports of 

physicians and patients who are unlikely to be aware of the exposure of interest. EHR data 

can similarly reduce Hawthorne effects and social desirability bias.

Time, Cost, and Size

Because they use existing data, EHR studies require less time and money to conduct and can 

involve more participants than studies that require primary data collection. We contrast these 

factors in three traditional studies of CVD risk factors compared with a cohort drawn from a 

health system’s EHR.

The traditional studies are the Framingham Heart Study (FHS) (n = 5,209 adults aged 30–59 

years from Framingham, Massachusetts, enrolled in 1948 and followed up since); the 

Atherosclerosis Risk in Communities (ARIC) (n = 16,000 adults 45–64 years in 4 

communities, 4 follow-up visits, one every 3 years); and the Multi-Ethnic Study of 

Atherosclerosis (MESA) (n = 6,800 adults aged 45–84 years in 6 communities, 5 follow-up 

visits to date over 12-year period) (91).

The EHR data were constituted from a retrospective data pull from the Geisinger EHR for 

the years 2006–2013. With institutional review board approval, we selected 138,514 patients 

aged ≥45 years at baseline. The data contained 12/13 domains (no imaging files) highlighted 

in Table 1.

Cost.—Compared with direct recruitment and follow-up in traditional studies, obtaining 

data from the EHR is much less expensive. For example, as of 2012, the FHS had received 

$140 million, ARIC $189 million, and MESA $121 million in funding from the National 
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Heart, Lung, and Blood Institute (NHLBI) (91). In contrast, using an extract, transform, and 

load algorithm on the Geisinger EHR data cost about $50,000. The approximate average 

cost per participant in the EHR sample was $0.11 for 8 years of data compared with $17,750 

and $11,800 per participant for 12 years of MESA and ARIC data, respectively, and $2,732 

per participant for 67 years of FHS data (unadjusted for inflation).

Time.—The strongest cohort studies are prospective and wait for outcomes to develop; the 

FHS began in 1948 but did not have its first important research finding until 1960 (41). 

EHR-based retrospective cohort studies can produce results within a year or two. Since its 

origin in 2011, researchers have used the CALIBER database, which combines the UK’s 

nationwide CPRD data with CVD procedure registries (33) to evaluate risk factors for 12 

different CVDs in 1.3–1.9 million patients (99, 100, 103, 113).

Traditional prospective studies must recontact participants and may face difficulties with 

maintaining study samples, which can impact the length and/or depth of follow-up. For 

example, recent budget cuts have forced the FHS to eliminate in-person exams. EHR data 

could provide a solution. The NHLBI and others have identified health information 

technology as a way to rework large cohort studies to decrease costs and increase enrollment 

(69, 79).

As noted earlier, it may be difficult to follow patients for long periods of time within a 

specific EHR. However, there is increasing emphasis on greater linkage and record sharing 

across systems. In addition to allowing prior clinical information to follow patients to 

wherever they seek care, these advances will also enable greater tracking of individuals for 

research.

Variables Available for Analysis

Traditional epidemiologic studies obtain data designed to address a specific research 

question. In an EHR, the same information may not be universally available or collected in a 

standard way. For instance, the MESA study used a standard intake form to assess smoking 

status, whereas the capture of smoking status in EHRs can be sporadic and varied in quality 

and detail. Relevant data on smoking may appear in different parts of the record. The social 

history section may contain time-varying data on pack-years, and encounters may provide 

diagnostic codes (e.g., ICD-9 305.1, tobacco use disorder), cessation counseling referral, and 

medications orders (e.g., varenicline) relevant to documenting smoking status (18).

Traditional studies can collect information that is not routinely included in EHRs. For 

example, the MESA study gathered sleep, psychosocial, employment, physical activity, and 

dietary data and biospecimens for biobanking at many of the follow-up visits, and 

participants completed computed tomography scans, magnetic resonance imaging, and 

carotid intima-media thickness tests (11). Such data are available on only a subset of patients 

in the EHR when tests are completed for diagnostic or treatment purposes.

In addition, EHR research can study only conditions that are routinely captured. EHR data 

collection is particularly weak for mild or remitting conditions (e.g., mild asthma, early 

diabetes, and sprains/strains) for which many patients do not seek care.
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Finally, primary data collection often includes data on family members. Owing to 

confidentiality concerns, family members’ EHRs are not directly linked. However, matching 

algorithms based on names, dates, birth weight, or other information may be used to link, for 

example, mothers to neonates (76).

Access to Data and Issues of Privacy and Security

Regulations requiring data sharing for federally funded research studies give researchers free 

access to the data from large cohorts such as the FSA, ARIC, and MESA. Whereas any 

researcher can pay to use the United Kingdom’s CPRD, THIN, and QResearch databases, 

access to US-based EHR data is more difficult. In the United States, health care systems, not 

patients, typically own the property rights to EHR data. Systems then must decide who can 

access the data, which they generally limit to system affiliates. If access is granted to 

researchers, they usually bear the costs of data extraction and transfer and must develop data 

use agreements. However, given that sample size does not contribute to costs associated with 

using EHR data, large EHR studies can still remain inexpensive compared with similar 

studies using primary data collection.

When access is granted to use EHRs, special attention is needed to assure ethical use of the 

information. Population health research that relies on protected health information (PHI) 

may risk violating individuals’ privacy rights (90). EHRs can both accentuate and ameliorate 

such risks. One issue is the nature of consent. Rather than obtaining active consent, many 

health systems require patients to opt out if they do not want their EHR data used for 

research purposes. As a result, some patients may unknowingly contribute their personal 

health data to research. Although this method has generally not been a problem, it can be if 

the research aims conflict with patients’ moral or other values (108). Opt-in participation 

models protect privacy but require more time and funding and can lead to selection bias (51). 

Recently, a dynamic consent model has been proposed where patients can monitor how their 

data is used and change their consent over time (60). A second issue is maintenance of 

patient-provider confidentiality. This factor is especially relevant when researchers merge 

data from multiple health systems, and it requires that reliable deidentification and security 

methods are in place. Third, because providers record PHI in many different formats, it may 

persist in free text despite efforts at deidentification. Finally, although not unique to EHRs, 

electronic data storage may lend itself to new forms of data breach, including laptop loss or 

inadvertent emailing of data.

At the same time, digitally stored data also offer safeguards. EHR data can be encrypted and 

require role-based access and authentication. Additionally, extracting EHR data with 

computer algorithms results in less researcher exposure to PHI and fewer opportunities for 

privacy breaches than do manual chart reviews or traditional data collection (17). While 

many patients support the use of EHRs in research (73), it is incumbent on researchers, 

clinicians, and policy makers to balance the benefits of having representative and 

informative samples with protecting individual privacy and confidentiality.
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CONCLUSIONS AND FUTURE DIRECTIONS

EHR-based epidemiology has already produced a large body of important research and will 

only grow as EHR use expands, costs fall, linkage to vital or other records increases, and 

accessibility improves. Furthermore, opportunities will increase as new technologies allow 

patient data capture without input from medical professionals. For example, patients can 

self-report data on a patient portal that links to their EHR. Portal use has been associated 

with better care adherence, improved patient–provider relationships, and improved patient 

autonomy and self-efficacy (94). Empowered patients should not only make more informed 

health decisions, but may more readily participate in research to the benefit of both clinical 

care and population health (34).

Other advances in combination with EHRs can enable researchers to understand complex 

diseases with multifactorial etiologies. These could include improved capture of social/

behavioral (2), environmental, and genetic data (56); phenotyping (37); clinical biobanks; 

improved natural language processing; personal sensing via smartphone; and social media. 

Such advances may enable researchers to incorporate variables such as racial segregation, 

exercise, and social networks into their studies and extend and modify epidemiologic theory.

In addition to informing population health research, EHR epidemiology and social-

behavioral studies can advance clinical care and new precision medicine efforts (26). 

Imagine a child who presents with shortness of breath, wheezing, and cough. Diagnosis and 

treatment could be individualized and optimized if the clinician were aware, through real-

time geocoding, linkage to secondary data sources, and messaging through the EHR, that the 

patient lived near a major industrial park [which had been shown, via EHR research, to be 

linked to higher risks of asthma (5)] and that sulfur dioxide levels in the vicinity are 

elevated. More generally, EHR research can help to evolve the concept behind and 

implementation of precision medicine to include important predictors of individual 

variability that lie outside the body and include occupational, environmental, and social 

determinants of health (1). EHR research can move such work forward in what we hope will 

become innovative approaches to precision public health.

As population health research with EHR makes use of new technologies, the work will raise 

ethical and practical issues. Privacy agreements and security must keep pace with research to 

achieve the full promise of such research. Although EHRs are designed and used for clinical 

care, their research utility goes beyond the hospital walls. Stage 3 of HITECH recognizes 

this potential; a proposed objective requires meaningful use participants to share health data 

with public health agencies or clinical registries (34). EHR epidemiology can help bridge the 

divide between individual health and public health and reduce health care spending on 

individuals while leading to direct improvements in population health.
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EHR: a software platform that contains individual-level patient-provider data captured 

during health care encounters. Epic, eClinicalWorks, McKesson, and Cerner are 

examples

Geographic information systems (GIS): a tool that allows researchers to combine and 

visualize spatial data and export analytic variables for merging with EHR data

Meaningful use: providers demonstrate they are meaningfully using their EHRs by 

meeting increasing thresholds for specific objectives, services, and activities

Primary data collection: new data collected for a specific research purpose, not for 

clinical care
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Incidence rate: the number of disease onsets divided by the person-time at risk; health 

care encounters determine if a patient is contributing person-time

ICD-9: International Classification of Diseases code

Natural language processing: A technology that extracts information from free text, 

e.g., detecting sentence boundaries, segmenting text into meaningful groups, inferring 

temporal relationships
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SES: socioeconomic status

Extract, transform, and load: a tool that reads desired clinical EHR data, converts it 

into a usable form, and then writes it into the research database

Deidentified data: deidentification of protected health information occurs when all the 

HIPAA identifiers are removed from the data set
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Normalized (data): consistently structured and bounded data that link logically with 

other data available in the system

BMI: body mass index (kg/m2)
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CVD: cardiovascular disease

Geocode: the process of taking a patient address and assigning it to a spatial location 

with geographic coordinates
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Machine learning: algorithms used to predict outcomes based on features of the data; 

methods include support vector machines and regression trees
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Hawthorne effect: changes in reports or behaviors due to awareness of being studied

Social desirability bias: reporting behaviors and beliefs believed to be more acceptable 

or valued by others
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PHI: data generated in the health context, which relates to health and can be used to 

identify individuals, for instance names and addresses

Patient portal: an online application where patients can access their health information 

and communicate with their provider electronically
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SUMMARY POINTS LIST

1. EHRs provide researchers with low-cost sources of rich longitudinal health 

data on large geographically, socioeconomically, and culturally diverse 

populations.

2. EHRs offer particular advantages for environmental and social epidemiology 

where patient addresses can be linked to individual and contextual exposures 

that vary spatially.

3. The use of EHRs for epidemiology requires consideration of unique issues 

related to study population definition, population attrition, disease/case 

definition, and privacy concerns.

4. Major areas of population health EHR research include reevaluating prior 

findings; capitalizing on large sample sizes to analyze subgroups and to study 

rare diseases or multiple diseases simultaneously; social and environmental 

epidemiology; research on stigmatized conditions; predictive modeling; and 

exploiting natural experiments.

5. Future developments in EHRs including increased use and sophistication, 

improved capture of social and behavioral determinants of health, better 

standardization to allow data merging across health systems, and linkage to 

vital records and to other emerging technologies (e.g., personal sensing) and 

data streams (e.g., air pollution data, clinical biobanks) will improve data 

quality and expand research opportunities to improve public health.
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Table 1

Data domains available from electronic health records
a

Domain Examples Utility to epidemiologic research

Demographics
b Age, sex, race/ethnicity, residential 

address
Exposures, confounders, effect modifiers and/or mediators; address used 
to link to environmental and community data for individual-level or 
contextual exposures

Health behavior
b Tobacco, alcohol, and injection drug use Outcomes, exposures, confounders, effect modifiers and/or mediators

Vital signs
b Pulse, systolic and diastolic blood 

pressure, height, weight (used to derive 
BMI)

Outcomes, exposures, confounders, effect modifiers and/or mediators

Outpatient 

encounters
b

ICD-9 codes for a wide variety of 
diagnoses, including diabetes, 
hypertension, asthma, kidney failure, 
migraine

Diagnostic codes used to construct variables; encounter type can indicate 
disease severity; timing of diagnoses in relation to one another and 
interval between visits may provide signals about the disease course

Inpatient 

encounters
b

Emergency 
department 

encounters
b

Laboratory data
b Lipid panel, basic metabolic panel, 

microbiologic culture with antibiotic 
resistance tests, liver function tests, 
microalbuminuria, hemoglobin A1c

Laboratory orders and results used to identify primary outcome or as 
covariates and can improve diagnostic accuracy of ICD-9 codes and to 
evaluate disease progression, severity, and control

Medication order
b Type, dose, frequency, duration Medication orders provide information about disease course and severity, 

control, and prevention (e.g., hypercholesterolemia, statins, and 
cardiovascular disease)

Procedures
b Electrocardiogram, pulmonary function 

tests
Procedural data can improve diagnostic accuracy of ICD-9 codes and 
evaluate disease severity and control

Problem list ICD-9 code for depression, heart failure, 
hypertension

Ongoing patient health problems are used to confirm diagnoses in other 
locations and can also be helpful in defining disease onset

Free text Encounter notes, imaging notes Text analysis can provide information on symptoms, onset, duration, and 
severity; notes can also have information not available elsewhere, e.g., 
Apgar scores; labor and delivery notes can also be used to link mothers 
and infants

Imaging Echocardiogram, magnetic resonance 
imaging, CT scan

Data used to verify diagnosis and subtype and detection of other health 
problems

a
Abbreviations: BMI, body mass index; CT, computerized tomography; ICD-9, International Classification of Diseases.

b
Longitudinal data or repeated measures can be used to construct time-dependent variables.
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Table 2

Selected examples of electronic health record study population data sources from cohort studies

Data source Sample size References

Single psychiatric inpatient unit 728–2,010 82, 97

Specialized center/clinic 544–10,017 15, 40

Prison network 370, 511 8

Single hospital 467–55,492 23, 47

Multiple hospitals 1,074–25,241 53, 105

Multiple primary care practices 7,925–345,143 44, 74

Health care system 2,537–919,873 25, 48

Consortium 8,709–233,844 28, 83

Centralized anonymized repository 923–5,244,402 39, 101
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Table 3

Comparison of traditional and EHR epidemiology studies
a

Study feature Traditional study EHR study

Original purpose of 
data collection

Research; requires primary data collection. Clinical care; research relies on secondary data.

Cost More expensive, primarily government-funded. Less expensive; data collection is funded by health care system; 
research can be funded with a variety of sources or may not require 
funding at all.

Access Open to all researchers at a minimal cost. Central repositories in Europe are open to all researchers; access to 
US health care data is constrained.

Common study 
design

Prospective cohort, nested case-control, cross-
sectional.

Retrospective or prospective cohort, nested case-control; cross-
sectional less common because longitudinal data are available.

Time frame Further follow-up restricted by funding; must 
wait for health outcomes to occur for prospective 
studies.

Retrospective data availability restricted by date of EHR 
implementation; additional years of data available at low cost.

Study population Based on recruitment; may involve incentives or 
suffer from healthy volunteer effects; fewer 
participants than EHR.

Based on patient use of a specific health system, and the system’s 
opt-in or opt-out participation; many more participants are 
available; can use EHR data to prescreen patients for eligibility; 
various population designs are available, e.g., primary care patients, 
specialty cohorts.

Data on family 
members

Sometimes available. Not linked owing to confidentiality but possible to reconstruct 
relationships with EHR data; no restrictions on future capture in 
EHR as part of a research study.

Follow-up Scheduled; continues as long as funding 
supports, often with standardized timing 
between visits.

Occurs during health care encounters; in general, will have more 
unique encounters, with variable timing between visits.

Data collection and 
storage

Established protocol; generally robust approach 
to data collection; often with primary focus in 
one area of epidemiology with specialized 
measurements, e.g., exposure assessment, 
genetics; biosamples stored for future analysis.

Recorded during health care encounter with varying levels of detail 
based on provider practices; stored in clinical diagnoses, laboratory 
results, current medications and medication orders, problem list, 
and notes; biosamples rarely banked.

Conditions captured Any outcomes and all severities as specified at 
the beginning of the study by investigators as 
long as ascertainment can be validly 
operationalized.

Only those outcomes requiring care by a physician; data missing on 
mild, self-resolving, or short-lived conditions.

Outcome 
ascertainment

Consistent outcome definitions, identified in the 
same way for each participant; investigators can 
specify in advance outcomes to study and how to 
measure.

Based on physician-specific clinical diagnosis, identified from a 
variety of locations in EHR, diagnosis enriched with other clinical 
information, e.g., laboratory tests, medications.

Clinical covariate 
ascertainment

Prespecified variables. Entire health record, tests, and treatments are available, but not 
random, and perhaps confounded by disease severity and other 
factors.

Nonclinical 
covariate 
ascertainment

Prespecified variables. Limited or missing data on social and behavioral domains; GIS-
based variables can substitute for some missing data.

Environmental 
exposures

Can capture exposures based on specific 
strategies in study design; more expensive; more 
labor-intensive; better specificity.

Can measure surrogates using GIS-based strategies with varying 
levels of quality and relevance; relies on temporal and spatial 
variability of exposures of interest.

Community 
conditions e.g., 
social, built, and 
food environments

Measured with GIS, or sometimes by direct 
observation if a small number of communities 
are under study.

Assigned based on GIS, generally for a large number of 
participants in many communities spanning large geographies.

Internal validity Attrition: participants must return for study 
visits.
Statistical regression: participants with extreme 
initial values will regress toward the mean on 
subsequent visits.

Attrition: participants will continue to contribute as long as they 
remain in the health care system and seek care.
Statistical regression: possible, but ameliorated by large sample 
size.
Data collection: outcomes may be measured or recorded 
differently by different health care providers.
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Study feature Traditional study EHR study

Data collection: standardized across sites; 
participation in study and barrage of health tests 
may affect subsequent health.
Nonparticipation bias: systematic error related 
to participation, related to attrition bias where 
participants with certain characteristics are more 
likely to drop out.

Nonparticipation bias: systematic error related to participation, 
related to the population with access to, or that chooses to seek, 
care.
Recall bias: reduced by using longitudinal EHR data prior to 
events.

External validity Representative sample: participants must agree 
to join the study, participation rates are declining 
overall; past strategies to identify population-
representative samples, e.g., random digit 
dialing, are becoming obsolete.

Representative sample: participants must be enrolled in the 
system and receiving care; documented care is more likely for more 
serious or troublesome conditions and less so for mild conditions; 
most HMORN members can identify subsets of their cared-for 
patients that represent the general population in their regions.

a
Abbreviations: EHR, electronic health record; GIS, geographic information systems; HMORN, Health Maintenance Organization Research 

Network.
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