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Abstract

Penetrance, which plays a key role in genetic research, is defined as the proportion of individuals 

with the genetic variants (i.e., genotype) that cause a particular trait and who have clinical 

symptoms of the trait (i.e., phenotype). We propose a Bayesian semiparametric approach to 

estimate the cancer-specific age-at-onset penetrance in the presence of the competing risk of 

multiple cancers. We employ a Bayesian semiparametric competing risk model to model the 

duration until individuals in a high-risk group develop different cancers, and accommodate family 

data using family-wise likelihoods. We tackle the ascertainment bias arising when family data are 

collected through probands in a high-risk population in which disease cases are more likely to be 

observed. We apply the proposed method to a cohort of 186 families with Li-Fraumeni syndrome 

identified through probands with sarcoma treated at MD Anderson Cancer Center from 1944 to 

1982.
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1 Introduction

The Li-Fraumeni syndrome (LFS) is a rare disorder that substantially increases the risk of 

developing several cancer types, particularly in children and young adults. It is characterized 

by autosomal dominant mutation inheritance with frequent occurrence of several cancer 

types: soft tissue/bone sarcoma, breast cancer, lung cancer, and other types of cancer that are 

grouped together as “other cancers” (Nichols et al.; 2001; Birch et al.; 2001). A majority of 

LFS is caused by germline mutations in the TP53 tumor suppressor gene (Malkin et al.; 

1990; Srivastava et al.; 1990).
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The LFS data that motivate our work are family data collected through patients diagnosed 

with pediatric sarcoma (i.e., probands) who were treated at MD Anderson Cancer Center 

from 1944 to 1982 and their extended kindred. The data consist of 186 families, with a total 

of 3686 subjects. The size of the families ranges from 3 to 717, with the median at 7. This 

dataset is the longest followed-up cohort in the world (followed up for 20–50 years), and 

among the largest collection of TP53 mutation carriers in all cohorts that are available for 

LFS. Considering the prevalence of TP53 mutations in a general population is as low as 

0.0001 to 0.003, this dataset provides a specially enriched collection of TP53 mutations, 

which then allow us to characterize its effect on a diverse cancer outcomes. For each subject, 

the duration until he/she develops cancer is recorded as the primary endpoint. Although it is 

possible for LFS patients to experience multiple cancers during their lifetime, here, we focus 

on only the time to the first primary cancer since only a few patients represented in the 

database experienced multiple primary cancers. Table 1 shows the cancer-specific 

summaries for the LFS data. Further descriptions of the data are provided by Lustbader et al. 

(1992), Strong et al. (1992), and Hwang et al. (2003).

The primary objective here is to estimate the cancer-specific age-at-onset penetrance as a 

measure of the risk of experiencing a specific cancer for a person with a specific 

genotype(i.e., TP53 mutation status). Penetrance, which plays a crucial role in genetic 

research, is defined as the proportion of individuals with the genetic variants (i.e., genotype) 

that cause a particular trait who also have clinical symptoms of the trait (i.e., phenotype). 

When the clinical traits of interest are age-dependent (e.g., cancers), it is often more 

desirable to estimate the age-at-onset penetrance, defined as the probability of disease onset 

by a certain age, while adjusting for additional covariates if necessary. For the LFS study, the 

age-at-onset penetrance is defined as the conditional probability of having LFS-related 

cancers by a certain age given a certain TP53 mutation status. Cox proportional hazard 

regression models (Gauderman and Faucett; 1997; Wu et al.; 2010, among many others) 

have been most widely used for this task. Other approaches have included nonparametric 

estimation Wang et al. (2007) and parametric estimation based on logistic regression (Abel 

et al.; 1990) or a Weibull model (Hashemian et al.; 2009).

Estimating the age-at-onset penetrance for the LFS data is challenging for several reasons. 

First, LFS involves multiple types of cancer, and subjects have simultaneous competing risks 

of developing multiple types of cancer. Chatterjee et al. (2003) proposed a penetrance 

estimation method under a competing risk framework for a kin-cohort design. However, 

their method is not directly applicable if the pedigree size is large and/or there is additional 

genetic information from relatives. Gorfine and Hsu (2011) and Gorfine et al. (2014) 

proposed frailty-based competing risk models for family data, assuming that genotypes are 

completely observed for all family members, which is not the case for the LFS data.

Second, the genotype (i.e., TP53 mutation status) is not measured for the majority (about 

74%) of subjects and the LFS data are clustered in the form of families. Accommodating the 

missing data and accounting for family or pedigree data structure are statistically and 

computationally challenging. As shown later, to effciently utilize the observed genotype data 

nested in the family structure, we need to marginalize the likelihood over (or integrate out) 
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all possible genotypes for subjects with missing genotype information, and meanwhile take 

into account the available genotypes in the family under the given pedigree structure.

Third, the LFS data are not a random sample, but have been collected through probands 

diagnosed with sarcoma at young ages. That is, the data oversampled sarcoma patients. Such 

a sampling scheme inevitably creates bias, known as ascertainment bias, and should be 

properly adjusted to obtain unbiased results. Several likelihood-calibrated models have been 

developed to correct the ascertainment bias, including the retrospective model (Kraft and 

Thomas; 2000), the conditional-on-ascertainment variable model (Ewens and Shute; 1986; 

Pfeiffer et al.; 2001), and the ascertainment-corrected joint model (Kraft and Thomas; 2000; 

Iversen and Chen; 2005), among others.

To address these challenges, in this article, we develop a Bayesian semiparametric approach 

to estimate the cancer-specific age-at-onset penetrance in the presence of the competing 

risks of developing multiple cancers. We employ a Bayesian semiparametric competing risk 

model to model the time to different types of cancer and introduce the family-wise 

likelihood to minimize information loss from missing genotypes and harness the information 

contained in the pedigree structure. We employ the peeling algorithm (Elston and Stewart; 

1971) to evaluate the family-wise likelihood, and utilize the ascertainment-corrected joint 

model (Kraft and Thomas, 2000) to correct the ascertainment bias.

The rest of the article is organized as follows. In Section 2, we define the cancer-specific 

age-at-onset penetrance and describe our Bayesian semiparametric competing risk model 

including details about the family-wise likelihood and the ascertainment bias correction. In 

Section 3, we provide an algorithm to fit the models and carry out a simulation study in 

Section 4. We apply the proposed methodology to the LFS data in Section 5. Discussions 

follow in Section 6.

2 Model

2.1 Cancer-specific Age-at-onset Penetrance

Let G denote a subject’s genotype, and X denote the baseline covariates (e.g., gender). 

Suppose that K types of cancer are under consideration and compete against each other such 

that the occurrence of one type of cancer censors the other types of cancer. Let Tk denote the 

time to the kth type of cancer, k = 1, … , K, and define T = mink∈{1,…,K} Tk and Y = min 

{T, C}, where C is a conditional random censoring time given G and X, i.e., T⊥C|G, X. Let 

D denote the cancer type indicator, with D = k if T = Tk < C (i.e., the kth type of cancer that 

occurs); otherwise, D = 0 (i.e., censored observation). The actual observed time-to-event 

data are H = (Y, D).

Traditionally, when analyzing subjects at risk of developing a single disease, the ageat-onset 

penetrance is defined as the probability of having the disease at a certain age given a certain 

genotype. In order to study LFS, where subjects simultaneously have the (competing) risk of 

developing multiple types of cancer, this standard definition must be extended. Borrowing 

ideas from the competing risk literature, we define the kth cancer-specific age-at-onset 
penetrance, denoted by qk(t|G, X), as the probability of having the kth type of cancer at age t 
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prior to developing other cancers (competing risks), given a specific genotype G and 

additional baseline covariates X if necessary, that is,

  qk(t G, X) = Pr T ≤ t, D = k G, X , k = 1, ⋯ , K . (1)

The cancer-specific penetrance qk (t|G,X) can be estimated as

qk(t G, X) = ∫
0

t
λk u G, X S u G, X du, k = 1, ⋯ , K, (2)

where

λk(t G, X) = lim
h 0

Pr t ≤ T < t + h, D = k T > t, G, X
h , (3)

and

S(t G, X) = exp − ∑
k = 1

K
Λk(t G, X)

With Λk t G, X = ∫ 0
t λk u G, X du . In the competing risk literature, λk(t|G, X) and Λk(t|G, X) 

are referred to as the cancer-specific hazard and cancer-specific cumulative hazard, 

respectively. We note that it may be tempting to define the cancer-specific age-at-onset 

penetrance function as Pr(Tk ≤ t|G, X), which is analogous to the conventional definition of 

penetrance for a single disease. However, that quantity is not identifiable in nonparametric 

models (Tsiatis; 1975).

Besides cancer-specific penetrance, it is often of practical interest to estimate the overall 

age-at-onset penetrance, defined as

q(t G, X) = Pr T ≤ t G, X (4)

which is the probability that a subject has any type of cancer by age t given his/her geno-

type G and baseline characteristics X, and can be calculated through the cancer-specific 

penetrance qk(t|G, x) using q t G, X = ∑k = 1
K qk t G, X

2.2 Competing Risk Model

Let Z = (G, X, G × X)T , with G × X denoting the interaction between G and X. For ease of 

exposition, hereafter we focus on the LFS data with X denoting gender, coded as 1 for the 

male and 0 for the female, and G denoting the TP53 mutation status. As LFS is autosomal 

dominant, we use G = 1 to denote genotype Aa or AA, and G = 0 to denote genotype aa, 
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where A and a denote the (minor) mutated and wildtype alleles in the TP53 tumor 

suppressor gene, respectively. We model the hazard for the kth type of cancer, say λk(t|Z, 

ξi,k), using a frailty model as follows:

λk(t Z, ξi, k) = λ0, k t ξi, kexp βk
TZ k = 1, ⋯ , K, (5)

where βk denotes the regression coeffcient parameter vector; λ0,k(t) is a baseline hazard 

function; and ξi,k is the ith family-specific frailty (or random effect) used to account for the 

within-family correlation induced by non-genetic factors that are not included in X. The 

pedigree information (or genetic relationship) within a family will be incorporated through 

the family-wise likelihood described in Section 2.3. We assume that ξi,k follows a gamma 

distribution, ξ1,k, ⋯ , ξI,k ~ Gamma(vk, vk). Such a gamma frailty has been widely used in 

frailty models (Duchateau and Janssen; 2007).

Under this model, the cancer-specific age-at-onset penetrance can be expressed as

qk(t Z) = ∫
0

t∫
ξ ∈ 0, ∞ Kλk(u Z, ξk)S(u Z, ξ) f ξ v dξdu

= ∫
0

t vk

vk − log Sk
∗ u Z

λ0, k u exp βk
TZ S u Z du,

(6)

where Sk* t Z = exp −∫ 0
t λk, 0 u exp βk

TZ du  and S t Z = ∏k = 1
K Sk t Z  with

Sk t Z = ∫0
∞

exp −∫0
t
λk u Z, ξk du f ξk νk dξk

=
νk

νk − log Sk* t Z

νk
.

Because the penetrance depends on the survival function, it is imperative to specify the 

baseline hazard λ0,k(t), which appears in (5). To this end, we propose to approximate the 

cumulative baseline hazard Λ0, k t = ∫ 0
t λ0, k s ds via Bernstein polynomials (Lorentz; 1953) 

since Λ0,k(t) is monotone increasing. Bernstein polynomials are popular in Bayesian 

nonparametric function estimation, with shape restrictions due to desired properties such as 

the optimal shape restriction property (Carnicer and Peña; 1993) and the convergence 

property of their derivatives (Lorentz; 1953). Without loss of generality, we assume t has 

been rescaled, e.g., by the largest observed time, such that t ∈ [0, 1]. Now, we have Λ0,k(t) 
approximated by Bernstein polynomials of degree M as follows (Chang et al.; 2005).

Λ0, k t ≈ ∑
l = 1

M
ωl, k

M
l

tl 1 − t M − l (7)
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where ωl,k = Λ0,k(l/M) and ω1,k ≤ ⋯ ≤ ωM,k to ensure that Λ0,k(t) is monotone increasing. 

Notice that l is running from 1 because of Λ0,k(0) = 0. Applying the re-parameterization of 

γl,k = ωl,k − ωl−1,k with ω0,k = 0 and γl,k ≥ 0, l = 1, ⋯ , M, the right-hand side of (7) can be 

equivalently rewritten as

∑
m = 1

M
γm, k∫0

t um 1 − u M − m
Beta m, M − m + 1 du = γk

TBM t , (8)

where BM(t) = (BM(t, 1), ⋯ , BM(t, M))T, with BM(t, m) being the distribution function of 

the beta distribution evaluated at the value of t with parameters m and M – m + 1, and γk = 

(γl,k, ⋯ , γM,k)T (Curtis and Ghosh; 2011). Therefore, it follows that

λ0, k t ≈ γk
TbM t (9)

Where bM(t) =(bM(t, 1), ⋯ , bM(t, M))T and bM(t, m) = ∂BM(t, m)/∂t (i.e., associated beta 

density). Finally, the frailty model (5) can be written as

λk t Z; βk, γk, ξi, k = γk
TbM t ξi, kexp βk

TZ . (10)

The proposed nonparametric baseline hazard model (9) is more flexible than parametric 

models, such as exponential and Weibull models, without imposing a restrictive parametric 

structure on the shape of the baseline hazard. Compared to the piecewise constant hazard 

model, our approach produces a smooth estimate of hazard and also avoids selection of 

knots, which is often subjective. The numerical comparison of different baseline models is 

provided in Section 5.5 and Supplementary Materials Section C.

2.3 Family-wise Likelihood

Let i index the family and j index the individual within the family, where i = 1, ⋯ , I, and j = 

1, ⋯ , ni. For the ith family, let Hi = (Hi1, ⋯ , Hini) with Hij = (Yij, Dij) and Xi = (Xi1, ⋯ , 
Xini). Let Gi,obs and Gi,mis respectively denote the observed and missing parts of genotype 

data, i.e., Gi = (Gi,obs, Gi,mis). Conditional on frailty ξi = (ξi,1, ⋯ , ξi,K), the likelihood of Hi 

for the ith family is Pr(Hi|Gi,obs, Xi, θ, ξi) which we call the family-wise likelihood, where 

θ = βk
T, γk

T : k = 1, ⋯ , K  denotes a vector of model parameters except the frailty.

Evaluation of the family-wise likelihood Pr(Hi|Gi,obs, Xi, θ, ξi) is not trivial because the 

individual disease histories Hi1, ⋯ , Hini are not conditionally independent given Gi,obs and 

ξi, due to the dependency through Gi,mis. Note that Hi1, ⋯ , Hini will be conditionally 

independent when conditional on complete genotype data Gi and ξi. In this article, we use 

Elston-Stewart’s peeling algorithm (Elston and Stewart; 1971; Lange and Elston; 1975; 

Fernando et al.; 1993) to compute the family-wise likelihood, described as follows. We 

Shin et al. Page 6

J Am Stat Assoc. Author manuscript; available in PMC 2019 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assume that there is no loop in the pedigree, which is generally true in practice, and suppress 

the family subscript i and the conditional arguments except Gobs for notational brevity.

A pedigree without loop can be partitioned into two disjoint groups, known as anterior and 

posterior, that are connected only through an arbitrary pivot member, say j. The anterior are 

the member in the pedigree who are connected to the pivot member through his/her parents, 

and the posterior are the member in the pedigree who are connected to the pivot member 

through his/her spouse and o springs, see Figure 1 for an example. In our implementation, 

we use the proband as the pivot member of each family. Let H j
−, and H j

+ denote the 

phenotypes of anterior and posterior, respectively. We partition H = H j
−, H jH j

+ . Because 

anterior and posterior are connected only through the pivot member j, H j
− and H j

+ are 

conditionally independent given pivot member’s genotype Gj.

If Gj is unobserved, the family-wise likelihood P(H|Gobs) can be written as

Pr H Gobs = ∑
G j

Pr G j Gobs Pr H j
−, H j, H j

+ G j, Gobs

= ∑
G j

Pr G j Gobs Pr H j
− G j, Gobs Pr H j G j, Gobs Pr H j

+ G j, Gobs

= ∑
G j

𝔸 j G j Gobs Pr H j G j ℙ j G j Gobs ,

(11)

Where

Anterior probability of j 𝔸 j G j Gobs = Pr H j
−, G j Gobs ,

Posterior probability of j ℙ j G j Gobs = Pr H j
+ G j, Gobs ,

and the individual likelihood Pr(Hj|Gj) is computed from the proposed model as

Pr H j G j ≔ Pr Hi j Gi j, Xi j, θ, ξi ∝ ∏
k = 1

K
λk Yi j Zi j, θ, ξi

Δi jk exp − Λk Yi j Zi j, θ, ξ

with Δijk = 1 if Dij = k and 0 otherwise (Prentice et al.; 1978; Maller and Zhou; 2002). In the 

case that Gj is observed, the summation in (11) is not needed and the family-wise likelihood 

is reduced to

Pr H Gobs = 𝔸 j G j Gobs Pr H j G j ℙ j G j Gobs . (12)

To calculate 𝔸 j G j Gobs  and ℙ j G j Gobs , H j
− and H j

+ can be further partitioned into anterior 

and posterior in a similar way as above. Thus, the family-wise likelihood Pr(H|Gobs) can be 

evaluated in a recursive way. An illustrative example of using the peeling algorithm to 
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evaluate the family-wise likelihood is provided in Supplementary Materials Section A. 

Fernando et al. (1993) provides the details on the recursive formulation of the algorithm.

2.4 Ascertainment Bias Correction

For studies of rare diseases, such as LFS, ascertainment bias is inevitable when family data 

are collected through probands in high-risk populations in which disease cases are more 

likely to be observed. We employ the ascertainment-corrected joint (ACJ) likelihood (Kraft 

and Thomas; 2000; Iversen and Chen; 2005) to correct the ascertainment bias. Iversen and 

Chen (2005) provides excellent description on the general methodology of the ACJ 

approach. We here focus on the application of that approach to the LFS data, and refer the 

readers to Iversen and Chen (2005) for more details. Let 𝓐i denote the ascertainment 

indicator variable, such that 𝓐i = 1 if the ith family is ascertained and 0 otherwise. In the 

LFS data, a family is ascertained and included in the sample only if the proband is diagnosed 

with sarcoma. Following Iversen and Chen (2005), the ACJ likelihood for the LFS data is 

given by

Pr Hi, Gi, obs Xi, θ, ξi, 𝓐i = 1 =

Pr 𝓐i = 1 Hi, Gi, obs, Xi, θ, ξi Pr Hi Gi, obs, Xi, θ, ξi Pr Gi, obs Xi, θ, ξi

Pr 𝓐i = 1 Xi, θ, ξ
i

.

(13)

Because the ascertainment decision is made on the basis of Hi1 (i.e., phenotype of the 

proband) in a deterministic way, the first term in the numerator of equation (13), i.e., 

Pr 𝓐i = 1 Hi, Gi, obs, Xi, θ, ξi , is independent of the model parameters θ and ξi. We assume 

that the distribution of genotype Pr Gi, obs Xi, θ, ξi , i.e., the third term in the numerator of 

equation (13), is also independent of both θ and ξi, the parameters of the penetrance model. 

This is a reasonable assumption that generally holds in practice. As a result, we have

Pr Hi, Gi, obs, Xi θ, ξi, 𝓐i = 1 ∝
Pr Hi Xi, Gi, obs, θ, ξi
Pr 𝓐i = 1 Xi, θ, ξi

. (14)

This means that the ascertainment bias can be corrected by inverse-probability weighting the 

likelihood by the corresponding ascertainment probability, which is given by

Pr 𝓐i = 1 Xi, θ, ξi = ∑
Hi1

Pr 𝓐i = 1 Hi1 Pr Hi1 Xi1, θ, ξi . (15)

In the LFS data, a family is ascertained if the proband is diagnosed with sarcoma (coded as 

D = 2). Based on our experience, there is little evidence indicating that cancer patients 

treated at MD Anderson Cancer Center are systematically different from the population of 
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cancer patients in US. Therefore, our sample can be approximately viewed as a random 

sample from the US population of cancer patients that are ascertained under the same 

procedure. This assumption is also supported by the comparison of our penetrance estimates 

for the non-carriers to those based on the US population (see Section 5.4). Therefore, it 

follows

Pr 𝓐i = 1 Yi1, Di1 = 2 = 1 and Pr 𝓐i = 1 Yi1, Di1 ≠ 2 = 0.

In the case that the sampling population (e.g., cancer patients visiting MD Anderson Cancer 

Center) is different from the target population (e.g., US population of cancer patients), we 

should restrict the results and inference on the sampling population only.

Recalling Hi1 = (Yi1, Di1), the ascertainment probability (15) is given by

Pr 𝓐i = 1 Xi, θ, ξi = Pr Y i1, Di1 = 2 Xi1, θ, ξi

= ∑
G

Pr Y i1, Di1 = 2 G, Xi1, θ, ξi Pr G Xi1

= ∑
G

λ2 Y i1 G, Xi1, G × Xi1, β2, γ2, ξi, 2 × exp − ∑
k = 1

k
Λk Y i1 G, Xi1, G × Xi1, βk, γk, ξi, k Pr

G Xi1 ,

(16)

where Pr(G|Xi1) is the covariate specific prevalence of a genotype G, which is often assumed 

to be given (Iversen and Chen; 2005). In our application, the TP53 mutation prevalence is 

independent of X = gender i.e., Pr(G|X) = Pr(G), and can be calculated on the basis of the 

mutated allele frequency ϕA, i.e., Pr(G = 0) = (1 – ϕA)2 and Pr(G = 1) = 1 − (1 – ϕA)2. The 

prevalence of a germline TP53 mutation in the Western population is estimated as ϕA = 

0.0006 (Lalloo et al.; 2003).

As shown above, the key is that we assume that the mutated allele frequency ϕA is known or 

can be reliably estimated from external data sources. Given a known mutated allele 

frequency ϕA, the frequency of each genotype G can be determined using the Mendelian 

laws of inheritance. Thus, coupling with the penetrance model, the sampling probability can 

be estimated, e.g., equation (16), and used to inversely weight the observed data likelihood 

to make inference for the target population. For many genetic studies, it is often reasonable 

to assume that the mutated allele frequency ϕA is known or can be reliably estimated from 

external data sources.

The ACJ likelihood of the entire data of I mutually independent families is given by the 

product of (14)
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Pr H, Gobs X, θ, ξ, 𝓐 ∝ ∏
i = 1

I Pr Hi Gi, obs, Xi, θ, ξi
Pr 𝓐i = 1 θ, ξi

,

where H = (Hi, ⋯ , HI), G = (G1,obs, ⋯ , GI,obs) and 𝓐 = 𝓐1, ⋯ , 𝓐I .

3 Prior and Posterior Sampling

We use an independent normal prior for βk, i.e., βk ~ N(0, σ2I), where 0 and I denote a zero 

vector and an identity matrix, respectively, and we set a large value of σ for vague priors. 

For the nonnegative parameter γm,k, m = 1, ⋯ , M, k = 1, ⋯ , K for the baseline hazard, we 

use the noninformative flat prior. We assign vk, k = 1, ⋯ , K, the independent vague gamma 

prior Gamma(0.01, 0.01). See Section 5.6 for the results of the sensitivity analysis of γm,k 

and νk. For the choice of M, a large value provides more flexibility to model the shape of 

the baseline hazard, but at the cost of increasing the computational burden. Gelfand and 

Mallick (1995) suggest that a small value of M works well for most applications. We set M 
= 5 in the analysis.

Let Pr(θ) and Pr(ν) denote the prior distributions of θ and ν, respectively. The joint 

posterior distribution of ν, ξ and θ is given by

Pr θ, ξ, ν H, Gobs, X, 𝓐 ∝ Pr H, Gobs X, θ, ξ, 𝓐 ⋅ Pr θ ⋅ Pr ξ ν ⋅ Pr ν .

We employ the random walk Metropolis-Hastings algorithm within Gibbs sampler to sample 

the posterior distribution. We generate 100,000 posterior samples in total and take every fifth 

sample for thinning after discarding the first 10,000 samples for burn-in. We implement the 

Markov chain Monte Carlo (MCMC) algorithm in R, which takes about three seconds per 

single MCMC iteration. We observe that the physical computing time is approximately 

linear, corresponding to the number of families, I, regardless of the family size ni.

4 Simulation

We conduct a simulation study to evaluate the performance of the proposed method. 

Suppose that there are two competing cancers, indicated by D = 1 and 2, respectively. We 

simulate 200 families of three generations with 30 members (see Figure 1) that are collected 

through probands indexed by {1}in Figure 1 with the second type of cancers (i.e., D = 2), as 

follows:

1. We first simulate a genotype G ∽ Bernoulli(0.0001) for the proband. Given G, 

we then simulate his/her true time to cancer, Tk, k = 1, 2, from the following 

cancer-specific frailty model:

λk t G = λ0, k t ξkexp βkG , k = 1, 2, (17)
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with β1 = 4, β2 = 10, λ0,1(t) = 0.1, λ0,2(t) = 0.0005, , and 

ξ1, ξ2
iid Gamma 0.25, 0.25 . We choose these simulation parameters such that the 

second type of cancer (i.e., D = 2) is rare with the prevalence of about 0.0003, 

while that of the first type of cancer is about 0.05. Random censoring time C is 

simulated from Exponential(2). To mimic the ascertainment process of the LFS 

data, only probands with D = 2 are selected and included in the sample as 

probands. We repeat the above procedure until 200 probands are collected.

2. Given probands’ data, we generate genotypes of their family members as 

follows. If proband {1} is a non-carrier (G = 0), all family members are set as 

non-carriers; other wise, we randomly select one of proband’s parents {3, 4} as a 

carrier and set the another as a non-carrier. O springs and siblings of the proband, 

including {7, 8, 9, 10, 11, 12}, are set as carriers with probability 0.5. If {11} is 

carrier, his o springs, including {19, 20, 21}, are set as carries with probability 

0.5, otherwise set as noncarriers. Geno-types of {22, 23, 24} are generated 

similarly based on the genotype of their mother {12}. Assuming that the 

mutation is extremely rare, the family members who are not genetically related 

with the proband, including {2, 5, 6, 13, 14, 15, 16, 17, 18, 25, 26, 27, 28, 29, 

30}, are set as non-carriers.

3. Given the genotypes, the time to cancer of the family members are generated 

from model (17).

4. Lastly, we randomly delete genotypes for a half of subjects who are not a 

proband.

We set M = 3 for the Bernstein model for the baseline hazard functions, λ0,k(t), k = 1, 2. For 

estimation, we generate 10,000 posterior samples after discarding the first 1,000 samples as 

burn-in. Trace plots suggest that the posterior sampling converges well.

The proposed method has three main components: the family-wise likelihood to handle 

missing genotypes, the ACJ likelihood to correct the ascertainment bias, and the frailty to 

capture the family-specific random effects. To evaluate the effects of these three 

components, we compare our approach with alternative approaches, under which there is (1) 

no missing genotype, (2) no ascertainment bias correction, and (3) no frailty.

Table 2 shows absolute biases and standard deviations of estimates under different 

approaches. For the baseline hazard λ0,k(t), bias and standard deviation are numerically 

integrated over t. We can see that the estimates without ascertainment bias correction are 

severely biased, especially for β2 and λ0,2(t), showing the importance of performing the 

ascertainment bias correction. In addition, the estimates with frailty tend to have smaller 

biases than those assuming no frailty. Lastly, the effciency loss due to missing genotypes is 

generally small, suggesting that the family-wise likelihood effciently utilizes the observed 

data.
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5 Application

We apply the proposed methodology to analyze the LFS data. We consider three types of 

LFS-related cancers (K = 3): breast cancer (k = 1), sarcoma (k = 2), and other cancers (k = 

3). Because the individuals with breast cancer in the LFS data are all female (Table 1), we 

impose the following constraint on the hazard of developing breast cancer:

λ1 t G, X =
0, for X = 0 male ,
λ0, 1 t ξ1exp βG, 1G , for X = 1 female , (18)

while other types of cancer (k = 2, 3) are assumed to follow the model of the form (5). There 

is only one baseline covariate available in the LFS database (i.e., gender), however our 

method can readily accommodate more covariates. We ignore all cancers that occurred after 

75 years of age and treat them as censored at age 75, since cancers diagnosed after 75 years 

of age are clinically irrelevant for estimating the penetrance of LFS.

5.1 Model Parameter Estimates

Posterior estimates for the regression coe cients βk and the inverse of the frailty variances 

νk, k = 1, 2, 3 are reported in Table 3. Genotype has a strong effect on the incidence of all 

cancer types, with TP53 mutation carriers being more likely to have cancers. Gender also 

plays a significant role in sarcoma and other cancers. The regression coeffcient of gender is 

negative, suggesting that males in this population are more likely to develop sarcoma and 

other cancers than females.

The estimates of νks are quite large, which suggests that after accounting for the pedigree 

structure through the family-wise likelihood, within-family correlations are not very strong 

in this particular dataset. To check this, we compared the penetrance estimates obtained from 

our model to those from the model that does not include frailty and found them to be quite 

similar (see Supplementary Materials Section D.3). Although the model without frailty may 

be preferred in practice due to its parsimony, we present the results of the frailty model to 

emphasize that our approach allows for further flexibility; the results are nearly identical in 

terms of the penetrance estimates.

Figure 2 depicts the posterior estimates of the cumulative baseline hazard. Age has stronger 

effects on breast and other cancers than on sarcoma. The cumulative baseline hazards of 

breast and other cancers increase exponentially with age, while that of sarcoma increases 

approximately linearly with age. We observe that the uncertainty of the sarcoma baseline 

hazard estimate is much larger than those of the others. This is because the ascertainment 

bias is generated from the probands with sarcoma, which makes the ascertainmentbias-

corrected likelihood (14) more sensitive to the parameters directly related to sarcoma.

5.2 Age-at-onset Penetrance

The first three panels (a)–(c) of Figure 3 depict the estimated age-at-onset penetrances, qk(t|
G, X), k = 1, ⋯ , 3, respectively, for breast cancer, sarcoma, and other cancers. It is not 

surprising that the TP53 mutation carriers (G = 1) have higher risk of developing cancer than 
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the non-carriers (G = 0), regardless of cancer type. The patterns of cancer-specific 

penetrance are quite different across cancer types, which justifies the proposed cancer-

specific approach. It is of clinical interest that there is a sizable chance that the female TP53 

mutation carrier will develop breast cancer before 20 years of age, which is rarely seen in 

females with BRCA1 and BRCA2 mutations (two well-known susceptibility gene mutations 

for breast cancer) (Berry et al.; 2002). This suggests that early-onset breast cancer is an 

important feature of TP53 mutation. We also find that non-carriers have very low probability 

of developing sarcoma, although the data contain many cases of sarcoma in non-carriers due 

to the use of individuals with sarcoma as probands for collecting the samples (see Table 1). 

In contrast, ignoring the ascertainment bias leads to substantially biased estimates, see 

Supplementary Materials Section D.2 for the comparison between our estimates and the 

estimates without performing ascertainment bias correction.

Figure 3, panel (d) shows the overall age-at-onset penetrance obtained by stacking three 

cancer-specific penetrances, i.e., q t G, X = Σk = 1
3 qk t G, X . The overall age-at-onset 

penetrance quantifies the probability of having any type of cancer by a certain age for 

carriers of TP53 mutations. Among the non-carriers, females have lower cancer risk than 

males; whereas the female mutation carrier has higher risk than the male mutation carrier 

due to the excessively high risk of the female carrier developing breast cancer. Overall, TP53 

mutation carriers have very high lifetime risk of developing cancer, demonstrating the 

importance of the accurate detection of TP53 germline mutations.

5.3 Personalized Risk Prediction

An important application of our analysis results and estimate of age-at-onset penetrance qk(t|
G, X) is to provide a personalized risk prediction for future subjects who are at risk of 

developing LFS-related cancers. Our prediction method has two important advantages. First, 

it allows us to incorporate the subject’s family cancer history to make more accurate risk 

prediction. Second, it is capable to make risk prediction for a subject without knowing 

his/her genotype. This is desirable because in practice, genetic test is often of a great 

financial and psychological burden for patients. Making risk prediction without performing a 

genetic test allows us to quickly detect individuals with high risk of LFS and provide prompt 

and proper clinical treatments during an early stage of disease, which is particularly 

important in the management of rare diseases such as LFS. Specifically, given a family’s 

cancer history Hi and covariates Xi, the risk that the jth individual in the ith family will 

develop the kth type of cancer by age t, Rijk(t|Hi, Xi), is predicted by

Ri jk t Hi, Xi = Pr T i j ≤ t, Di j = k Hi, Xi = ∑
Gi j ∈ 0, 1

Pr Gi j Hi, Xi qk t Gi j, Xi j . (19)

That is, the predicted cancer-specific risk is a weighted average of the cancer-specific 

penetrance qk(t|Gij, Xij). The weight Pr(Gij|Hi, Xi), also known as carrier probability, is the 

likelihood that the subject carries a specific genotype Gij, given his/her family cancer history 

Hi and covariates Xi. It can be routinely calculated using Bayes’ rule and Mendelian laws of 

inheritance, see Supplementary Materials Section B for details. As we assume that the 
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subject’s genotype Gij is unknown, the calculation of the risk in (19) is marginalized over all 

possible values of Gij.

To illustrate the utility of our method, consider two hypothetical families that have similar 

pedigree structures, but different genotypes and cancer histories, as shown in Figure 4. 

Family 1 does not carry the mutated allele and has three cases of cancer (two breast and one 

other cancers), and family 2 carries the mutated allele with four cases of cancer (one breast, 

two sarcoma and one other cancers). As mothers (the second generation) in both families 

had breast cancer, it is of great interest to predict the cancer risk for their daughters, referred 

to as counselees 1 and 2 in Figure 4. We consider two situations: the genotypes of the 

counselees are known or unknown. Specifically, when the genotypes of the counselees and 

their family are unknown, we predict the cancer risk for the counselees based on equation 

(19) with the cancer-specific penetrance estimated from the LFS data. When the genotypes 

of the conselees are known (i.e., conselee 1 is non-carrier and 2 is carrier), the risk 

prediction is straightforward and the cancer risk of the conselees is simply the estimated 

cancer-specific penetrances qk(t|G, X). Figure 5 shows the predicted cancer-specific risks of 

the counselees when their genotypes are known and unknown. Clearly, counselee 2 has a 

substantially higher risk of developing cancer than the counselee 1. Based on this result, we 

may recommend more frequent cancer screening for counselee 2. We note that counselee 2 

has a very low risk of developing sarcoma although her family has two cases of sarcoma. 

This is because, as shown in Figure 3(b), the penetrance for sarcoma is high in male, but 

very low in female.

5.4 External and Interval Validation

As an external validation, we compare our estimates of non-carrier penetrance to those 

provided by the National Cancer Institute on the basis of the Surveillance, Epidemiology, 

and End Results (SEER) data. SEER is an authoritative source of information on cancer 

incidence and survival in the United States. It currently collects and publishes cancer 

incidence and survival data from population-based cancer registries that cover approximately 

28% of the US population. SEER is the only comprehensive source of population-based 

information in the United States that includes the stage of cancer at the time of diagnosis and 

patient survival data. The SEER estimate can be regarded as a reference estimate for the 

normal US population (i.e., non-carrier). More details regarding SEER estimates can be 

found at http://seer.cancer.gov.

Figure 6 compares the penetrance of breast cancer, sarcoma, and all cancers for non-carriers 

to the most recent SEER estimates based on the data collected from 2008 to 2010. We can 

see that the estimates of non-carrier penetrance are generally consistent with the 

corresponding SEER estimates, suggesting that the proposed methodology performs well. 

For the purpose of comparison, we also show the estimate of the overall cancer penetrance 

based on the conventional Cox model for the time to cancer diagnosis using subjects with 

known genotypes. As shown in Figure 6, panel (c), the estimate of the overall cancer risk 

based on the proposed method is much closer to the SEER estimate than the estimate based 

on the Cox model.
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We conduct internal validation through cross-validation. First, we randomly split the data 

(i.e., 186 families) into two halves. We use one half (i.e., 93 families) as the training families 

Hi
tr, Xi

tr, Gobs, i
tr , i = 1, ⋯ , 93 , and the other half as the test families, 

Hi′
tr, Xi′

tr, Gobs, i′
tr , i′ = 1, ⋯ , 93 . Next, we estimate the cancer-specific penetrance using the 

training families, denoted by qk
tr t G, X . Based on this estimate and equation (19), we predict 

the cancer-specific risk at a given age tc for subjects in the test families, i.e., Ri′ jk tc Hi′
ts, Xi′

ts . 

Given a certain risk cuto ψ , we predict that a subject will have kth type of cancers by age tc 

if Ri′ jk tc Hi′
ts, Xi′

ts > ψ . By varying the risk cuto ψ and comparing the predicted cancer status 

with the actually observed cancer status of the test families, we obtain the receiver operating 

characteristic (ROC) curves of our cancer risk prediction model. Figure 7 depicts the ROC 

curve of the predicted risk of the test family members at age 50 years for different cancer 

types. These results show reasonable performance, with the area under the ROC curves 

(AUC) being 0.773, 0.791 and 0.755 for predicting breast cancer, sarcoma and other cancers, 

respectively. For breast cancer, the ROC curves are generated from the females only since 

we assume no breast cancer for the males. We also consider the ROC curves for other caner-

onset ages, tc = 30, 40, and 60 years. The results are generally similar to that of tc = 50 years, 

see Supplementary Materials Section F.

5.5 Model Comparison

Due to the complicated structure of the LFS data (e.g., family structure, missing genotype, 

ascertainment bias and competing risks), standard model diagnosis tools for survival models, 

such as residuals (Schoenfeld; 1982; Therneau et al.; 1990) and chi-squared goodness-of-fit 

tests (Hjort; 1990; Hollander and Pena; 1992; Li and Doss; 1993), are not applicable here. 

We assess the adequacy of the proposed model through model comparison. We consider four 

alternative models. The first three models are obtained by replacing the Bayesian non-

parametric baseline hazard model with three parametric models: the exponential, Weibull, 

and piecewise-constant models, respectively. For the piecewise-constant model, we use four 

equally spaced knots to obtain five partitions. The fourth model is obtained by removing the 

frailty ξi,k from the competing risk model (5). We use two metrics to measure the goodness 

of fit of the models: the deviance information criterion (DIC) and conditional predictive 

ordinate (CPO, Ibrahim et al.; 2005). The DIC measures the overall goodness of fit of a 

model and the CPO measures the predictive ability of a model. The CPO for the ith family is 

defined as

CPOi = Pr Hi 𝒟 −i , Gi, obs, Xi, ξi, 𝓐i = E 1
Pr Hi Gi, obs, Xi, ξi, θ, 𝓐i

−1
(20)

where 𝒟 −i = H −i , G −i , obs, X −i  represents the data with the ith family data deleted, and 

the expectation is made with respect to the posterior distribution of θ. The Monte Carlo 

approximation of (20) is given by
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CPOi = 1
L ∑

𝓁 = 1

L 1
Pr Hi Gi, obs, Xi, ξi, l , θ 𝓁 , 𝓐i

−1

where ξ i, 𝓁  and θ 𝓁  denote posterior samples from the ℓth MCMC iteration, ℓ = 1, ⋯ , L.

Table 4 shows the DIC and ∑i = 1
I log CPOi, known as the pseudo-marginal log-likelihood 

(PsML), for the different models. Smaller DIC values and larger PsML values suggest a 

better model. The proposed model based on Bernstein polynomials provides better goodness 

of fit and predictive ability than the models with exponential, Weibull, or piecewise-constant 

baseline hazards. The difference between the proposed model and the model without frailty 

is small, suggesting a weak within-family correlation. This is concordant with our finding 

that ν estimates are large (see Table 3). For the purpose of comparison, we also perform the 

analysis based only on the subset of the data for whom the genotypes are observed, and the 

analysis without ascertainment bias correction. The estimates of cancer-specific penetrance 

under different approaches are provided in Supplementary Materials (Section D).

5.6 Sensitivity Analysis

We consider nine different combinations of priors for γm,k and νk: three different priors for 

γm,k including flat prior, Gamma(0.01, 0.01), and Gamma(1, 1); and three priors for νk ∽ 
Gamma(0.01, 0.01), Gamma(0.1, 0.1) and Gamma(1, 1). The results (see Supplementary 

Materials Section E) show that the estimates are not particularly sensitive to the choice of 

priors.

6 Discussion

In the LFS study, estimating cancer-specific penetrance is not trivial under the presence of 

competing risks, but is essential for providing better treatment that is personalized to the 

patient’s needs. We developed a cancer-specific age-at-onset penetrance model and proposed 

an associated Bayesian estimation scheme. The proposed method can incorporate all the 

family histories in the estimation by exploiting the family-wise likelihood. We also corrected 

the ascertainment bias, which is an important task in family data studies of rare diseases.

One detriment when modeling the cause-specific hazard in competing risk analysis is that 

covariate effects on the subdistribution (i.e., cancer-specific penetrance) are not 

interpretable. As an alternative, Fine and Gray (1999) proposed a proportional model for the 

subdistribution that enables us to directly assess the covariate effects on the corresponding 

cancer-specific penetrance. It is not diffcult to equivalently rewrite the individual likelihood 

in terms of the cancer-specific penetrance and the associated derivative (Maller and Zhou; 

2002). The family-wise likelihood approach can be similarly applied to this alternative 

modeling approach.

In the LFS study, a patient can have multiple primary cancers during his or her lifetime. In 

the current approach, we consider only the first cancer that occurred and discard all the 

Shin et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2019 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subsequent cancer history. In order to incorporate a longitudinal history that may involve 

multiple cancers, our approach can be extended to the so-called multi-state model (Putter et 

al.; 2007) to recurrently observe multiple failures. In theory, the multi-state model can be 

regarded as an extended version of the competing risk model. However, it is practically 

challenging to collect data for a suffcient number of subjects who have multiple primary 

cancers in order to attain an appropriate level of estimation accuracy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Pedigree of the simulated family of three generations with 30 members.
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Figure 2: 
Posterior estimates of the cancer-specific cumulative baseline hazard functions for breast 

cancer (a), sarcroma (b) and other cancers (c). Dashed lines indicate 95% credible band of 

the estimates.
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Figure 3: 
Cancer-specific age-at-onset penetrances qk(t|G, X), k = 1, 2, 3, are depicted in (a)–(c), and 

the overall cancer penetrance q(t|G, X) is given in (d). Shaded areas denote the 95% credible 

bands.
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Figure 4: 
Pedigrees of two families, where square and circle represent male and female subjects, 

respectively. The symbol is partitioned into four sections, which represent statuses of 

genotype (topleft), breast cancer (bottom left), sarcoma (bottom right), and other cancers 

(topright). Filled sections represent that the subject carries a mutated allele or had a certain 

type of cancer. The number in the parentheses is subject’s current age.
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Figure 5: 
Predicted cancer-specific risk for counselees 1 and 2 when their genotypes G are known or 

unknown.
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Figure 6: 
External validation of the estimated penetrance for non-carrier (solid lines) through 

comparison to the SEER estimates (dashed lines). Shaded areas represent the 95% credible 

bands. For panel (c), the dotted line indicates the estimate based on the Cox model.
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Figure 7: 
The ROC curve for the cancer-specific risk prediction at age 50. Values in the parentheses 

are standard deviations of the AUC. Shaded areas represent pointwise 95% variations of the 

ROC curves from different random partitions.
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Table 1:

Frequency table for LFS data.

Gender Genotype Breast Sarcoma Others Censored Total

Unknown 0 11 130 1275 1416

Male Wildtype 0 76 30 295 401

Mutation 0 12 27 9 48

Subtotal 0 99 187 1579 1865

Unknown 39 4 62 1204 1309

Female Wildtype 8 96 17 343 464

Mutation 19 12 7 10 48

Subtotal 66 112 86 1557 1821

Total 66 211 273 3136 3686
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Table 2:

Absolute biases and standard deviations (in parentheses) of estimates based on 100 simulations.

No bias correction Bias correction

Genotype No fraility Frailty No fraility Frailty

β
1

No missing 1.1968 (.3608) 0.7818 (.3385) 1.0667 (.3633) 0.4905 (.3420)

Missing 1.4363 (.4117) 1.2627 (.3421) 1.2824 (.4120) 0.8681 (.3942)

β
2

No missing 5.5993 (.1973) 4.7515 (.2051) 0.8659 (.3220) 0.2347 (.4627)

Missing 5.7480 (.2225) 5.4368 (.2267) 1.2012 (.3016) 0.4764 (.3293)

λ0,1(t)
No missing 0.0227 (.0366) 0.0194 (.0409) 0.0190 (.0394) 0.0116 (.0479)

Missing 0.0184 (.0374) 0.0167 (.0398) 0.0166 (.0395) 0.0123 (.0449)

λ0,2(t)
No missing 0.1025 (.0505) 0.0914 (.0518) 0.0004 (.0004) 0.0043 (.0038)

Missing 0.1340 (.0641) 0.1116 (.0540) 0.0010 (.0008) 0.0053 (.0045)
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Table 3:

Posterior estimates of regression coeffcients β and inverse variances of the frailty ν.

Cancer Parameter Mean SD 2.5% 97.5%

Breast Genotype 3.560 0.516 2.541 4.544

(Frailty Var)−1 6.126 1.850 3.185 10.347

Sarcoma Genotype 2.464 0.895 0.675 4.182

Female −3.677 1.077 −6.176 −1.902

Interaction 0.971 0.548 −0.110 2.040

(Frailty Var)−1 6.574 1.990 3.490 11.227

Others Genotype 1.576 0.769 0.072 3.072

Female −0.993 0.186 −1.366 −0.647

Interaction 0.559 0.574 −0.620 1.628

(Frailty Var)−1 7.148 2.001 3.986 11.857
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Table 4:

Comparison of the proposed model with four alternative models.

Baseline Frailty

Model hazard included DIC PsML

1 Exponential Yes 3273.7 −1657.120

2 Weibull Yes 3020.2 −1512.252

3 Piecewise Yes 3010.3 −1513.405

4 Bernstein. No 2989.3 −1499.735

Proposed Bernstein Yes 2983.7 −1499.689
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