
Cellular/Molecular

Stimulus History Reliably Shapes Action Potential
Waveforms of Cortical Neurons
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Action potentials have been shown to shunt synaptic charge to a degree that depends on their waveform. In this way, they participate in
synaptic integration, and thus in the probability of generating succeeding action potentials, in a shape-dependent way. Here we test
whether the different action potential waveforms produced during dynamical stimulation in a single cortical neuron carry information
about the conductance stimulus history. When pyramidal neurons in rat visual cortex were driven by a conductance stimulus that
resembles natural synaptic input, somatic action potential waveforms showed a large variability that reliably signaled the history of the
input for up to 50 ms before the spike. The correlation between stimulus history and action potential waveforms had low noise, resulting
in information rates that were three to four times larger than for the instantaneous spike rate. The reliable correlation between stimulus
history and spike waveforms then acts as a local encoding at the single-cell level. It also directly affects neuronal communication as
different waveforms influence the production of succeeding spikes via differential shunting of synaptic charge. Modeling was used to
show that slow conductances can implement memory of the stimulus history in cortical neurons, encoding this information in the spike
shape.
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Introduction
Action potentials are known to shunt incoming EPSPs (Coombs
et al., 1955). Simple neuron models such as integrate-and-fire
neurons assume that this shunting completely resets the mem-
brane for synaptic integration (Koch, 1999). Recently, experi-
ments on pyramidal and Purkinje neurons have demonstrated
that the shunting is not in general complete (Häusser et al., 2001).
The amount of charge that survives each action potential depends
on the shape of both EPSP and action potential and on the rela-
tive timing between them. In this work, however, single back-
propagating action potentials of a constant shape in each trial
were used, and all underlying conductances returned to their
resting values between trials. An influence of action potential
shape was evident only from differences between pyramidal and
Purkinje neurons and from modeling. A possible mechanism for
variability in the action potential shape within a neuron is the

variable participation of dendritic sodium currents, which can be
prevented by proximal IPSPs (Paré et al., 1998).

An extra source of variability in action potential waveforms in
vivo is attributable to activity. Even injecting a steady current step
produces several action potentials of different shapes, with a cor-
relation between spike frequency and spike broadening (Kandel
and Spencer, 1961; Aldrich et al., 1979; Fox and Ranck, 1981).
Sodium and potassium channels are responsible for activity-
dependent spike amplitude reduction and broadening (Gross-
man et al., 1979; Coates and Bullock, 1985; Gillette et al., 1980;
Jackson et al., 1991; Wang and Kaczmarek, 1998; Geiger and
Jonas, 2000).

Such experiments are valuable for exposing the underlying
mechanisms, but to understand the effect of stimulus history, one
needs a naturalistic, dynamically rich stimulation and a probabi-
listic analysis. In this study, we use dynamic conductance stimu-
lus patterns to investigate whether spike shapes reliably depend
on previous stimulus history. We show that, in cortical neurons,
action potential waveforms depend on the previous 50 ms of
conductance stimulus history. This relationship is low in noise,
carrying three to four times more information than the spike
times only. In contrast to spike broadening during simple current
steps, in which spike frequency and waveform are directly related,
spike frequency is a poor encoder of conductance history in our
experiments. Although spike frequency and spike shape are re-
lated on average, it is only spike shape that depends reliably on
different features of the stimulus history on a trial-by-trial basis.
We show by modeling our experiments that slow conductances
can act as a memory of the conductance history and serve to
encode it in the spike shape.
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Because cortical action potentials of different waveforms differ-
entially shunt incoming synaptic events, they participate in the syn-
aptic integration and the generation of succeeding action potentials
(Häusser et al., 2001). Therefore, at least 50 ms of the stimulus his-
tory can affect the state of synaptic integration of the neuron and the
generation of spikes, through modulation of the action potential
waveform. This is a form of local encoding at the single-neuron level
with a 50-ms-long memory, which affects neuronal communication
by influencing the production of future spikes.

Materials and Methods
Preparation and electrophysiology. In vitro single-electrode whole-cell re-
cordings from the somas of neurons in cortical layers 2/3 and 5 were
performed in transverse slices prepared from occipital cortex of 13- to
23-d-old Wistar rats. A Multiclamp 700A amplifier (Axon Instruments,
Union City, CA) was used in a fast “bridge” current-clamp mode, with
patch pipettes having resistances of 4 – 6 M�. Slices were viewed with an
upright microscope (BW50WI; Olympus Optical, Tokyo, Japan) by in-
frared differential interference contrast optics. Signals were filtered at 5
kHz (�3 dB, four-pole Bessel) and sampled with 12-bit resolution at 20
kHz. During recording, the slices were perfused continuously with Ring-
er’s solution (in mM): 125 NaCl, 2.5 KCl, 25 NaHCO3, 25 glucose, 1.25
NaH2PO4, 2 CaCl2, and 1 MgCl2. The Ringer’s solution was equilibrated
with 95% O2, 5% CO2 gas to a final pH of 7.4. Additionally, 10 �M

bicuculline, 10 �M CNQX, and 10 �M APV (Tocris Cookson, Ballwin,
MO) were included to block intrinsic synaptic conductances. The pipette
solution (Harsch and Robinson, 2000) contained 20 mM phosphocre-
atine Na2, 4 mM MgCl2, 0.3 mM GTP, 4 mM ATP, 100 mM potassium
gluconate, 20 mM KCl, 10 mM HEPES, and 5 U/ml creatine phosphoki-
nase. It was balanced to pH 7.3 with NaOH. All experiments were per-
formed either at room temperature (21–23.5°C; n � 32) or a near-
physiological temperature (34 � 0.5°C; n � 24).

Conductance injection. Cells were stimulated using the conductance
injection technique, also known as dynamic clamp (Robinson, 1991;
Robinson and Kawai, 1993; Sharp et al., 1993), which, unlike current-
clamp stimulation, allows a natural interaction between input current
and the membrane potential (for a comparison of conductance and cur-
rent stimulation, see Supplement 1, available at www.jneurosci.org as
supplemental material). The opening of AMPA, NMDA, and GABA re-
ceptors was modeled by injecting a current I(t) that depended instanta-
neously on the changing membrane potential V(t) (in mV):

I�t� � gAMPA�t��V�t� � EAMPA� � gGABA�t��V�t� � EGABA�

�
gNMDA�t�

1 � k1exp��k2V�t��
�V�t� � ENMDA�, (1)

with EAMPA � ENMDA � 0 mV, and EGABA equal to the resting potential
(�65.0 � 5.1 mV; mean � SD; n � 24; t � 34°C). The constants k1 � 0.6
and k2 � 0.06 describe the voltage-dependent magnesium block of the
NMDA receptors. The AMPA, GABA, and NMDA conductances were
each a sum of elementary synaptic events, g(t) � 	tgi(t), each described
by �(t) � R� 	iexp( � (t � Ti )/��) gi(t) � g�[exp(�(t � ti)/�d �
exp(�(t � ti)�r] for t � ti and zero for t � ti. The scaling constant g� �
1000, 100, and 300 pS, the decay time constant �d � 2, 150, and 7 ms, and
the rise time constant �r � 0.5, 5 and 0.5 ms for AMPA, NMDA, and
GABA, respectively. The initiation times for the unitary events, AMPA/
NMDA, or GABA were each determined by a Poisson process, with time
intervals T between events distributed as p( T) � �exp(��T ) or from a
nonstationary Poisson process whose rate is given by for t 	 Ti, with R� the
initial peak rate, �b the burst decay time constant, and {Ti} the burst times
drawn from a Poisson distribution. R� and �b were adjusted individually
for each neuron to evoke vigorous firing. The command signal for con-
ductance injection was generated using an SM-1 conductance injection
amplifier (Cambridge Conductance, Cambridge, UK). Membrane po-
tential was not corrected for liquid junction potential.

We recorded voltage responses of neurons to either a continuously
generated stochastic conductance pattern or a conductance pattern that

was repeated 80 –200 times, with each presentation lasting 6 –20 s. In
either case, the total duration of the recordings was 10 – 40 min. The
results described in this paper hold true for both of these stimuli. Neu-
rons were considered for analysis only if their membrane potential and
their responses showed no obvious drifts; the data were rejected if the
resting potential or the number of action potentials varied more than
10% across the traces. The total number of action potentials in a single
experiment varied from 
1000 to 
20,000. Data acquisition was per-
formed by a purpose-built Matlab interface (MathWorks, Natick, MA)

Figure 1. Action potential waveforms of pyramidal neurons encode information about the
stimulus history. A, The heights and widths of action potentials (filled circles; n � 4137) occupy
a large linear range during naturalistic conductance stimulation; here, height � 37.4 � 4.8 �
width. This recording is from cortical layer 2/3 (13-d-old rat at 34°C). Action potential wave-
forms (top inset; black trace) vary with synaptic input patterns of a sum of AMPA unitary events
(top inset; gray trace). Calibration: 30 mV, 0.5 s. Calibration bar for conductance: 10 nS. The thin
horizontal line indicates the voltage (�30 mV) at which the action potential widths were
measured. The widths are color coded into 10 groups (bottom inset, 9 equally spaced with the
10th, including the remainder), from narrow to wide as follows: orange, black, red, green, cyan,
blue, magenta, yellow, purple, and olive. B, Average stimulus (conductance) history preceding
the peak of the action potentials for each group (same coloring). The black circle and square
indicate the conductance values at 5 and 40 ms before the spiking time, respectively. The inset
shows three different conductance histories (thick, medium, and thin traces) leading to a similar
spike (purple). C, Mean and SD of the conductance histories for each action potential group at 5
ms (top window) and 40 ms (bottom window) before firing. Horizontal bars indicate where the
means of the conductance histories of the neighboring groups differ significantly by one-way
ANOVA ( p � 10 – 8). D, Average voltage responses preceding the action potential waveforms
(same grouping and coloring). The inset shows the mean and SD of the voltage response 4 ms
before the spike peak for four action potential groups.

Table 1. Action potential parameters at room temperature

22–23.5°C Parameter Mean SD n

All neurons Firing rate 5.2 spikes/s 2.4 spikes/s 32
ISI (peak of pdf) 69.6 ms 25.6 ms 32
Height/width gradient 1.5 mV/ms 0.7 mV/ms 32

Layer 5 Firing rate 6.1 spikes/s 2.7 spikes/s 16
ISI (peak of pdf) 65.2 ms 25.5 ms 16
Height/width gradient 1.2 mV/ms 0.6 mV/ms 16

Layer 2/3 Firing rate 4.3 spikes/s 1.8 spikes/s 13
ISI (peak of pdf) 74.0 ms 24.6 ms 13
Height/width gradient 1.8 mV/ms 0.6 mV/ms 13

pdf, Probability density function.
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with an interface package for National Instruments (Austin, TX) boards
(MATDAQ; H. P. C. Robinson, 1997–2005).

Conductance histories preceding action potentials of given widths. The
widths of action potentials were measured at a given voltage level (�20 to
�40 mV) set so as to exclude subthreshold membrane potentials and were
sorted into 10 groups. Results were independent of the voltage level chosen
for width measurements and of the number of groups for analysis. The
conductance histories preceding the action potentials of each width group
were used to calculate the corresponding mean conductance histories and
SDs. All neurons tested showed results similar to those in Figures 1 and 2.

Conductance histories preceding interspike intervals. The interspike inter-
vals (ISIs) were measured from the peak of each action potential to the peak
of the next one. Because the mean interspike interval in the recordings was
55.5 � 29.8 ms (n � 56), the ISIs were divided into nine groups around this
value, using 10 ms intervals with the 10th group containing ISIs longer than
101 ms (see Fig. 4). Notice that, for bursty conductance stimulation, the ISI
distributions have long tails (the 10th group) and a low mean spike rate
(Table 1). There were at least 50 conductance histories in each ISI group. For
all cells studied, the means and SDs of the conductance histories of the ISI
groups behaved similarly to the data in Figure 5.

Wilson model of cortical neuron. Mammalian cortical neurons have at
least 12 different major ionic currents. Simplified models of their behav-

ior have been proposed by Wilson (1999a,b) that reproduce well the
spike shape in response to a current step. The following Wilson model
takes into account the Na  and K  spike-producing currents, the Ca 2

current I(t), and hyperpolarizing current IAHP. The Wilson model is
based on an equation for the voltage change CdV/dt � �m�(V � 0.5) �
26 R(V  0.95) � 0.5T(V � 1.2) � 2.5H(V  0.95)  Iext and the
equations dR/dt � (�R  R�)/4.2, dT/dt � (�T  T�)/14, and dH/dt �
(�H  3T )/120 with m� � 17.8  47.6V  33.8V 2, T� � 8(V  0.725) 2,
and R� � 0.79  1.29V  3.3(V  0.38) 2, with voltage units in mV/100.
Iext is given by Equation 1, thus modeling our conductance injection
experiments using stochastically timed trains of unitary conductance
transients. Results were robust under changes of parameters. We also
considered models with four spatial compartments to study the effect of
dendritic sodium channels (Supplement 3, available at www.jneuro-
sci.org as supplemental material). The first three compartments have the
coupling terms 4(Vk � 1 � Vk)  4(Vk  1 � Vk) and the fourth compart-
ment only the first of these two terms (Wilson, 1999b). Numerical inte-
gration of these equations was done with custom-built Matlab software
and analyzed identically to the experimental data.

Results
Stimulus features preceding different spike waveforms
To examine the effect of stimulus history in the action potential
waveforms, we performed whole-cell recordings from pyramidal
neurons of rat cortex. To mimic natural synaptic input, we used
the technique of conductance injection, or dynamic clamp (Rob-
inson and Kawai, 1993; Sharp et al., 1993; Harsch and Robinson,
2000). Our stimulus consisted of stochastically timed trains of
unitary conductance transients with the characteristics of gluta-
matergic synaptic inputs (see Materials and Methods). Figure 1A

Figure 2. Analysis of the voltage history. A, Spike height versus mean subthreshold voltage
calculated for the 10 ms preceding each action potential (filled circles; n � 4137; same data and
color coding as in Fig. 1). B, Spike height versus spike threshold calculated for each action
potential. C, Spike threshold shows an exponential relationship with the preceding voltage
slope, with a decay constant of 1.3. D, The rising slope of the spike (spike rise) also correlates
strongly with the threshold. The inset shows how the spike rise was calculated.

Figure 3. Waveform encoding is independent of cortical layer and different mixtures of
conductances. A, Height versus width for action potentials (filled circles; n � 4977) from corti-
cal layer 2/3 (13-d-old rat at 34°C). Heights and widths obey an approximately linear relation-
ship (height � 30.4 –2.9 � width) during naturalistic input patterns made of AMPA and
NMDA unitary events instead of AMPA as in Figure 1. The widths are color coded into 11 groups
as follows: orange, black, red, green, cyan, blue, magenta, yellow, purple, olive, and royal. B,
Average AMPA and NMDA command conductance histories until the peak of the action potential
for each group (same coloring). C, Height versus width for action potentials (filled circles; n �
5081) from cortical layer 5 (13-d-old rat at 34°C) obey an approximately linear relationship
(height � 39.1–2.1 � width) during naturalistic input patterns made of AMPA unitary events
only. The widths are color coded as before for 10 groups. D, Average AMPA conductance history
until the peak of the action potential for each group in C (same coloring).

Table 2. Action potential parameters at near-physiological temperature

34 � 0.5°C Parameter Mean SD n

All neurons Firing rate 7.3 spikes/s 3.5 spikes/s 24
ISI (peak of pdf) 38.9 ms 28.9 ms 24
Height/width gradient 2.4 mV/ms 1.0 mV/ms 24

Layer 5 Firing rate 6.4 spikes/s 4.5 spikes/s 13
ISI (peak of pdf) 27.2 ms 0.7 ms 13
Height/width gradient 1.8 mV/ms 1.0 mV/ms 13

Layer 2/3 Firing rate 8.5 spikes/s 1.8 spikes/s 8
ISI (peak of pdf) 33.3 ms 18.4 ms 8
Height/width gradient 3.1 mV/ms 1.0 mV/ms 8

pdf, Probability density function.
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shows a typical recording and the heights and widths of the action
potentials. The height is the peak absolute voltage value, and the
width of an action potential is measured close to its base at a fixed
voltage level (here at �30 mV). There is a large variability in the
waveforms of action potentials, with heights varying typically
between 0 and 30 mV and widths between 1 and 6 ms. This
variability, which was present in all of our recordings (n � 56),
resembles that in published records of cortical neuron firing dur-
ing synaptic input in vivo (Carandini and Ferster, 2000) and is
larger than during stimulation by current steps (Harsch and Rob-
inson, 2000). Height and width were linearly correlated, ranging
from tall and narrow to short and wide. Is this variability random
attributable to the underlying stochastic dynamics of channels or
does the action potential waveform carry information about par-
ticular changes in the stimulation?

To search for particular features that might be encoded by the
waveform variability, we calculated the average stimulus preced-
ing action potentials of given height and width ranges. Action
potentials were sorted by width into 10 groups for analysis, indi-

cated by different colors in Figure 1A. Figure 1B shows the aver-
age conductance stimulus preceding a spike for each of these 10
groups using the same color scheme. Common to all groups is a
fast conductance increase followed by a decrease within 5 ms
before a spike. Each group, however, encodes a different level of
stimulus amplitude. The broader and the shorter the action po-
tential, the larger the stimulus amplitude it encodes. Another
characteristic of this encoding is that, for the lowest overall con-
ductance histories, there is a high rate of increase during the
10 –20 ms before spike production. The same ordering of average
stimulus levels for the different groups is seen 5 ms before spike
production as for 100 ms earlier. To find the relevant time inter-
val for encoding, we calculated the SD of stimulus histories. Fig-
ure 1C (top) shows that, at 5 ms before spike production, the SDs
are small enough to distinguish different conductance histories.
As seen in the larger SDs at 40 ms before spikes (bottom), this
specificity gradually deteriorates for times more distant from
spike production. An example of individual conductance histo-
ries leading to the production of similar spikes is given in the inset
of Figure 1B. Even very different input patterns, which converge
to similar trajectories within the 20 ms before firing, lead to the
same action potential waveform group. Figure 1D, which depicts
the average voltage trajectories preceding action potentials in the
different waveform groups, shows that each spike waveform class
was produced at a different mean potential level before the firing.
The inset shows the mean voltage histories within 4 ms before the
peak of the action potentials; the small non-overlapping SDs of
the action potential groups indicate that their waveforms are
clearly distinguishable.

To better understand the possible mechanisms responsible for
the variation in spike shapes, Figure 2 gives a more detailed anal-
ysis on a trial-to-trial basis of the potential levels before firing.
The spike shape depends on the availability of sodium channels,
which depends on the voltage history, which in turn is obviously
correlated to the conductance input history. Figure 2A shows a
correlation between the spike height and the subthreshold poten-
tial averaged over the 10 ms preceding each spike. Grouping by
widths follows the same color code as in Figure 1. We also tested
whether the spike shape depends on the voltage slope leading into
action potentials. Faster depolarization may be expected to lower
the threshold and produce full-blown spikes, whereas, when the
voltage lingers close to threshold before spike initiation, inactiva-
tion should generate spikes of lower amplitude (Azouz and Gray,
2000). This mechanism predicts a correlation between spike
height and the spike threshold and between the voltage slope
preceding a spike and the spike threshold, as shown in Figure 2, B
and C, respectively. Therefore, both the absolute voltage level
value and the slope are relevant parameters of the voltage history
in the 10 ms preceding different spike shapes. At times preceding
10 ms before a spike, there is a decreasing relevance of the slope,
especially for the wider spikes, as is clear from the average voltage
histories in Figure 1D. We further tested whether this relation-
ship can be partially explained by the availability of sodium chan-
nels. For this, we use the slope during the rising phase of the spike
(spike rise) as a measure of sodium current: a lower value indi-
cates an increase in sodium channel inactivation (Haag and Borst,
1996; Azouz and Gray, 2000). Figure 2D gives the spike rise versus
spike threshold. According to this figure, the higher threshold of
smaller and wider spikes corresponds to a lower spike rise, that is, to
a higher degree of sodium channel inactivation.

In the 56 cells tested from different cortical layers (layers 3 and
5), using different types of conductances (AMPA, AMPA plus
GABA, and AMPA plus NMDA), different ages (13–23 d), and

Figure 4. Reliable action potential waveforms in repetition experiments and high informa-
tion transfer rate. A, Two successive action potentials evoked 100 times by the same conduc-
tance stimulus pattern and their heights and widths (below) measured at �35 mV (thin dotted
line). Calibration: 20 mV, 10 ms. B, Top trace is an intracellular voltage response of a pyramidal
neuron in layer 2/3 (calibration, 40 mV) to a stationary conductance pattern of stochastically
timed trains of AMPA and NMDA events (bottom traces, black and red lines, respectively; cali-
bration: 5 nS, 1 s) at 22°C (see Materials and Methods). Between the action potentials are
represented by bars with colors indicating the spike width (“temperature”-colored scale indi-
cated at the bottom; red, thin and narrow spikes; blue, short and wide spikes). Rows correspond
to consecutive responses to the same conductance pattern (8 traces). C, Voltage response (top
trace; calibration, 40 mV) of neuron in layer 5 to a bursting conductance pattern of AMPA events
(bottom trace; calibration: 5 nS, 1 s) at 34°C (see Materials and Methods). Between are shown
the corresponding “temperature”-colored widths during eight stimulus trials. D, Information
transfer rate of pyramidal neurons (n � 21) for different conductance patterns (both stationary
and nonstationary) plotted against the mean firing rate of each experiment. The information
transfer rate was calculated for the full voltage responses (red filled circles), the action potential
waveforms (white squares), and stereotyped action potentials (blue stars), each sampled at 2
kHz. The inset shows a short sample of the three waveforms containing two action potentials.
Information transfer rate, R, for each signal type increases with the mean firing rate, f (full
voltage responses: r � 10.4 � f  660.6, red line; action potential waveforms: r � 12.9 �
f  64.7, black line; stereotyped spikes: r � 4.2 � f  9.8, blue line).
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different temperatures (23 or 34°C), we found differences in the
action potential shapes but always the same encoding principles.
As an index of the correlation between height and width, Tables 1
and 2 show the gradient of the linear fits to the height/width
distributions, in layers 2/3 and 5, at temperatures of 23 or 34°C,
respectively.

Figure 3 gives two examples that show analogous encoding prop-
erties in different layers and with different mixtures of conductances.
Figure 3, A and B, is similar to Figure 1 but for a stimulus made of
AMPA and NMDA conductances. We show separately the AMPA
and NMDA stimulus features producing action potentials of differ-
ent widths. Wider potentials are produced for higher AMPA and
NMDA conductances. Figure 3, C and D, shows the waveform en-
coding for a layer 5 neuron. Action potentials have shapes different
from those of layer 2/3 neurons, typically with half the height/width
ratio. The AMPA stimulus features encoded are, however, indistin-
guishable from those of layer 2/3 neurons.

Reliability of encoding of stimulus history into
spike waveforms
To study quantitatively the reliability of the encoding into action
potential waveforms, we performed experiments in which the
same naturalistic input was applied repeatedly. Figure 4A shows
an example of 100 superimposed sections of these responses, in
which two action potentials were reliably elicited. The heights
and widths of the two spikes are shown below as two clusters.
Both sets of action potentials conserved their shapes across trials.

Additional low-probability action potentials also preserved their
shapes across trials. Figure 4, B and C, shows the first eight repe-
titions of responses to stationary and nonstationary (bursting)
Poisson input trains, lasting 2.5 and 1.7 s, respectively. Action
potentials are color coded in a gradient from red (tall, thin) to
blue (short, wide). This demonstrates that, during both types of
stimulation, there was not only a high reliability of action poten-
tial times (Mainen and Sejnowski, 1995; Harsch and Robinson,
2000) but also of the action potential shapes throughout the re-
sponse. Three representative cases in Figure 4B are indicated by
the symbols *, E, and �. At *, the action potentials were pro-
duced at the same time and all belonged to the same waveform
group. At E, there is a small spread in the spike times within the
ensemble, but spikes at exactly the same times have the same
widths. Although all spike times were similar at �, differences in
waveform stem from distinct preceding response histories.

The small SDs in the stimulus features encoded, shown in
Figure 1C, and the repeatability of the action potential times and
shapes in Figure 4, B and C, show that there is a reliable encoding
of 50 ms of the conductance stimulus into spike waveforms. It is
desirable, however, to obtain a quantitative measure of this reli-
ability that is independent of the features encoded, the particular
shapes of the action potentials, or any underlying mechanisms.
We used repeated trial experiments to calculate the rate of infor-
mation transfer between input and output, a standard measure
used previously for spike rates (MacKay and McCulloch, 1952;
Barlow, 1961; de Polavieja, 2002), for spike times (Juusola and
French, 1997; Strong et al., 1998; Reinagel and Reid, 2000), and
for the responses of graded neurons (van Steveninck and Laugh-
lin, 1996; Juusola and de Polavieja, 2003). We calculated the rate
of information transfer for three different cases: the full voltage

Figure 5. Low correlation between stimulus variations and instantaneous spike rate. A, The
ISI probability density is shown for the same experiment as in Figure 1. ISIs are sorted into 10
groups: orange, 91–100 ms; black, 81–90 ms; red, 71– 80 ms; green, 61–70 ms; blue, 51– 60
ms; cyan, 41–50 ms; magenta, 31– 40 ms; yellow, 21–30 ms; olive, 1–20 ms; black, �100 ms.
B, Mean conductance history before the ISIs of each group. The black circle and square indicate
the conductance values at 5 and 40 ms before the ISIs, respectively. Mean conductance and SD
(error bars) are shown for 5 ms (C) and 40 ms (D) before the ISIs. Horizontal bars indicate where
the means of the conductance histories of the neighboring groups differ significantly by one-
way ANOVA (black bar, p � 0.0005; gray bar, p � 0.005; light gray bar, p � 0.05).

Figure 6. Action potential waveforms of a cortical neuron model dynamically encode infor-
mation about the stimulus history. A, The heights and widths of action potentials. Action po-
tential waveforms (top inset; black trace) vary with synaptic input patterns of a sum of AMPA
unitary events (top inset; gray trace). Calibration: 50 mV, 20 ms; calibration bar for conductance,
2 nS. The thin horizontal line indicates the voltage (�42 mV) where the action potential widths
were measured. The widths are color coded into 10 groups for analysis. B, Average stimulus
(conductance) history preceding the peak of the action potentials for each group (same color-
ing). C, Mean and SD of the conductance histories for each action potential group at 1.5 ms (top
window) and 7.5 ms (bottom window) before firing. D, Calcium conductance history before
firing for each of the 10 spike waveform groups. The inset shows mean and SD for three groups.
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waveform, spike waveforms alone, and stereotyped action poten-
tial trains in which the actual action potentials are replaced by the
average (stereotyped) action potential waveform (Fig. 4D) (see
Materials and Methods) (for three tests of the methodology, see
Supplement 2, available at www.jneurosci.org as supplemental
material). The rate of information transfer for action potential
waveforms was 4.2 � 1.6 (mean � SD; n � 21) times larger than
that of the stereotyped impulses. For example, at a spike rate of 10
Hz, the full voltage response carried 800 bits/s, the action poten-
tial waveforms 200 bits/s, and the stereotyped impulses 50 bits/s.
The high repeatability of both the graded subthreshold activity
and of action potential waveforms allowed full voltage responses
to have high information transfer rates, comparable with the val-
ues measured during naturalistic stimulation in graded potential
neurons (Juusola and de Polavieja, 2003). Similarly, the fourfold
difference between the true action potential waveforms and ste-
reotyped impulses means that the number of possible messages
that can be transmitted using different action potential wave-
forms is much larger than the number of messages transmissible
by spike timing alone. These different messages are distinguish-
able because of their high reliability, as seen in the repetition
experiments or in the small SDs in Figure 1C. The main source of
unreliability is the spike time jitter, common to codes based on
both waveforms and action potential times.

The instantaneous spike rate does not reliably represent
different stimulus features
Experiments using current steps have shown that there is a cor-
relation between spike frequency and spike broadening (Kandel

and Spencer, 1961; Aldrich et al., 1979; Fox and Ranck, 1981). We
tested whether spike frequency also encodes more dynamic stim-
ulus history. We calculated the average conductance histories
preceding different ISIs. Figure 5A shows the distribution of ISIs
with different colors identifying 10 groups that we distinguished
for analysis. Figure 5B shows the corresponding average conduc-
tance histories before the different ISI groups. The average con-
ductances preceding different ISIs resembled those preceding the
action potential waveforms in Figure 1B, having a transient in-
crease in conductance within 5 ms before the first spike, and the
level of pre-ISI conductance histories followed the same order as
the prewaveform conductance histories (compare with Fig. 1B).
However, although the waveforms and ISIs encoded on average
similar stimulus patterns, the ISIs do not represent these stimulus
features well. For the ISI code, the mean conductance histories
were less separable and had much larger SDs than with the action
potential waveform code, as seen in Figure 5, C and D, at 5 and 40
ms before the first spike, respectively. As in experiments using
current steps, spike frequency and spike shape are correlated, but,
in our dynamic experiments, the effect is so weak that it is only
evident in the average. On a trial-by-trial basis, spike frequency
shows a poor correlation to stimulus history compared with the
spike shapes.

Encoding into spike shapes in a model of cortical neuron
The Hodgkin-Huxley model produces action potentials of differ-
ent shapes that, however, show a rather poor correlation to con-
ductance histories (Supplement 3, available at www.jneurosci.
org as supplemental material). Simple models of cortical neurons
are known to reproduce the different dynamical behaviors ob-
served in cortical neurons and the spike shape in response to a
current step. We use a simple model proposed by Wilson
(1999a,b) that includes the spike-producing Na and K con-
ductances and the slower Ca 2 and calcium-dependent K hy-
perpolarization currents. This simple model already shows some
of the relevant characteristics of our experimental results. Figure
6A gives the spike height against spike width for the same dynam-
ical stimulation as in our conductance injection experiments (Eq.
1 in Materials and Methods). There is a clear variability in the
action potential waveform, here plotted for 37°C (Fig. 6A), with a
distribution similar to the experimental data. The AMPA average
stimulus patterns leading to spikes of different widths (Fig. 6B)
show striking similarities to the experimental ones (Fig. 1B). For
every spike waveform, the average conductance pattern has a
sudden decrease just before spiking, preceded by an increasing
slope. As in the experimental results, wider spikes correspond to
higher conductance amplitude. Figure 6C shows the variability of
the AMPA conductance pattern for each of the 10 groups of spike
waveforms selected at 2.5 and 7.5 ms before spike production. An
encoding of good quality in this simple model has a duration of
10 ms. Action potentials have different waveforms because the
underlying conductances have not recovered between spikes. To
encode an input history, it is necessary to have slow conductances
or slow recovery of predominantly fast voltage-dependent con-
ductances that can act as a memory, in this case of 10 ms when
considering only widths as the only encoding parameter. In the
Wilson model, the calcium conductance, with a decay time of 14
ms, can act as the necessary memory for the encoding. Figure 6D
shows the average calcium conductance pattern before each of
the 10 groups of spike waveforms selected. These calcium con-
ductance histories are clearly distinguishable up to 10 ms before
spike production and can therefore provide the requisite trace of
AMPA receptor input history. Other contributions to spike shape

Figure 7. Calculation of the rate of information transfer from the digitized voltage response.
A, Voltage response in a 50 ms window. B, Digitized version of the voltage response, shown here
with four voltage levels. C, Sixteen possible “words” of length T � 2 letters � 0.001 s and v �
4 voltage levels. D, Probability of finding the 16 possible words in the digitized voltage response
in B. E, Total and noise entropy rates, RS and RN in Equation 4, obtained as the infinite length
limit, T3�, from the finite length values. Black squares indicate the values of the information
rates before the infinite length limit for words of length T � 2 letters � 0.001 s using the
probability density in D. F, Digitized version of the voltage response for 12 repetitions in exper-
iments with 80 –200 repetitions, shown for a time window of 15 ms and v � 4 voltage levels.
G, Probability of finding the 16 two-letter words with four voltage levels at two different times
in a trial and calculated across trials. These probabilities are used in the calculation of the noise
rate, RN, in Equation 4, marked as a black square (T � 0.001 s) in E.
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might come from the properties of the dendritic tree. An in vivo
analysis and a detailed model have shown that dendritic sodium
channels contribute to spike shape (Paré et al., 1998). Models
using four compartments reproduce this result for the naturalis-
tic stimulation used experimentally and suggest that, at least in
the model, this effect is smaller than that of the conductance
history (Supplement 3, available at www.jneurosci.org as supple-
mental material).

Discussion
Our findings show that input conductance history is encoded in
action potential waveforms. This encoding takes place within a
single neuron, but different spike waveforms influence synaptic
integration and communication with other neurons. Spike wave-
form thus may function as a 50-ms-long memory of stimulus

history that can affect the operation of the
network. Previous experiments using step
currents showed a correlation between
spike frequency and spike waveform. Un-
der the more natural stimulation with
conductance injection/dynamic clamp
(Supplement 1, available at www.jneurosci.
org as supplemental material) and using a
more naturally structured stimulus made
of the sum of unitary synaptic events, we
find that spike frequency, although corre-
lated on average to the stimulus history
and to spike shape, has a poor correlation
on a trial-by-trial basis. For this reason,
information rates for action potential
waveforms are four times larger than for
stereotyped spikes. Because it is now pos-
sible to measure conductances in vivo
(Wehr and Zador, 2003), our results and
the general relationship between conduc-
tance history and spike shape found in
conductance injection experiments could
be further tested.

We also searched for relevant features
of the voltage history, finding a correlation
between spike height and the preceding
voltage averaged over 10 ms, but also be-
tween slope to spike and spike threshold,
and between threshold and spike height.
Thus, both the magnitude and slope of the
voltage in the 10 ms preceding an action
potential are related in a systematic way to
its shape. At earlier times than 10 ms be-
fore a spike, impact of the slope lessens,
especially for wider spikes.

A simple one-compartment model of
cortical neuron shows a good correspon-
dence to our experimental results and
points to the importance of the depen-
dence of the fast sodium and potassium
dynamics on the preceding conductance
and of the slow conductances for the en-
coding of conductance history into wave-
forms. Models with four compartments
show a smaller contribution of the den-
dritic sodium channels to the variability in
spike shape. In general, the distributed na-
ture of synaptic input makes the encoding
of conductance input into spike shape dy-

namically richer and higher in dimension than the case of point
conductance injected at the soma, as studied here.

Backpropagating action potentials with different somatic
spike shapes differentially shunt incoming excitatory potentials.
This affects the next round of integration and thus the commu-
nication with postsynaptic neurons even if this communication,
because of any normalization of spike shape over long distances
in the axon, was to involve spike times or rates only. A different
body of work has shown that action potentials of different shapes
at the level of the synaptic terminal influence neurotransmitter
release (Sabatini and Regehr, 1997; Qian and Saggau, 1999; Stew-
art and Foehring, 2001), but it remains an open question whether
somatic action potentials can directly modulate neurotransmit-
ter release at proximal and dendrodendritic synapses. In addition

Figure 8. Calculation of the rate of information transfer, Equation 4. A, Extrapolation of the entropy to the limit of infinite size,
size3�, for different values of the number of voltage levels and word lengths, shown for v � 2 and 15, and T � 2 letters and
10 letters. B, Extrapolation of the entropy to the limit of infinite number of voltage levels, v3�, from the entropies obtained in
the extrapolation to infinite size in A, here shown for words of T � 2 letters. C, The total and noise information rates, RS and RN in
Equation 4, are obtained as the infinite word limit, T3�, of the extrapolated entropies in B. For sufficiently long word lengths
T, the value of the information rate must collapse to zero because of finite data size, here for 1/T � 250. The extrapolated rate of
information transfer for the voltage response, R � RS � RN, is typically 400 bits/s at a spike rate of 5 Hz. D–F, As for A–C but for
the spike waveforms, obtained from the voltage response eliminating the variations in the nonspiking intervals of the cell
response. Typical information rates for this case are 150 bits/s at a spike rate of 5 Hz. G–I, As for D–F, but substituting the action
potential waveforms by the average waveform. The rate of information transfer for these stereotyped action potentials is typically
30 bits/s at a spike rate of 5 Hz. Right, Example waveforms of two spikes for each case and a summary of information transfer rate.
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to affecting synaptic transmission to postsynaptic cells, spike
shape may have a strong effect on spike timing-dependent plas-
ticity of synapses (Markram et al., 1997) and more generally in-
fluence second-messenger dynamics (Bi and Poo, 2001).

The participation of stimulus history in the action potential
waveform also offers new possibilities for neural computations.
Because the precision of input coincidence at the soma controls
spike shape (Fig. 1B), representations of particular coincidences
or timing patterns of spatially segregated inputs may be graded
rather than discrete, for example representing the number of
presynaptic cells activated simultaneously. Furthermore, abun-
dant possibilities for logical gating arise naturally as interactions
between forwardpropagating and backpropagating spikes (Lar-
kum et al., 1999) that depend on their shapes.

Appendix: calculation of the rate of information
transfer
Juusola and de Polavieja (2003) have given a practical method to
calculate the rate of information transfer for any continuous sig-
nal and applied it to photoreceptor voltage responses. A previous,
related method developed for discrete signals was given by Strong
et al. (1998). This method allows the calculation of the rate of
information transmission of action potentials as graded signals.
Supplement 2 (available at www.jneurosci.org as supplemental
material) gives three tests of the methodology for finite data sets.
In the following, we first give the information-theoretic quanti-
ties of interest and then discuss how to calculate them using finite
data sets. The Shannon (1948) theory of communication is built
around the notion of statistical dependence between input and
output. In our case, input and output are the variations of total
synaptic conductance or the current, C, in an interval T and the
changes in voltage signal, S, in the soma in the same interval. The
statistical information between the variations of synaptic con-
ductance, C, to the output voltage response of the cell, S, is con-
tained in their joint probability distribution, PCS. If the output is
independent of the input, then their joint probability is the prod-
uct of their individual probabilities, PCS

indep � PCPS . The mutual
information, ICS, measures the statistical dependence by the dis-
tance to the independent situation, given by

ICS � �
i, j

PCS�ci, sj�log2� PCS�ci, sj�

PC�ci�PS�sj�
�, (2)

where the indices i and j run over the different synaptic conductance
patterns {c} and somatic voltage changes {s} in the interval T,
respectively. In the limit of infinite resolution, the sum be-
comes an integral, or, more generally, when the signal has
continuous and discrete components, becomes an integral and
a sum. The mutual information can also be rewritten as the

difference between the total entropy
HS � � 	iPS(si )log2PS(si ) and the noise
entropy

HN � ���
i�1

Pi���log2Pi����
�

, (3)

with Pi(�) being the probability of finding
the ith word at a time � after the initiation
of the trial across trials of identical
stimulation.

We digitize the neural response by di-
viding the graded response into time inter-

vals T that are subdivided into smaller intervals t, where t � 0.5
ms is the time resolution of our experiments. This digitization of
the response can be understood as containing “words” of length
T with T�t“letters”. The values of the digitized entropies depend
on the length of the “words”, T, the number of voltage levels v,
and the size of the data file, HT ,v ,size. Take, for example, the case of
the voltage changes in a spiking neuron, given in Figure 7A. For
only four digitization levels, the voltage changes are represented
as in Figure 7B. This digitization can be understood in terms of
“words” as follows. Say we consider words of two letters, T � 2,
depicted in Figure 7C. Counting the occurrence of these two-
letter words in the signal of Figure 7B, we find their probabilities
of occurrence (Fig. 7D). A naive calculation of the total entropy
would use this distribution and obtain the value marked as a
black square in Figure 7E. A similar naive calculation for the noise
entropy uses repeated trials, as in Figure 7F. From these trials, we
calculate the distributions at different times, Pi(�), two of them
shown in Figure 7, G and H. The corresponding naive noise en-
tropy is given in Figure 7E as a red circle. The rate of information
transfer can be obtained from the limits of infinite word length T,
infinite number of voltage levels v, and infinite size of the data file
as the difference between the total entropy, RS, and noise entropy,
RN, rates:

R � RS � RN � lim
T3�

1

T
lim
v3�

lim
size3�

�HS
T,v,size � HN

T,v,size�. (4)

The problem for practical calculations is to obtain these limits.
Our approach is to extrapolate the values of the naive entropies to
the limits in Equation 4. Take, for example, the case of the calcu-
lation of the infinite word size limit for the total and noise infor-
mation rates in Figure 7E. For the highest word lengths consid-
ered, the values obtained deviate from the general trend, and the
final information rate tends to zero because of the lack of data.
When the amount of data are sufficient, the calculation at differ-
ent word lengths shows a trend that we can extrapolate to the
infinite word length limit. The calculation of the rate in Equation
4 involves three concatenated extrapolations that are under con-
trol when the linear term dominates in the extrapolation. Figure
8 gives the three extrapolations needed for the cases considered in
the main text: the complete voltage waveform, the action poten-
tials, with their waveforms intact but eliminating the nonspiking
voltage changes, and the stereotyped action potentials made by
further substituting the actual potential waveforms by the aver-
age waveform (Table 3).

To summarize, the triple extrapolation method uses the orig-
inal expression for the rate of information transfer without as-
sumptions and makes three concatenated extrapolations to avoid
the sampling problem. To control the quality of the extrapola-

Table 3. The calculations in this study use the following number of points in the extrapolations

Total entropy Entropy noise

size3�
HS

T,v,size � HS
T,v  HS,1

T,v/size  HS,2
T,v/size2

size being 1⁄10, 2⁄10, . . . 10⁄10 of data
HN

T,v,size � HN
T,v  HN,1

T,v /size  HN,2
T,v /size2

size being 1⁄10, 2⁄10, . . . 10⁄10 of data

v3�
HS

T,v � HS
T  HS,1

T /v  HS,2
T /v2

v � 8 –17 (5–15 for fixed AP waveform)
HN

T,v � HN
T  HN,1

T /v  HN,2
T /v2

v � 8 –17 (5–15 for fixed AP waveform)

T3�

Mean and SD of linear extrapolations,
RS

T � RS  RS,1T�1

calculated using 3–7 linearly aligned points

Mean and SD of linear extrapolations,
RN

T � RN  RN,1T�1

calculated using 3–7 linearly aligned points

AP, Action potential.
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tion, we check that the linear term in the extrapolation domi-
nates. Also, we estimate the errors by considering reduced num-
bers of points in the extrapolations. We have shown previously
(Juusola and de Polavieja, 2003) that this triple extrapolation
method gives the same results as the Shannon equation for the
particular case of Gaussian distributions. The data were analyzed
by custom written Matlab software (Juusola and de Polavieja,
2003).
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