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Brain-derived neurotrophic factor (BDNF) has been implicated in regulating neuronal survival, differentiation, and synaptic plasticity.
Reduced expression of BDNF within the substantia nigra accompanies the deterioration of dopaminergic neurons in Parkinson’s disease
(PD) patients. Analysis of the effects of long-term BDNF absence from the CNS has been difficult because of the early postnatal lethality
of BDNF�/� mice. Mice with a floxed BDNF allele were bred with Wnt1-Cre mice to generate Wnt-BDNFKO mice that lack BDNF from the
midbrain-hindbrain (MHB). These mice are viable but exhibit hindlimb clutching and poor rotarod performance. Tyrosine hydroxylase
(TH)-positive neuron numbers in the substantia nigra pars compacta (SNC) were estimated using stereological methods, revealing a
persistent �23% reduction of these cells at postnatal day 21 (P21) in Wnt-BDNFKO mice compared with controls. The diminishment of
TH-expressing neurons was present at birth and continued through P120. This deficit appears selective for the dopaminergic population,
because at P21, total neuron number within the SNC, defined as neuronal nuclei protein-positive cells, was not significantly reduced.
Interestingly, and similar to observations in PD patients, SNC neuron subpopulations are not equally affected. Calbindin- and calretinin-
expressing SNC populations show no significant difference between Wnt-BDNFKO mice and controls. Thus, BDNF depletion from the
MHB selectively leads to reduced TH expression in a subpopulation of neurons, but it remains unclear whether these cells are lost.
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Introduction
Parkinson’s disease (PD) is the most common neurodegenerative
disorder affecting the basal ganglia. In �10% of cases, the disease
is associated with a genetic defect (Goldman and Tanner, 1998) in
genes, including �-synuclein, parkin, or DJ-1 (Feany and Bender,
2000; Shimura et al., 2000; Lotharius and Brundin, 2002). In the
majority of cases, the appearance of PD is sporadic, and its etiol-
ogy is unknown. The common feature of PD is a progressive loss
of dopaminergic (DA) neurons from the substantia nigra pars
compacta (SNC). Identifying the mechanisms that regulate the
generation and survival of nigral DA neurons, both during devel-
opment and in the adult, should enhance our ability to treat PD
through either pharmacological or transplant approaches.

Brain-derived neurotrophic factor (BDNF) is a member of the
neurotrophin family of secreted growth factors vital for trophic

support of neurons within both the peripheral nervous system
and the CNS. BDNF signals through the tyrosine kinase receptor
B (TrkB) and through the p75 receptor (Huang and Reichardt,
2001). Both BDNF and TrkB are expressed by DA neurons (Oka-
zawa et al., 1992; Nishio et al., 1998; Numan and Seroogy, 1999;
Venero et al., 2000). Postmortem studies of PD patients using in
situ hybridization, immunohistochemistry, and Western blot
analysis demonstrate that reduced levels of BDNF within the SNC
accompany the disease condition (Mogi et al., 1999; Parain et al.,
1999; Howells et al., 2000; Chauhan et al., 2001). In culture ex-
periments, BDNF has been found to promote the survival and
differentiation of mesencephalic DA neurons (Hyman et al.,
1991; Feng et al., 1999). In vitro and in vivo, BDNF protects DA
neurons from the toxic effects of low levels of the neurotoxins
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6�-
OHDA (Levivier et al., 1995; Shults et al., 1995; Hung and Lee,
1996; for review, see Murer et al., 2001). BDNF stimulates dopa-
mine activity and turnover in vitro and in vivo and is hypothesized
to play a role in the mechanisms that allow the surviving DA
neurons in early stage PD patients to compensate for cell losses
(Blochl and Sirrenberg, 1996; Murer et al., 2001). This evidence
suggests a critical role for BDNF in supporting the survival and
differentiation of midbrain DA neurons in both normal and PD
individuals. These functions are likely to complement and over-
lap with those of other secreted factors, including glial cell line-
derived neurotrophic factor (GDNF) and bone morphogenetic
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proteins (BMPs), which are also known to enhance differentia-
tion and survival of DA neurons (Feng et al., 1999; Gratacos et al.,
2001b; Brederlau et al., 2002; Zuch et al., 2004).

Although BDNF has been studied intensely, the uncertainty
about the importance of the role of BDNF in the early develop-
ment and long-term survival of nigral DA neurons remains. The
poor postnatal health, retarded growth, and subsequent prema-
ture death (by �21 d of age) of BDNF�/� mice complicates ge-
netic analyses of CNS development (Jones et al., 1994; Ernfors et
al., 1995; Conover and Yancopoulos, 1997; Liebl et al., 1997). To
circumvent these complications, we use the bacteriophage P1
Cre/loxP system to analyze BDNF requirements in the SNC. We
used a mouse line with a floxed BDNF allele (Gorski et al., 2003)
and a transgenic line expressing Cre recombinase in the
midbrain-hindbrain (MHB) under control of the Wnt-1 pro-
moter (Danielian et al., 1998) to generate mice, Wnt-BDNFKO,
lacking BDNF in this region. We report here that BDNF plays a
role in the generation, differentiation, and/or survival of a spe-
cific subpopulation of DA neurons within the SNC.

Materials and Methods
Generation of midbrain/hindbrain-restricted BDNF mutant mice. All ani-
mal procedures were conducted in accordance with Public Health
Service guidelines and with the approval of the University of Colorado
Institutional Animal Care and Use Committee. BDNFLacZ (Bennett et al.,
1999) and R26R Cre reporter (Soriano, 1999) transgenic lines have been
described previously. Wnt1-Cre induces efficient MHB-specific Cre-
mediated loxP recombination (Danielian et al., 1998). Wnt1-Cre;BDN-
Fneo/� mice, in which BDNFneo is a null allele with a neomycin cassette in
place of the BDNF coding exon (Jones et al., 1994), and BDNFlox/� mice
were bred; offspring containing all three mutated alleles (Wnt1-Cre;BD-
NFneo/lox) are referred to as Wnt-BDNFKO, and BDNFneo/lox mice are
referred to as heterozygous. The mice used here were backcrossed at least
three to four generations onto the C57BL/6 strain. Both BDNF�/� and
BDNFlox/� were pooled with wild type in data collection, because BDN-
Flox/� appears to function as near wild type (Gorski et al., 2003). PCR
analysis was used to determine genotype. BDNF protein ELISA was per-
formed as described previously (Baquet et al., 2004).

Immunocytochemistry and histochemistry. Postnatal mice younger
than 8 d of age were anesthetized by hypothermia on wet ice. Older
mice were heavily sedated by intraperitoneal injection of 2.5% avertin
(20 �l/g) in PBS, pH 7.4 (100% avertin is 10 g of tribromoethanol and
10 ml of tert-amyl alcohol), and then treated in the same manner as
described previously (Vigers et al., 2000). Primary antibodies in-
cluded mouse monoclonal anti-neuronal nuclei protein (NeuN)
(1:1000; Chemicon, Temecula, CA), a rabbit anti-�-galactosidase
(�-gal) antibody (1:1000; ICN Pharmaceuticals, Auroria, OH),
mouse monoclonal (1:2500; Sigma, St. Louis, MO) and rabbit poly-
clonal (1:2000; Chemicon) tyrosine hydroxylase (TH) antibodies, cal-
bindin (CB) (1:200; Sigma), and calretinin (CR) (1:1000; Chemicon).
The secondary antibodies used were biotinylated goat anti-rabbit or
biotinylated goat anti-mouse antibody (Jackson ImmunoResearch,
West Grove, PA) diluted 1:250 in blocking solution. Visualization was
done by diaminobenzidine reaction as described by Vigers et al.
(2000). Slides were counterstained when appropriate with cresyl vio-
let. �-Gal expression in CNS tissues was visualized histochemically by
staining with 5-bromo-4-chloro-3-indolyl-�-D-galactopyranoside
(X-gal) as described previously (Vigers et al., 2000) or via immuno-
fluorescence using the �-galactosidase antibody.

For double-label analysis of cells, immunofluorescence was used. To
examine the effectiveness of the Wnt1-Cre mouse line at driving MHB
loxP recombination, free-floating cryostat sections (40 �m) were cut and
then washed in PBS three times for 15 min each. Sections were placed in
block [Tris-buffered saline (TBS), 0.4% Triton X-100, 1% normal goat
serum, 0.5% glycine, 0.5% bovine serum albumin] for 1 h and then in
primary antibody(s) for 48 h at 4°C. Afterward, sections were washed
three times in TBST (Tris-buffered saline, 0.4% Triton X-100) for 15 min

each and then incubated in either Alexa 488 goat anti-mouse IgG anti-
body (1:200; Molecular Probes, Eugene, OR) or Alexa 546 goat anti-
rabbit IgG antibody (1:200; Molecular Probes, Eugene, OR) for 2 h in the
dark at room temperature. Sections were washed twice in TBST, once in
TBS, and once in 0.5 M Tris, pH 7.5, before mounting on Superfrost slides
(Fisher Scientific, Pittsburgh, PA) and coverslipping with Fluoromount
(Fisher Scientific). Cryostat sections (10 �m) were mounted directly
onto slides and were allowed to air dry for 1 h before the blocking step.
Images were captured using a Zeiss (Oberkochen, Germany) Axioplan
deconvolution microscope equipped with a Hamamatsu (Bridgewater,
NJ) C4742–95 digital camera and OpenLab software (Improvision, Cov-
entry, UK).

Behavioral analysis. Wild-type, heterozygous, and Wnt-BDNFKO mice
at various ages were analyzed for limb clasping by suspending them from
their tails at least one foot above a surface for 1 min. A clasping event was
defined by the retraction of either or both hindlimbs into the body and
toward the midline. Mice were scored on a simple “yes” or “no” basis
with the investigator blind to genotype. Rotarod analysis was performed
with 4- to 5-week-old mice as described previously (Baquet et al., 2004).

Protein blot analysis of TH. Postnatal day 35 (P35) Wnt-BDNFKO mice
and controls were killed by cervical dislocation, and the brains were
removed. Coronal sections (800 �m) were cut, and the striatum was
dissected out. Striatal tissue was placed in cold homogenization buffer
(1% SDS, 1 mM EDTA, 10 mM Tris, pH 8), minced, and sonicated. Total
protein concentrations were determined using a modified BCA assay
(Pierce, Rockford, IL), and 10 �g of each sample was electrophoresed on
12% SDS-PAGE by a standard procedure (Bio-Rad, Hercules, CA). Gels
were transferred to nitrocellulose membranes, which were then blocked
in 1:1 solution of Licor blocking solution (LI-COR Biosciences, Lincoln,
NE) and PBS. Membranes were incubated with agitation in 1:1 Licor
blocking solution:PBS with 0.1% Tween 20 and anti-tyrosine hydroxy-
lase mouse monoclonal (1:8000; Sigma) at 4°C overnight. After washing,
membranes were incubated at room temperature for 2 h in the same
buffer with Alexa Fluor 680 goat anti-mouse (1:1000; Molecular Probes)
and then washed again in 0.1% Tween 20 in PBS. A final wash was done
in PBS, and the blot was visualized using an Odyssey infrared-imaging
system (LI-COR Biosciences). Samples were corrected for background
and quantified using Odyssey software. All samples were normalized to
wild type for the purposes of comparison (n � 4 for Wnt-BDNFKO and
wild type; n � 3 for heterozygotes).

Cell counting. The total number of DA neurons in both hemispheres of
the SNC and the ventral tegmental area (VTA) was estimated using a
fractionator-sampling design (Gundersen et al., 1988; West et al., 1991;
Finkelstein et al., 2000; Parish et al., 2001). Staining with TH antibody
delineated the mediodorsal boundary of the SNC in each 40 �m cryostat
section. The ventrolateral boundary was defined by the dorsal portion of
the SN pars reticulata; the anterior medial boundary was defined by the
ventral tegmental area and by size and orientation of stained cells. DA
neurons of the SNC are larger than ventral tegmental area DA neurons,
and SNC DA neurons orient along the long axis of the SNC. The poste-
rior medial portion of the SNC was defined by the medial lemniscus. In
each of the sections sampled, TH-positive neuron somas were used as the
counting unit according to optical dissector rules (Gundersen et al.,
1988). Labeled profiles were counted only if the first recognizable profile
of the cell soma came into focus within the counting frame (West et al.,
1991). Using every third coronal section, the analysis was performed
starting with the first appearance of TH-positive neurons, extending to
the most caudal parts of the SNC and including both hemispheres. Using
StereoInvestigator, a morphometry and stereology software package
(version 5.0; MicroBrightField, Colchester, VT), cell counts were made at
regular predetermined intervals (x � 250 �m; y � 130 �m) within an
unbiased counting frame of known area (65 � 65 �m � 4225 �m 2)
superimposed on the image. Sections were viewed under a 60�, numer-
ical aperture 1.40, oil immersion objective on a Nikon (Tokyo, Japan)
Eclipse E600 photomicroscope having a motorized Biopoint XYZ axis
computer-controlled stage (Ludl Electronic, Hawthorne, NY) and a
3CCD MTI video camera (Dage-MTI, Michigan City, IN). The counting
frame within the SNC was positioned randomly by the StereoInvestigator
software, thereby creating a systematic random sample of the area.
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Twenty-eight micrometers was defined for the z-dimension of the count-
ing brick with a 2 �m guard on either side. StereoInvestigator was used to
make outlines of both hemispheres of the SNC as defined by TH antibody
staining, and these outlines were used on adjacent sections stained for
NeuN (Mullen et al., 1992), calbindin, or calretinin. Stained cells were
counted within the outlines defined by TH expression, and total esti-
mates were obtained. Counting parameters for NeuN and calbindin dif-
fered slightly from those set for TH counts. For NeuN, every sixth section
was counted, and the counting frame was reduced to (50 � 50 �m �
2500 �m 2) to prevent oversampling. For calbindin, every second section
was counted, and the counting frame was (100 � 100 �m � 10000 �m 2).
Each experiment was conducted with the investigator blind to genotype.
The numbers of mice used for each experiment are as follows: TH counts
(for P0 and �P120, n � 3 for each genotype; P21, n � 9 for wild type and
Wnt-BDNFKO; n � 8 for heterozygous), NeuN counts at P21 (n � 4 for
Wnt-BDNFKO and heterozygous; n � 3 for wild type), and calbindin and
calretinin (n � 3 for each genotype at P21). TH-positive cell counts in the
VTA were performed using a grid of x � 200 �m by y � 200 �m and a
frame of 50 � 50 �m � 2500 �m 2. TH stain was used to define the
outline of the VTA with the medial lemniscus as the lateral border.
Counts represent combined totals of both hemispheres. VTA and NeuN
counts were done using an Axioskop2 Plus (Zeiss) photomicroscope
with 63� oil immersion objective (numerical aperture, 1.40) and an
Optronics CCD camera (Optronics, Galeta, CA).

An estimate of the percentages of TH-positive neurons having under-
gone recombination in Wnt1-Cre;R26R mice was obtained from 40 �m
coronal cryostat sections. The sections were immunofluorescently la-
beled for TH and �-galactosidase (marker of recombination). Montage
images (FITC and rhodamine) of the SNC (every third section, entire
extent of the SNC in both hemispheres) were created with OpenLab
using a 40� objective, and the total number of TH-positive neurons and
total number of TH-positive, �-gal-positive neurons were counted for
each mouse. The number of double-labeled neurons divided by the total
number of TH-positive neurons was the percentage of recombination.
P7, P21, and P28 were examined.

Results
Expression of BDNF in the SNC
We used the BDNFLacZ mouse strain (Bennett et al., 1999) to
characterize the expression of BDNF within the SNC. X-gal stain-
ing was apparent as early as embryonic day 16.5 (E16.5) (Fig. 1) in
a subset of cells and continuing through the postnatal period,
consistent with BDNF having a role in both substantia nigra de-
velopment and maintenance. To further identify the subset of
BDNF-expressing cells, we performed double-labeling experi-
ments with anti-�-gal and anti-tyrosine hydroxylase antibodies.
Expression of TH, a marker for differentiated DA neurons, was
apparent in a subset of �-gal-expressing cells. Representative im-
ages from P21 BDNFLacZ/� mice brains (Fig. 2B) reveal numer-
ous cells that are positive for both TH and �-gal as well as cells
that express one or the other marker.

Wnt1-Cre is effective at driving recombination in the SNC
The Wnt1-Cre transgenic mouse line has been used previously to
recombine floxed alleles in the MHB region (Chai et al., 2000;
Rico et al., 2002). Mating a Wnt1-Cre mouse to a R26R (Soriano,
1999) mouse produces offspring in which MHB-Cre activity is
seen as early as E9.5 (Danielian et al., 1998). In the region of the
SNC, �80 –90% of neurons that were TH positive were also
�-gal-positive (Fig. 2A), which demonstrates that Wnt1-Cre can
drive extensive lox recombination within the midbrain DA
neurons.

To further assay the extent of Wnt1-Cre-mediated recombi-
nation, we bred these mice to the BDNFlox/� strain to produce
Wnt1-Cre:BDNFlox/� mice. If Wnt1-Cre is effective at the excision
of a floxed BDNF gene, MHB �-gal-expressing Wnt1-Cre;BDN-

Flox/� mice should mimic the expression seen in BDNFLacZ/�. The
SNCs of P21 Wnt1-Cre;BDNFlox/� and BDNFLacZ/� mice double
labeled for �-gal and TH were compared. Similar TH/�-gal ex-
pression patterns were apparent (Fig. 2B,C) in which TH and
�-gal sometimes colocalize as well as TH-positive �-gal-negative
and TH-negative �-gal-positive cells. These observations relating
TH and BDNF expression also are consistent with the pattern of
BDNF mRNA expression described in the SNC of rats (Seroogy et
al., 1994).

To examine the consequences of Wnt1-Cre-mediated BDNF
deletion on MHB BDNF concentration, we bred Wnt-BDNFKO

Figure 1. BDNF LacZ expression in the substantia nigra. BDNFLacZ/� embryos, neonates, and
postnatal mice demonstrate the presence of BDNF within the substantia nigra pars compacta.
The black box indicates the location of the SNC. Coronal sections (40 �m) of different ages,
starting at E16.5 and ending at 1 year (1yr) (indicated in the top right portion of each panel),
were stained with X-gal, counterstained with Neutral Red, and then photographed at 20�
magnification. Scale bar, 1 mm.
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mice. ELISA of MHB tissue revealed a significant reduction of
95% for P7/P9 ( p � 0.001) in levels of BDNF protein in mutants
compared with wild-type controls (Fig. 3A).

Motor abnormalities and reduced TH in Wnt-BDNFKO mice
PD patients are afflicted with characteristic movement disorders,
including tremor at rest, limb rigidity, reduction of spontaneous
movements, and difficulty in performing complex motor move-
ments (Fahn, 2003). If BDNF plays a pivotal role in SNC devel-
opment and/or function, its absence from the MHB might trans-
late into movement disorders. Thus, qualitative and quantitative
analyses of the motor behavior of Wnt-BDNFKO and controls
were performed. Wnt-BDNFKO mice, observed in their home
environment, displayed no obvious movement abnormalities
such as reduced locomotion, rotation, or alteration of stereo-
typed behaviors that distinguish them from controls (personal
observation). However, rotarod analysis of 4- to 5-week-old
Wnt-BDNFKO mice showed a statistically significant impairment
of motor skills when compared with controls (Fig. 3B). Wnt-
BDNFKO mice also exhibit an early onset clutching phenotype
that is seen in many neurodegenerative mouse models. At 1
month, 78% of Wnt-BDNFKO mice clutch compared with 28%
for heterozygous and 8% for wild type. By 4 months, all Wnt-
BDNFKO mice clutch compared with 67% for heterozygous and
16% for wild type (Fig. 3C) (Lalonde, 1987b; Hamilton et al.,
1996; van den Akker et al., 1999; Auerbach et al., 2001; Guidetti et
al., 2001; van Dellen et al., 2001). Western blot analysis of total
striatal protein revealed a reduction of 42% in the amount of

tyrosine hydroxylase in Wnt-BDNFKO mice compared with wild
type and a 30% reduction compared with heterozygous (Fig. 3D),
and TH fibers appeared less dense in the dorsal striatum (supple-
mental Fig. 1, available at www.jneurosci.org as supplemental
material). These results led us to more deeply examine TH cells
within the SNC and VTA.

A selective reduction in the number of dopaminergic neurons
Future rodent DA neurons undergo their final mitoses between
E10 and E13 (Bayer et al., 1995) and have migrated to their final
position by �E16 (Gerfen et al., 1987). TH is the rate-limiting
enzyme in the production of dopamine, and it can be used to
mark DA neurons as early as E12.5. The number of TH-positive
neurons in the rodent MHB is low at birth but reaches a peak by
P14 and then decreases to adult levels by P21. This numerical
increase is the result of postmitotic cells assuming a DA neuronal
fate (Lieb et al., 1996; Jackson-Lewis et al., 2000). Based on TH
immunoreactivity, Jackson-Lewis et al. (2000) concluded that the
mouse SNC achieved its adult appearance by �P14. Inspection of
the SNCs of P21 Wnt-BDNFKO mice revealed that TH staining is
neither as intense nor as expansive as that found in controls (Fig.
4A). This is true in both anterior and posterior portions of the
SNC. TH-positive neurons and fibers also appear disorganized in
Wnt-BDNFKO SNC compared with controls. The total number of
TH neurons in both hemispheres of the SNC of wild-type, het-
erozygous, and Wnt-BDNFKO mice were compared. At P0, P21,
and approximately P120 (Fig. 4B), stereological counts demon-
strated reductions in the number of DA neurons of 27, 23, and
23%, respectively, in the SNC of Wnt-BDNFKO mice compared
with controls. Unlike the SNC, counts of total VTA DA neurons
of both hemispheres revealed no significant difference between
Wnt-BDNFKO mice and controls (Fig. 4C).

No significant decrease in the number of NeuN-positive cells
in the SNC
The reduced TH-positive neuron numbers in Wnt-BDNFKO SNC
could be attributable to the failure of neurons fated to be dopa-
minergic to express TH or the absence of such neurons. To fur-
ther investigate these possibilities, alternating coronal serial sec-
tions of Wnt-BDNFKO and control brains were stained for TH or
NeuN. Outlines of the SNC, as defined by TH expression, were
used to designate an area for stereological counts on adjacent
NeuN-stained sections. These counts revealed a 7% decrease in
total NeuN number in both Wnt-BDNFKO mice and heterozy-
gous controls compared with wild-type mice, but this was not
significant by one-way ANOVA (Fig. 5A).

Calbindin and calretinin populations are not reduced in
Wnt-BDNFKO mice
Distinct subpopulations of DA neurons in the SNC can be recog-
nized based on their expression of various markers. Notably, TH-
expressing neurons that also express CB and CR (Liang et al.,
1996a; Nemoto et al., 1999; Gonzalez-Hernandez and Rodriguez,
2000) are known to be more resistant to 6�-OHDA and MPTP
toxicity and are less affected in Parkinson’s disease (Yamada et al.,
1990; Liang et al., 1996b; Isaacs et al., 1997; McMahon et al., 1998;
Damier et al., 1999a; Kim et al., 2000; Tsuboi et al., 2000) than DA
neurons lacking expression of these Ca 2�-binding proteins. CB
and CR expression within the SNC of Wnt-BDNFKO mutant and
control mice were analyzed. In coronal sections, the extent of the
SNC appears reduced in Wnt-BDNFKO mice, but the density of
CB profiles appears increased compared with controls (supple-
mental Fig. 2, available at www.jneurosci.org as supplemental

Figure 2. Expression of Cre in midbrain BDNF-expressing neurons. A, X-gal stain of 40 �m
coronal sections (counterstained with Neutral Red) from the midbrain-hindbrain of P21 Wnt1-
Cre;R26R mice. The dark blue stain indicates areas of Cre activity. Outside the MHB, there are
only scattered CNS cells that undergo recombination. B, Immunofluorescent double labeling
using antibodies to tyrosine hydroxylase and �-gal of 10 �m cryostat sections from the anterior
portion of the SNC of a BDNFLacZ/� mouse documents expression in multiple SNC cells. Images
were photographed at 400� magnification. Lateral is to the left of the image, and the midline
is to the right of the image. C, Effectiveness of Wnt1-Cre at excising BDNF from DA neurons.
Images of sections are processed as in B of the SNC of a Wnt1-Cre; BDNFlox/� mouse.
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material). CR expression patterns within mutants and controls
also appear similar (supplemental Fig. 3, available at www.
jneurosci.org as supplemental material). To quantify CB- and
CR-expressing populations within the SNC, CB- and CR-positive

cells were counted in the same manner as
described for the NeuN analysis. The re-
sults indicate that there is no significant
reduction of either the CB or the CR
populations within the SNC (Fig. 5 B, C)
( p � 0.89 and p � 0.96, respectively;
n � 3 mice/genotype).

Discussion
�-galactosidase expression in BDNFLacZ/�

embryos indicates that BDNF is present
during differentiation of DA neurons from
approximately E16 onwards (Fig. 1), but it
is not present during the phase of DA neu-
ron precursor proliferation (from E10 to
E13) (Bayer et al., 1995). This suggests that
BDNF could act as a survival factor, a dif-
ferentiation factor, or both for DA neu-
rons. It is interesting to note the presence
of a large group of faintly staining �-gal-
positive cells that are also TH positive (Fig.
2B,C). The existence of these cells suggest
that BDNF expression is more widespread
among DA neurons than detected using in
situ hybridization (Seroogy et al., 1994;
Howells et al., 2000). To study BDNF re-
quirements in SNC development, we used
the Wnt1-Cre mouse line to achieve MHB-
specific deletion of BDNF. Wnt1-Cre ex-
cised the floxed BDNF allele in a MHB-
specific manner with �80% efficiency in
SNC DA neurons. ELISA analysis of the
MHB of Wnt-BDNFKO mice confirms
near-complete elimination of BDNF
protein.

At early ages, Wnt-BDNFKO mice dis-
play a clutching phenotype similar to that
seen in other mouse models of neurode-
generation (Lalonde, 1987a; Hamilton et
al., 1996; van den Akker et al., 1999; Auer-
bach et al., 2001; Guidetti et al., 2001).
Wnt-BDNFKO mice also display significant
deficits in motor ability as assayed by ro-
tarod, yet their improvement in successive
trials demonstrates that they are capable of
motor learning. Comparison of the slope
of the lines, a measure of motor skill acqui-
sition (Crawley, 1999; Tarantino et al.,
2000), indicates that mutant and wild-type
mice learn at similar rates. We suggest that
the rotarod deficiency observed is more in-
dicative of impairment of motor abilities
such as coordination and balance, which
are less dependent on basal ganglia func-
tion than is motor learning. Importantly,
the cellular basis of these Wnt-BDNFKO

mouse motor abnormalities is somewhat
ambiguous, because the BDNF gene is ex-
cised from the SN as well as other MHB
structures important in motor function,

including the cerebellum and pons as well as portions of the PNS,
notably including the dorsal root ganglia (S. Tamowski and K. R.
Jones, unpublished observation) (Danielian et al., 1998; Rico et

Figure 3. Reduced BDNF protein in MHB leads to motor deficits and reduced striatal TH in Wnt-BDNFKO mice. A, BDNF protein
was quantified by ELISA for MHB and expressed as nanograms of BDNF protein per gram of wet tissue. These extracts were
obtained from P7 and P9 mice and pooled to increase the n (for P7/P9, n � 5 for Wnt-BDNFKO and wild-type; n � 4 for
heterozygous; **p � 0.01; ***p � 0.001; one-way ANOVA with a Newman–Keuls post hoc test). B, Performance of 4- to
5-week-old mice on an accelerating rotarod. Each mouse had three trials each day, which were averaged for the day (Wnt-BDNFKO,
n � 7; heterozygous, n � 16; wild type, n � 6; **p � 0.01 heterozygous vs wild type for day 1 only; ***p � 0.001 Wnt-BDNFKO

vs heterozygous and wild type all 3 d). C, Wnt-BDNFKO, heterozygous, and wild-type mice at 1, 2, and 4 months of age were
suspended by their tails for 1 min. Clasping was defined as the balling up of one or both of the hindlimb paws, accompanied by
pulling them into the body and movement of the limbs toward the midline. Four-month-old wild-type, heterozygous, and
Wnt-BDNFKO mice undergoing tail suspension are shown. D, Western blot analysis of TH levels in total striatal protein from P35
Wnt-BDNFKO and control mice (n � 4 for Wnt-BDNFKO and wild type; n � 3 for heterozygous; *p � 0.05; one-way ANOVA with
a Newman–Keuls post hoc test). White bar, Wnt-BDNFKO; gray bar, heterozygous; black bar, wild type.

Figure 4. Wnt-BDNF KO mice have reduced TH expression in the SNC but not in the VTA. A, The extent of the SNC appears
reduced in P21 Wnt-BDNFKO mice compared with controls, and the number of TH fibers also seems to be reduced. The most anterior
section is at the top, and the most posterior section is at the bottom. Coronal cryostat sections (40 �m) taken at 240 �m intervals
stained for TH and counterstained with cresyl violet are shown. B, Optical fractionator estimates of the number of DA neurons in
both hemispheres of the SNC of Wnt-BDNFKO mice and controls at P0, P21, and P120 (P0, n � 3/genotype; P21, n � 9, 8, and 9 for
Wnt-BDNFKO, heterozygous, and wild type, respectively; P120, n � 3/genotype; *p � 0.05; **p � 0.01; one-way ANOVA with a
Newman–Keuls post hoc test). C, There is no significant reduction in the total number of TH-positive cells of both hemispheres of the VTA
of Wnt-BDNFKO mice compared with controls (P21, n � 11, 7, and 8 for Wnt-BDNFKO, heterozygous, and wild type, respectively, p �
0.6454; P120, n � 3/genotype, p � 0.8170). White bars, Wnt-BDNFKO; gray bars, heterozygous; black bars, wild type.
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al., 2002). Importantly, in PD patients, the appearance of motor
pathologies requires a �60% loss of DA neurons (Bernheimer et
al., 1973), also consistent with the idea that the motor deficits in
Wnt-BDNFKO mice are unlikely to be simply nigral in origin.

Loss of BDNF from the MHB adversely affects the amount of
TH present in the striatum and establishment of the proper num-
ber of DA neurons within the SNC. TH levels, as quantified by
Western blot analysis, are significantly reduced in Wnt-BDNFKO

mice, and this parallels what has been reported for dopamine
levels in BDNF�/� mice (Dluzen et al., 1999). At birth, there is a
27% reduction of the number of DA neurons in the SNC of
Wnt-BDNFKO mice; this magnitude of deficit is maintained at
later ages, suggesting that a specific subpopulation of DA neurons
is affected by the absence of BDNF. BDNF is known to promote
the differentiation and survival of DA neurons (Hyman et al.,
1994; Studer et al., 1995; Hagg, 1998; Feng et al., 1999; Son et al.,
1999). DA neuronal differentiation and cellular apoptosis occur
concurrently during the initial development of the SNC. Starting
at approximately E12, increasing numbers of neurons in the SNC
assume the DA fate as marked by TH expression (Bayer et al.,
1995; Kawano et al., 1995). The majority of DA neurons appear
between birth and 3 weeks of age in rodents (Lieb et al., 1996;
Jackson-Lewis et al., 2000). Apoptosis, in contrast, occurs in two
peaks with one at P2 and the other at P10 (Jackson-Lewis et al.,
2000).

Because proliferation of DA precursors has ceased before ob-
servable BDNF expression within the SNC, it is doubtful that
BDNF plays a role in the initial generation of DA neurons. It is
more likely that BDNF is responsible for DA neuron differentia-
tion, survival, or both in conjunction with other trophic factors
such as GDNF and BMPs (Lin et al., 1993; Tomac et al., 1995;
Jordan et al., 1997; Reiriz et al., 1999; Oo et al., 2003; Kholodilov
et al., 2004). Synergistic effects between BDNF and other trophic
factors might further SNC development. Combined application
of BDNF and BMPs to cultured cortical and striatal neurons and
stem cells are known to enhance neuronal differentiation (Grata-
cos et al., 2001a; Chang et al., 2003) and could have similar effects
in the nigra.

If BDNF is only involved in the differentiation of DA neurons,
its absence might result in fewer DA neurons but would not
necessarily have a significant impact on total SNC neuronal num-
ber. Although we found a small decrease in the number of NeuN-
positive cells in the SNC of Wnt-BDNFKO mice (�7% compared
with wild-type mice), a comparable reduction was found in het-
erozygotes. Because the reduction in NeuN number is present in
both Wnt-BDNFKO and heterozygotes, but the TH reduction is

present only in the Wnt-BDNFKO mice, we suggest that this is
indicative of a loss of TH expression and not necessarily of neu-
rons from the SNC. It is nonetheless possible that, given TH
neurons are a subset of the SNC, a loss of cells might have oc-
curred, perhaps suggested by the NeuN reduction.

Contrary to our results, Baker et al. (2005) found no loss of
TH cells in BDNF null mutant mice at P14 and P21. Such differ-
ences in results might be related to methodology, or small
changes might be missed or detected depending on how restric-
tively or permissively the boundaries of the SNC are defined.

Porritt et al. (2005) injected antisense BDNF oligonucleotide
unilaterally into adult rat SNC and observed a reduction of TH-
positive cells on both the ipsilateral and contralateral sides.
Counts of Nissl-stained sections indicated neuronal loss, al-
though not as dramatic as the TH losses, especially on the con-
tralateral side. In Wnt-BDNFKO mice, we observed TH losses and
minor neuronal losses but not nearly to the extent of Porritt et al.
(2005). Perhaps their observations suggest enhanced BDNF de-
pendence at a later stage, developmental compensation in our
mice, or a difference between mouse and rat.

We detected a similar, although not quite as severe, phenotype
as that found in TrkB hypomorphic mice (Zaman et al., 2004).
The greater loss of TH expression in TrkB mutant mice suggests
that the widespread expression of TrkB within the SNC (Numan
and Seroogy, 1999) may confer responsiveness to more than
BDNF alone. Notably, both neurotrophin (NT)-4 and NT-3 can
activate TrkB (Patapoutian and Reichardt, 2001), and NT-4 has
been shown in some instances to be more effective than BDNF at
protecting SNC neurons from degeneration and death (Hagg,
1998). Upregulation of NT-3 within the forebrain caused by loss
of BDNF occurred in another mouse we studied (Gorski et al.,
2003) and could mitigate adverse effects. Because Zaman et al.
(2004) examined older mice (3 months of age), it would be inter-
esting to determine whether this loss occurs earlier and is accom-
panied by reduction in neuronal number.

To determine whether other SNC subpopulations might be
BDNF dependent, we assessed the number of CB- and CR-
positive cells. We found that CB- and CR-positive population
sizes were comparable across genotypes. Perhaps these calcium-
binding proteins help protect SNC neurons from the adverse
effects of BDNF absence. Observations by others that �20% of
the SNC is comprised of TH-positive cells that are negative for CB
and CR suggest an intriguing possibility that this subpopulation
loses TH expression in Wnt-BDNFKO mice. Notably, CB- and
CR-positive cells are more resistant to damage caused by the
ravages of PD or toxic insult than other nigral cells (Yamada et al.,
1990; German et al., 1992; Mouatt-Prigent et al., 1994; Kim et al.,
2000).

Although not displaying the more drastic aspects of PD, Wnt-
BDNFKO mice may nevertheless be a useful model for the study of
aspects of this disease. The noncalbindin populations of DA neu-
rons are some of the first to succumb to the pathologies of PD
(Damier et al., 1999b). This is similar to the losses we observed in
Wnt-BDNFKO mice, in which calbindin-expressing cells in the
SNC are spared. Elimination of BDNF-expressing cells from the
SNC in early stages of PD could accelerate later losses by leaving
the remaining non-CB/non-CR-expressing DA neurons espe-
cially vulnerable to insult. A recent report suggests that wild-type
�-synuclein, mutations of which are known to result in PD (Poly-
meropoulos et al., 1997), plays a role in regulating BDNF expres-
sion and that mutant forms of �-synuclein lead to reduced levels
of BDNF (Kohno et al., 2004). This is reminiscent of Hunting-
ton’s disease, in which wild-type huntingtin protein is a positive

Figure 5. NeuN-positive neuron loss in the SNC of Wnt-BDNFKO mice was not detected. A,
NeuN-positive cells were counted in the SNC, defined by outlining the TH-stained population of
neurons on adjacent sections, and estimates were obtained for total numbers of neurons in the
SNC at P21 (n � 4 for Wnt-BDNFKO and heterozygous; n � 3 for wild type; p � 0.5093). B,
Stereological estimates of calbindin-positive cell population in the SNC. C, Estimates of
calretinin-positive cell population in the SNC. For both experiments, n � 3/genotype. No sig-
nificant difference was found between genotypes by one-way ANOVA. White bars, Wnt-BDN-
FKO; gray bars, heterozygous; black bars, wild type.
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regulator of BDNF transcription (Zuccato et al., 2003). Down-
regulation of BDNF expression in the SNC might be one of the
earlier steps in PD, and the resulting sensitization of neurons
could be a common feature of many neurodegenerative diseases.

The early onset of the Wnt-BDNFKO phenotype could suggest
a mechanism for juvenile PD. Cases of PD can be categorized
depending on the age of onset of the patient as either juvenile
(10 –20 years of age), young (20 – 40 years of age), or late (�40
years of age). Juvenile PD cases are usually the result of hereditary
factors, which might prove to modulate BDNF expression (Hat-
tori et al., 2000; Giasson and Lee, 2001; West et al., 2002; West and
Maidment, 2004). Future studies directed toward better under-
standing the interplay between BDNF and other trophic factors
in regulating DA differentiation and survival of specific subpopu-
lations of these neurons promises to lead to new approaches for
treating PD.
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