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Redundancy and Synergy of Neuronal Ensembles in
Motor Cortex
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We examined the ability of neuronal ensembles from rat motor cortex to predict behavioral performance during a reaction time task. We
found that neurons that were the best individual predictors of task performance were not necessarily the neurons that contributed the
most predictive information to an ensemble of neurons. To understand this result, we applied a framework for quantifying statistical
relationships between neurons (Schneidman et al., 2003) to all possible combinations of neurons within our ensembles. We found that
almost all neurons (96%) contributed redundant predictive information to the ensembles. This redundancy resulted in the maintenance
of predictive information despite the removal of many neurons from each ensemble. Moreover, the balance of synergistic and redundant
interactions depended on the number of neurons in the ensemble. Small ensembles could exhibit synergistic interactions (e.g., 23 = 9%
of ensembles with two neurons were synergistic). In contrast, larger ensembles exhibited mostly redundant interactions (e.g., 99 = 0.1%
of ensembles with eight neurons were redundant). We discuss these results with regard to constraints on interpreting neuronal ensemble

data and with respect to motor cortex involvement in reaction time performance.
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Introduction

How do ensembles of cortical neurons work together to encode
information? Pioneering studies of motor cortex by Georgopou-
los et al. (1982, 1988) have suggested that “population vectors,”
constructed from weighted averages of the responses of single
neurons, can accurately predict behavioral variables, such as
movement direction. This approach has been used to study pop-
ulation coding in a number of cortical systems (Gochin et al.,
1994; Britten et al., 1996; Priebe and Lisberger, 2004; Romo et al.,
2004). These studies have led to the view that cortical neurons act
as independent processors of information (Gochin et al., 1994;
Rolls et al., 1997, 2004; Reich et al., 2001; Purushothaman and
Bradley, 2005). Although correlations between neurons may be
important factors for neural coding (Zohary et al., 1994; Vaadia
etal., 1995; Dan et al., 1998; Abbott and Dayan, 1999; Bair et al.,
2001; Nirenberg and Latham, 2003; Averbeck and Lee, 2004;
Johnson, 2004), few studies have demonstrated that considering
neuronal interactions increases predictive information over that

Received June 4, 2004; revised March 11, 2005; accepted March 14, 2005.

This work was supported by the National Institutes of Health, Defense Advanced Research Projects Agency, The
John B. Pierce Laboratory, and a training grant from the National Institutes of Health through the Yale Medical
Scientist Training Program (N.S.N., E.Y.K.). The physiological data presented here were collected in the laboratory of
Miguel A. L. Nicolelis at Duke University (Durham, NC). We thank him for support and feedback on this manuscript.
We also thank Brian Dobbins (Yale Mechanical Engineering) for help with implementing efficient methods for
analyzing subensemble interactions using a cluster of Linux workstations in our laboratory. Finally, we thank two
anonymous reviewers for insightful suggestions. The classifiers and software used in this study are freely available
(http://spikelab.jbpierce.org), and we invite groups to use this approach to test their respective neural systems. This
manuscript is dedicated to the memories of Tilghman E. Laubach and William M. Laubach.

Correspondence should be addressed to Dr. Mark Laubach, The John B. Pierce Laboratory, 290 Congress Avenue,
New Haven, CT 06519. E-mail: mark.laubach@yale.edu.

DOI:10.1523/JNEUR0SCI.4697-04.2005
Copyright © 2005 Society for Neuroscience  0270-6474/05/254207-10$15.00/0

contained in individual neurons (Riehle et al., 1997; Hatsopoulos
etal., 1998; Gat and Tishby, 1998; Maynard et al., 1999; Averbeck
et al., 2003; Samonds et al., 2004).

Gawne and Richmond (1993) and, more recently, Schnei-
dman et al. (2003) have proposed a theoretical framework for
interpreting neuronal ensemble activity in which information
encoded by an ensemble of neurons is compared with the sum of
information encoded by the component neurons. In this frame-
work, an independent coding scheme suggests that predictive
information encoded by an ensemble of neurons should approx-
imately equal the sum of its individual parts. However, if ensem-
ble interactions exist between recorded neurons, interactions can
be either synergistic (i.e., predictive information encoded by the
ensemble of neurons is greater than the sum of the information of
the individual neurons) or redundant (i.e., the predictive infor-
mation encoded by the ensemble is less than the sum of informa-
tion of individual neurons). With redundancy, a hallmark of dis-
tributed processing, the removal of individual neurons from an
ensemble does not affect overall system performance. Redundant
systems are thus resistant to error and can have improved signal-
to-noise (Barlow, 2001).

In the present study, we investigated the relationship between
ensembles of simultaneously recorded cortical neurons and their
component neurons by using statistical classifiers to estimate
predictive information at the individual-neuron and ensemble
levels. We found that relationships between the activity of multi-
ple neurons (that is, joint activity of neuronal ensembles) are
important factors for the performance of statistical classifiers in
predicting behavioral outcomes. We report three results: (1) the
predictive information of a single neuron is not related to its
informational contribution to a neuronal ensemble; (2) this ef-
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Figure 1. The simple reaction time task, in which rats were trained to initiate a trial by

pressing a lever, which they held for a variable delay lasting 400 — 800 ms. The rats received a
vibrotactile or an auditory stimulus. 4, On conditioned release trials, rats performed the task
appropriately and released the lever within 1 s of the conditioning stimulus to receive a water
reward. B, On premature release trials, rats released the lever prematurely before they received
the vibrotactile or auditory stimulus. If the response was premature, there was a 2 s timeout.
Note that the stimulus (represented in gray) did not occur on premature trials.

fect is attributable to high levels of redundancy; and (3) the extent
of redundant or synergistic interactions depends on the size of the
neuronal ensemble. Ensembles of more than a few neurons were
almost entirely redundant. Smaller ensembles of neurons, espe-
cially pairs or triplets, could be either redundant or synergistic.

Materials and Methods

Behavioral and electrophysiological methods

Data were collected from the motor cortex of awake rats performing a
simple reaction time task (Laubach et al., 2000). Adult, male rats (Long—
Evans) were trained to perform a simple reaction time task (Fig. 1). In
this task, the rats pressed a lever to initiate a trial and maintained the lever
press over a variable delay period of 400—800 ms. At the end of the delay,
a trigger stimulus was presented (tone or vibration of the lever), and the
rats released the lever within 1 s of stimulus onset to obtain a reward
(~0.02 ml of water). “Conditioned” responses in the task occurred when
the rats successfully maintained the lever press for the full delay period
and released the lever within 1 s of the trigger stimulus. “Premature”
responses occurred when the lever was released before the trigger stimu-
lus. “Late” responses occurred when the lever was released >1 s after the
trigger stimulus and were infrequent after initial training sessions
(<10% of trials). In the present study, neuronal ensemble activity was
compared for trials with conditioned and premature responses. Data
analysis was performed for two sessions from each of three rats. These
data were collected after several weeks of training, i.e., some time after the
data described in the study by Laubach et al. (2000).

Procedures for chronically implanting arrays of microwire electrodes
(NB Labs, Denison, TX) are described in detail previously (Nicolelis,
1998). Two chronic microwire arrays (50 wm stainless steel wire, Teflon
insulation to a blunt tip, arranged in 2 X 8 matrices with individual wires
spaced by 250 wm) were stereotaxically implanted in rat motor cortex
(caudal array: —0.5-1.0 mm anteroposterior, *+2.5-3.5 mm mediolat-
eral, —1.5 mm dorsoventral at —20° anterior to the frontal plane; rostral
array: +2.0-3.5 mm, =2.0-3.0 mm, —1.5 mm at +20° posterior to the
frontal plane; coordinates from bregma) under aseptic conditions. The
locations of microwires were reconstructed from 50-mm-thick, thionin-
stained, frontal sections after the completion of all experiments. All rats
were treated in accordance with National Institutes of Health guidelines.

Neuronal ensemble recordings were made using a many-neuron ac-
quisition program (MNAP; Plexon, Dallas, TX). Single neuronal units
were identified off-line by the following criteria: consistent waveform
shapes, an average waveform amplitude at least three times larger than
background activity, and a consistent refractory period of atleast 2 ms
in interspike interval histograms. Only units whose activity was mod-
ulated around the time of lever release were analyzed, as assessed
visually by using cumulative density plots (Stranger; Biographics,
Winston-Salem, NC).
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The animals’ behavior was recorded on videotape and examined to
ensure that it was consistent for all trials included in a given analysis.
Additional control data were collected in one animal in which neuronal
ensemble activity was recorded together with electromyographical
(EMG) data (agonist: triceps brachii, which extends the forelimb; antag-
onist: trapezius, which rotates and pulls the shoulder blade toward the
spinal column). Additionally, an electrolytic tile sensor (Advanced Ori-
entation Systems, Linden, NJ) was mounted on the response lever and
recorded the angle of the lever. Signals from the EMG electrodes and the
positional sensor were amplified and filtered at 20-500 Hz (SA Instru-
mentation, Encinitas, CA) and sampled at 1 kHz. As described by
Laubach et al. (2000), there were no significant differences between the
evoked EMG or lever-position data that accompanied lever releases on
trials with conditioned versus premature responses.

Data analysis

A statistical pattern recognition approach was used to quantify the pre-
dictive relationship between neuronal activity and the behavioral out-
come of each trial (i.e., conditioned vs premature response). This ap-
proach involves three basic steps that are described below: (1)
preprocessing, (2) dimension reduction, and (3) prediction of behavior
using statistical classifiers.

Preprocessing. Neural activity was collected from 400 ms before to 100
ms after lever release. For each neuron, average spiking responses for
conditioned and premature trials were computed using a bin size of 1 ms.
Single-trial perievent time histograms of neural activity were then con-
volved over 5 ms epochs using low-pass filtering (Richmond and Opti-
can, 1987) and decimation (for additional details, see Laubach, 2004).
This low-pass filtering was performed on the raw perievent histograms
before the wavelet packet analysis below.

Dimension reduction. A wavelet-based method, discriminant pursuit
(Buckheit and Donoho, 1995; Laubach, 2004), was used to reduce the
dimensionality of the neuronal data before analysis with statistical clas-
sifiers. This was performed in four steps, as follows. First, a difference
vector was computed for each neuron by subtracting the mean response
on different types of trials (i.e., conditioned vs premature response).
Second, the difference vector was decomposed with the wavelet packet
transform using the Daubechies four-tap wavelet. The result of the wave-
let packet transform is several components, analogous to components in
principal component analysis. Each wavelet component represents vari-
ance in the original data and corresponds to a “feature” in the firing
pattern of a single neuron, such as an increase in firing rate preceding
movement on conditioned trials. Third, wavelet components were
ranked by the between-groups variance that they accounted for in the
original spike trains. Finally, a reduced set of components was then cho-
sen for subsequent analysis by using only those features from a given
neuron that accounted for more variance than features extracted from
random data; that is, the amplitudes of features extracted from neural
data were compared with those extracted from 1000 “random” data sets,
in which the outcome of each trial was assigned pseudorandomly. This
approach is an alternative to using an arbitrary criterion for determining
the number of features (cf. Laubach, 2004). In the present study, neurons
with task-related features had an average of 5.5 = 2.5 features. Interac-
tions between neurons were not examined at this stage of processing.
Instead, neuronal interactions were evaluated using statistical classifiers
described below.

Statistical classification. Features obtained with the wavelet packet
analysis were subsequently used as input for a variety of statistical classi-
fiers. Exploratory analysis of statistical classifiers was conducted in R
(Venables and Ripley, 2002; Venables et al., 2004) and in WEKA (http://
www.cs.waikato.ac.nz/~ml/weka/; WEKA is a data mining tool that en-
ables rapid processing of data and visualization of results with a multi-
tude of classifiers). We selected three classifiers for additional analysis:
learning vector quantization (LVQ) (Kohonen, 2000) (we chose LVQ
because previous studies have used it; see below), penalized discriminant
analysis (PDA) (Hastie et al., 1995) (we chose PDA because it is a linear
method), and support vector machines (SVMs) (Hastie et al., 2001; Hsu
et al.,, 2003) (we chose SVMs because they performed well). LVQ was
implemented using the “class” library for R. An algorithm for SVMs



Narayanan et al. @ Redundancy and Synergy in Motor Cortex

(libSVM) with a sigmoid transfer function was implemented using the
“e1071” library for R, and PDA, which involves the use of ridge regression
to define discriminant functions that are subsequently analyzed with a
Gaussian mixture model, was implemented using the “mda” library for R
(of special note, the algorithms for these implementations in R used
original source code developed by the authors of each algorithm.) No
effort was made to optimize parameters of any statistical classifiers in this
study. All results were confirmed with multiple classifiers; however, for
the purposes of comparison with previously published papers (Nicolelis
et al., 1998a; Ghazanfar et al., 2000; Laubach et al., 2000; Furukawa and
Middlebrooks, 2001; Middlebrooks and Bierer, 2002), the results in this
manuscript were described using LVQ, except when explicitly reported.

The statistical classifiers were trained on subsets of trials (i.e., training
data), and predictions were made for trials not included in the training
data (i.e., testing data). To generate stable estimates of predictive infor-
mation, 10-fold cross validation was used; that is, each trial was a mem-
ber of one testing data set and a member of nine training data sets. The
result of each statistical classifier is a “classification matrix” (also called a
confusion matrix); that is, a table of correct and error predictions by the
classifier for each class on the testing data.

For every value of information and accuracy reported, error bars were
estimated by performing 10 10-fold cross validations (100 classifica-
tions). Chance levels of classification and confidence intervals were esti-
mated by permutation tests (Good, 2000) in which the behavioral labels
for all trials were randomly permuted, and classification analysis was
repeated 1000 times with a unique random seed for each iteration.

All analysis described in this manuscript was performed using scripts
written for R, WEKA, and Matlab (MathWorks, Natick, MA). These
analyses were run over a cluster of 16 Linux workstations via batch scripts
in the Bash shell. All analysis and clustering scripts used in this study are
available on request from the corresponding author.

Limitations of statistical classifiers. In this study, statistical classifiers
were used to predict a behavioral condition (i.e., conditioned vs prema-
ture response) from neural data as represented by features from multiple
neurons. Information contained in the neural data were estimated by
applying information theory to confusion matrices for each classifier and
each data set (see below). It is important to point out that this approach
cannot estimate the true mutual information contained in the neuronal
data because the informational estimates depend on the specific classifier
used for prediction (for review, see Ripley, 1996; Duda et al., 2001; Hastie
et al,, 2001). Consequently, several different statistical classifiers were
used when estimating neural information. However, it is always possible
that another statistical classifier exists that will perform better on our
data. Even if such a classifier exists, there is no way to verify that rules
used by a statistical classifier have any relationship to the true mutual
information or rules used by the animal. For these reasons, and according
to the data processing inequality (Cover and Thomas, 1991; Schneidman
etal., 2003), we and others (Averbeck et al., 2003; Foffani et al., 2004) can
only estimate a lower bound of mutual information between neural data
and behavioral outcomes. Nevertheless, we believe that the statistical
pattern recognition approach is a practical solution to the problem of
interpreting high-dimensional neuronal ensemble data. This approach
has been used for a variety of real-world datasets (Ripley, 1996; Witten
and Frank, 2000; Hastie et al., 2001) and is able to quantify relationships
between neurons and animal behavior on a trial-by-trial basis (compared
with information theoretic methods, which are average measures).

Assessment of classifier performance. Statistical classifier performance
can be assessed in several ways. One index of statistical classifier perfor-
mance is “error rate,” or the number of trials classified incorrectly di-
vided by the total trials. For clarity, “accuracy” (1 — error rate) is re-
ported in this manuscript. Note that the chance accuracy is not 50%;
rather, it is the percentage of trials in the larger class.

One method of assessing statistical classifier performance that allows
us to compare our results with other neuroscientific studies is to
calculate mutual information (Gawne and Richmond, 1993; Rolls et
al., 1997; Ghazanfar et al., 2000; Laubach et al., 2000; Reich et al.,
2001; Schneidman et al., 2003). We calculate the mutual information
from the classification matrix according to the following equation
(Cover and Thomas, 1991):
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Table 1. lllustration of combinations for three neuron ensemble

Ensembles with neuron 3 Ensembles without neuron 3

321 — 21
32 — 2
31 — 1
3 — N/A
I(S; R) = 2 E p(s, r)log [717(5, ) } (1)
’ ’ Lp(s)p(r)

s€S reR

where Sis the actual outcome, and R is the predicted outcome. In general,
measures of statistical classifier performance are highly correlated. Accu-
racy and mutual information for individual neurons were correlated at
R =10.94 = 0.04 (> 10; p << 0.001).

Bias and variance. There are two sources of error in estimates of mutual
information from the statistical pattern recognition approach: “bias” and
“variance” (Ripley, 1996; Hastie et al., 2001). Bias refers to error between
estimates of predictive information and true information. For statistical
classifiers, there are three sources of bias. First, a statistical classifier
might have a “language bias” based on its representational ability; that is,
some algorithms may be better able to capture certain types of data as a
function of the way they internally represent that data. Second, statistical
classifiers might suffer from a “search bias” in the heuristic rules that they
use to fit the data. If the rules are inappropriate, inaccurate conclusions
may be reached. Finally, statistical classifiers can suffer from an “overfit-
ting bias,” or tendency to find patterns that do not exist in the data. Foran
additional discussion of these topics, see Witten and Frank (2000) or
Hastie et al. (2001). The first two sources of bias were addressed by using
multiple statistical classifiers with distinct internal representations and
decision rules. It is always possible that there exists another classifier that
has an internal representation that better matches our data or that has
more appropriate decision rules. The last source of bias, attributable to
overfitting, was addressed directly in two ways. First, for every dataset
and every number of neurons, the statistical pattern recognition ap-
proach was applied to data in which the behavioral labels for all trials
were randomly permuted (see Results). Second, statistical classifiers were
applied to benchmark data with a known Bayesian error rate (the “wave-
form” benchmark data, available in the “mlbench” library for R; 86%
error rate), and it was found that these classifiers did not greatly overfit or
underfit the benchmark data (generally within =1%) (see Table 3, row
1). These tests lent confidence to our interpretations of the results of this
study. The second source of error in classification was variance, i.e.,
errors in classification attributable to the sample chosen from which
mutual information was predicted. Variance in our data were accounted
for by repeating classifications several times.

Synergy and redundancy

To assess the contributions of each neuron to ensemble information,
features for each neuron were removed from each ensemble, and the
predictive information from the remaining neurons was estimated (i.e.,
“neuron dropping”) (Nicolelis et al., 1998b). The information contrib-
uted to the ensemble by a given neuron (I, ;) Was defined as the
difference between the predictive information of the full ensemble
(Igpsemble With neuron) and the predictive information of a subensemble
without a given neuron (I, without neuron):

nsemble
IComxib = IEnsemble(With neuron) - IEnsemble(‘Nithout neuron) (2)

Because a given neuron can participate in several subensembles of the
original ensemble [for instance, for a three-neuron ensemble, neuron 3
participates in subensembles (2, 3), (1, 3), and (1, 2, 3)], Ioneib Was
calculated for each of these subensembles that a given neuron partici-
pated in (for an illustration of the computation, see Table 1) by applying
Equation 2 to all possible subensembles including a given neuron. Al-
though computationally intensive (e.g., a data set with 17 neurons has
131,071 subensembles, requiring 182 h of CPU time to analyze all com-
binations of neurons using a single AMD 1800 XP processor; this same
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data set could be analyzed in 13 h using a cluster with workstations with
16 processors), this analysis provided a robust estimate of I~ ;- Within
each ensemble, I, s, was compared only with ensembles of similar size
(i.e., an average I, .ip, for 2, 3, 4. . . n neuron ensembles was calculated
separately).

To measure how a particular neuron interacts with the rest of the
ensemble, we defined a notion of information contributed by single neu-
rons to the ensemble, Py, 0n- This value was calculated from the contri-
bution of a neuron to ensemble predictive information subtracted from
the individual predictive information of that neuron:

Preuron = Lcontib ~ INeuron (3)

In Equation 3, I, ., is the contribution of a particular neuron to an
ensemble as measured by the predictive information lost after removing
that neuron from an ensemble as calculated by Equation 2, and I,y 0n 1S
the predictive information (in bits) encoded by that neuron.

This equation answers the following question: how does removing a
neuron from an ensemble change ensemble predictive information?
There are three possible results for removing a neuron from an ensemble
that define the type of net contribution made by a neuron to information
at the ensemble level. If Py o 18 Zer0 (i.€., if Igvib = Ineuron)»> then the
information lost by removing a neuron is equal to the individual infor-
mation encoded by that neuron. Such a neuron contributes “indepen-
dent” information to the ensemble. Second, if Py, is negative (if
Iconteib < Ineuron)> the information lost by removing a neuron is less than
the individual information encoded by that neuron. Such a neuron con-
tributes “redundant” information to the ensemble. Third, if Py ,.on IS
positive (if I i = Ineuron)> the information lost by removing a neuron
is greater than the individual information encoded by that neuron. Such
aneuron contributes “synergistic” information to the ensemble.

Interactions at the ensemble level were defined as Pg .1 based on
the ensemble information and the sum of the individual information of
its component neurons:

N
PEnsemble = IEnsemble - E INeuron (4)
1

where I, compre 18 the predictive information of the ensemble, and .y on»
as above, is the predictive information of individual neurons in the
ensemble.

This equation answers the following question: how do neurons work
together to encode predictive information? As above, there are three
possible coding schemes. First, if Py, e 1S Zero, ensemble predictive
information is the same as the sum of predictive information from neu-
rons in the ensemble. As a whole, this ensemble is neither redundant nor
synergistic. Second, if P, ... 1S Negative, ensemble predictive informa-
tion is the less than the sum of predictive information from neurons in
the ensemble. As a whole, this ensemble is redundant. Third, if P emple
is positive, ensemble predictive information is greater than the sum of
predictive information from neurons in the ensemble. As a whole, this
ensemble is synergistic (Fig. 2).

In this manuscript, the quantities I ., and Py o1 Were calculated
across all possible subensembles for a given data set (Table 2). Because
these values were predictive information from classification, their units
were expressed in bits. Also, note that Equation 2 assumes that the esti-
mated informational values of each neuron in a given ensemble did not
depend on each other. Although our estimates of predictive information
were generated from statistical classifiers instead of from direct informa-
tion theoretic measures, our results are analogous to those obtained in
previous studies (Gawne and Richmond, 1993; Maynard et al., 1999;
Averbeck et al., 2003; Schneidman et al., 2003; Samonds et al., 2004).

Results

Neuronal and ensemble predictive information

We analyzed ensemble neuronal data from three awake, behaving
rats performing a simple reaction time task (Laubach et al., 2000).
Recording sessions (two from each rat) yielded an average of
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Figure 2.  Because neurons are added to an independent ensemble, predictive information

increases proportionally to the number of neurons in the ensemble. If the ensemble is redun-
dant, predictive information increases slower than the number of neurons added to the ensem-
ble. If the ensemble is synergistic, predictive information increases faster than the number of
neurons added to the ensemble.

Table 2. Ensemble combinations

Dataset Neurons Features Combinations
A1 16 84 65,535
A2 17 102 131,071
B1 8 57 255
B2 1 51 2047
Q 13 50 8191
Q 13 76 8191

23.5 * 5.2 (mean * SD) neurons (range of 17-27 neurons, 140
neurons total, 32 electrodes per animal performing 195 * 33
trials per session). Of recorded neurons, 55.5% (78 of 140 re-
corded neurons, or an average of 13 neurons per session) had
task-related features, i.e., had more features than would be ex-
pected from random data (see Materials and Methods) (Fig. 3).

Analysis using statistical pattern recognition (preprocessing/
discriminant pursuit/LVQ, unless otherwise stated) revealed that
the single neurons could be used to discriminate between condi-
tioned and premature trials with an average accuracy of 68 = 3%
(accuracy for individual neurons with randomly permuted be-
havioral labels was 64 = 8%). Using LVQ, the average single
neuron encoded 0.034 * 0.03 bits of predictive information
(Ineuron) Of a possible 0.90 *+ 0.02 bits of predictive information
[note that the possible information is <1 because, in every data-
set, there are more conditioned vs premature trials (Table 3)] or
4 =+ 3% of the possible 0.90 = 0.02 bits of predictive information
(Fig. 4). Using SVM for classification, the average single neuron
encoded 0.025 * 0.03 bits of predictive information, and, using
PDA for classification, the average single neuron encoded
0.046 = 0.04 bits of predictive information.

To determine chance levels of significant predictive informa-
tion, we calculated predictive information from neural datasets
with randomly permuted behavioral labels (i.e., random data).
Across datasets, the 95% confidence interval of predictive infor-
mation of random data fell at 0.016 = 0.003 bits (average predic-
tive information was 0.004 % 0.005 bits). We interpreted values
of predictive information above this value as significant. We
found that 58% (45 of 78) of neurons with task-related features
had predictive information above the 95% confidence intervals of



Narayanan et al. @ Redundancy and Synergy in Motor Cortex

Conditioned Premature
1 s .

Neuron

1 -0.5 0 0.5
Time (sec)

Spikes sec

Figure 3.

Conditioned Premature

J. Neurosci., April 27, 2005 - 25(17):4207—-4216 » 4211

Conditioned Premature Conditioned Premature

9

Perievent rasters and time histograms for an ensemble of 16 neurons with task-related features recorded from the motor cortex of one animal (dataset A1) while performing a simple

reaction time task. A time interval from 400 ms before the lever release to 100 ms after (period shownin gray, release indicated by dashed vertical line) was used for the analyses reportedin this study.
Neurons 1-13 are from the caudal motor cortex, whereas neurons 14 —16 are from the rostral motor cortex.

Table 3. Statistical classifier performance across datasets

Behavioral Individual
Dataset Trials  performance neuron Chance  PDA Chance ~ SVM Chance  LVQ Pensemble
Benchmark 3000 Acc 86 + 1% 86 = 1% 87 £ 3% %
Info 0.87 £ 0.00 0.85 £ 0.00 0.89 £ 0.00 Bits
Al 173 58% Acc 64 = 3% 54 86 = 1% 56 89 = 2% 56 79 £2% %
Info 0.05 = 0.03 0.01 0.39 £ 0.03 0.01 0.50 £ 0.05 0.01 0.23 +0.04 —0.43 Bits
A2 163 63% Acc 65 = 2% 52 77 = 1% 60 91+ 1% 57 79 = 1% %
Info 0.03 £ 0.02 0.017 0.19 £ 0.02 0.01 0.52 £ 0.04 0.01 0.22 +0.02 —031 Bits
B1 171 76% Acc 77 1% 64 81 2% 75 84 1% 75 79 £ 1% %
Info 0.03 £ 0.01 0.00 0.13 £ 0.03 0.00 0.18 £ 0.03 0.01 0.07 £ 0.02 —0.14 Bits
B2 244 72% Acc 73 1% 62 87 £ 1% 72 87 = 1% 70 80 = 2% %
Info 0.02 £ 0.02 0.00 0.30 =+ 0.02 0.00 0.28 = 0.02 0.00 0.13 £0.03 —0.12 Bits
Qa 229 59% Acc 63 = 5% 51 76 = 1% 54 79 = 1% 55 75+ 1% %
Info 0.04 £ 0.04 0.00 0.19 £ 0.01 0.00 0.24 = 0.02 0.00 0.16 £ 0.01 —038 Bits
Q 188 70% Acc 71*£2% 59 85 2% 70 89 = 2% 68 82+ 1% %
Info 0.03 £0.03 0.00 0.30 = 0.04 0.00 0.37 £ 0.06 0.00 0.19 £ 0.03 —0.12 Bits

Accuracy (Acc) and information (Info) rates of three different statistical classifiers (PDA, SVM, and LVQ) for all six datasets and one benchmark dataset are shown. For each dataset (labeled in the leftmost column), accuracy and information
rates are each presented on a separate row (labeled in the rightmost column). Chance levels for each classifier are listed to the left of the results for each classifier in italics. For reference, the number of trials, the behavioral performance of
the animal for each session, and the average predictive information for individual neurons within a particular dataset are listed in the first three columns. The redundancy for each dataset (Pycempe) i listed in the last column.

predictive information from random data (Iy.yyon > 0.016) and
that the mean predictive information of individual neurons in
our data were twice this value.

Ensembles of neurons could be used to discriminate between
conditioned and premature trials with an average accuracy of
82.5 = 4.9%. Accuracy for datasets with randomly permuted
behavioral labels was 61.7 = 8.1%. Therefore, the improvement
over chance levels of classification was >20%. Ensembles en-
coded an average of 0.16 * 0.06 bits (I,cmpie) Of predictive in-
formation with LVQ and as much as 0.31 = 0.12 bits of predictive

information with SVM (Table 3); that is, ensembles encoded
from 18 * 7% [with LVQ (Table 3)] to 34 * 13% [with SVM
(Table 3)] of the possible predictive information. Ensembles en-
coded significantly more predictive information than single neu-
rons (t = 7.34; p <<< 0.001). Larger ensembles tended to encode
more predictive information (R = 0.85; p < 0.03). Ensembles
with pseudorandomly assigned behavioral labels provided
0.004 * 0.005 bits of predictive information, significantly less
than ensembles with appropriately assigned behavioral labels
(t = 6.64; p << 0.001).
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Importantly, we performed all of the analysis above with mul-
tiple statistical classifiers in both WEKA and R. Results of analysis
on ensemble data with three different statistical classifiers are
presented in Table 3. Although some classifiers (i.e., SVM) per-
formed better than others (i.e., LVQ), all statistical classifiers
indicated that the ensembles had significantly higher predictive
information than random data (¢ = 6.12; p << 0.001) and had
significantly higher predictive information than single neurons
(r = 8.98; p << 0.001). Across datasets, information values cal-
culated by different statistical classifiers were correlated for en-
sembles (LVQ vs SVM, R = 0.92; SVM vs PDA, R = 0.53; PDA vs
LVQ, R = 0.59) and for individual neurons (LVQ vs SVM, R =
0.80; SVM vs PDA, R = 0.60; PDA vs LVQ, R = 0.69). Addition-
ally, redundancy values of different classifiers were highly corre-
lated (LVQ vs SVM, R = 0.94; SVM vs PDA, R = 0.76; PDA vs
LVQ, R = 0.88). These results indicate that the different statistical
classifiers used in this study generated primarily convergent esti-
mates of predictive information and redundancy.

Single neurons contribute redundant information

To estimate the contributions of individual neurons to an ensemble
(Icontrib)> We calculated how much predictive information was lost
when a neuron was removed from all ensembles in which a neuron
might participate (see Materials and Methods) (Table 1). Removing
a single neuron from an ensemble resulted in an average decrease in
predictive information of 0.016 = 0.05 bits (-, .q,). Importantly,
I onuin for 87% of neurons (68 of 78) statistically included zero (Fig.
4, note large error bars for I,..s,), indicating that removing a neu-
ron from an ensemble often did not greatly change the predictive
information of the ensemble.

We found that information lost with neuron removal was
significantly less than the information provided by the neurons
themselves (i.e., Iconuib < Ineurons Paired t = 4.32; p << 0.001),
and there was no obvious relationship between these informa-
tional values (R = 0.11; p < 0.17) (Fig. 4). These results suggest
that the information contributed by single neurons to the ensem-
bles was not independent.

To determine whether interactions between the neurons were
synergistic or redundant, we calculated Py, according to
Equation 3 for each neuron in each ensemble. The average value
of Pyeuron for all neurons was —0.016 = 0.03 bits, which suggests

average redundancy. Most neurons contributed redundant in-
formation to the ensembles (43 of 45 neurons, or 96%, of neu-
rons with significant information were redundant). Only neu-
rons 1 and 6 in dataset B1 (2 of 45 neurons, or 4% of neurons with
significant information) had synergistic ensemble interactions.

Because individual neurons encoded a small fraction of the
possible information (4 £ 3%), redundant information contrib-
uted by individual neurons was unlikely to be a result of infor-
mation saturation by high information rates of individual neu-
rons; that is, if a few neurons were highly informative, any
additional neurons would by definition provide redundant infor-
mation. In our data, we found that the of removal of highly in-
formative neurons did not greatly impact ensemble performance
(Fig. 4, neuron 8 in dataset Al, neurons 3 and 8 in dataset C1),
once again suggesting redundant interactions between neurons at
the ensemble level.

Neuronal ensembles are highly redundant

To determine whether ensembles as a whole were redundant or
synergistic, we calculated the value Pg,, .1, according to Equa-
tion 4, which represents the difference between the predictive
information of an ensemble and the sum of the predictive infor-
mation of the component neurons. All six ensembles were redun-
dant (Pg,mpe = —0.24 * 0.14 bits) (Table 3).

A redundant ensemble should maintain performance as it is
degraded. To test this property, we progressively removed neu-
ronal data from each ensemble and estimated accuracy and pre-
dictive information. Data from all animals suggested that, regard-
less of classifier, accuracy of prediction decreased slowly as
neurons were removed when ensembles were larger than a few
neurons and decreased rapidly as neurons were removed when
ensembles were small (Fig. 5A,B). Predictive information in-
creased much less slowly than would be predicted with an inde-
pendent coding scheme (in which each neuron encoded an aver-
age of 0.034 bits) (Fig. 5C,E). As neurons were excluded, the
remaining ensembles maintained accuracy (across datasets, 80 =
12% of ensemble information was maintained with only 50% of
neurons) (Fig. 5A, B). However, predictive information declined
rapidly after <<30% of the neurons remained in the ensemble
(Fig. 5C,E). For small ensembles of neurons, the average value of
P psemble Was near zero (e.g., 0.006 = 0.012 for pairs) (Fig. 5D, F).



Narayanan et al. @ Redundancy and Synergy in Motor Cortex

D Al D 1
A ataset B ataset C
80 80
80
3 )
e @ 7
3 E
Q
2 70 < /
wa 60
60 w— PDA
— S\
2 4 [ 8 10 12 14 16 2 4 6 8 10 12 14
Dataset C1 Dataset C1
c D,
04
-0.1
= 7
5 o0a 5 0.2 !
= = 3
(=} £
= 2 03
E 02 E s
£ 04
£ o
o1 05
-0.6
2 4 [ 8 10 12 14 2 4 L] 8 0 12 14
All Datasets All Datasets
E F
0
04
0.1 B2
) : o g
B o3 K At 7 02 cz
c : o
£ A2 o 03 Az
] s
E N cl E 0.4 Al
5 2
€ c2 i c1
04 B2 0.5
B1
-0.6
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Neurons In Ensemble

Figure 5.  Analysis of ensemble predictive information as neurons are added/removed re-
veals high levels of redundancy. Accuracy of ensemble prediction as a function of the number of
neurons for dataset A1 (4) and for dataset C1 (B), as quantified by three different statistical
classifiers (SVM, PDA, and LVQ) for all possible combinations of neurons. SD plotted as lighter
lines. €, Predictive information as a function of the number of neurons in the ensemble for
dataset (1 with three different statistical classifiers (SYM, PDA, and LVQ; colors as in A). The
dotted gray line represents the increase in predictive information that would be expected from
an independent coding scheme if each neuron encoded an average of 0.034 bits, the average
predictive information for individual neurons in our datasets. Compare with Figure 2. D,
Pensemble @5 @ function of the number of neurons in the ensemble for dataset C1 with three
different statistical classifiers (SVM, PDA, and LVQ; colors as in A). E, Predictive information as a
function of the number of neurons in the ensemble for all datasets; datasets are labeled on the
figure. F, Pepsemple @S @ function of the number of neurons in the ensemble for all datasets;
datasets are labeled on the figure.

For larger ensembles, Pp,.mpe Decame more negative (e.g.,
—0.13 = 0.07 for 8 neuron ensembles) (Fig. 5D, F), signifying a
net increase in redundancy across datasets (f = 3.67; p < 0.006)
with an increase in ensemble size across datasets.

Across our datasets, we found that Py, Was indeed nega-
tively correlated with predictive information (mean R = —0.78; p
<< 0.001 with exponentially transformed predictive informa-
tion) (Fig. 5E). We also found that Py, ..,.c was negatively cor-
related with the number of neurons in the ensemble (across data-
sets, mean R = —0.85 = 0.02; p << 0.001) (Fig. 5F). A multiple
linear regression revealed that 73% of the variance of Py, mpie
was explained by predictive information and ensemble size (R* of
ensemble size = 0.45, R* of exponentially transformed predictive
information = 0.28; R* = 0.73; F,,.qe = 209; p << 0.001). These
data indicate that redundancy increases (i.e., P, semple DeCOmes
more negative) as a function of both predictive information and
ensemble size.
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Finally, we investigated whether the redundancy we observed
was a result of a “ceiling effect,” i.e., a saturation of predictive
information attributable to similarities in neuronal response
properties (Rolls et al., 1997). This effect is unlikely for three
reasons. First, individual neurons provided little predictive infor-
mation (i.e., 4 = 3%). Second, removing any particular neuron
had a small effect on ensemble predictive information (Figs. 4, 5).
Third, trial shuffling (i.e., randomizing the trial orders within
each trial type for individual neurons) significantly increased en-
semble predictive information across datasets (increase in accu-
racy, 3.5 = 1.9%; paired t = 4.6; p < 0.006).

Redundancy and synergy

Our experimental data revealed redundant interactions within
large ensembles of weakly coding neurons. However, in our data
from the rat motor cortex, we found that small ensembles (less
than six neurons) exhibited rapid increases in predictive infor-
mation as neurons were added to the ensembles (Fig. 5C,E). This
data suggested a nonredundant coding scheme (Fig. 2), such as
synergy. To assess the extent of synergy in our data, we plotted the
percentage of significant synergistic ensembles as a function of
the ensemble size and found that the fraction of significant syn-
ergistic interactions was inversely related to the number of neu-
rons in the ensemble (Fig. 6A). Significance levels were deter-
mined by calculating Pg,sempie for 1000 two-neuron ensembles
with randomly permuted behavioral labels. The 95% confidence
interval for Pg, mple Was between 0.016 and —0.032. We inter-
preted Ppcmble Values outside this range to be significant. We
found declining synergy with increasing ensemble size in every
dataset and with every statistical classifier we used, although some
statistical classifiers found higher levels of synergy (i.e., SVM)
than others (i.e., LVQ).

Finally, we examined whether there were any spatial determi-
nants for synergistic or redundant neuronal interactions. We de-
termined the distance between each neuron across the microelec-
trode arrays used for the neuronal recordings and plotted those
distances against Py .1 fOr pairs of neurons. We observed no
obvious relationship between Py, ... and the distance between
electrodes from which neurons were recorded (R = 0.08; p <
0.12) (Fig. 6 B).

Discussion

We studied how interactions among neuronal ensembles in the
rat motor cortex influence predictions of behavioral performance
in a simple reaction time task. We used statistical pattern recog-
nition methods to quantify predictive information conveyed by
single neurons and groups of neurons of varying complexity.
Using a cluster of computer workstations, we were able to ac-
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count for interactions between all possible combinations of neu-
rons (involving many thousands of combinations; Table 2),
something that, to our knowledge, has not been accomplished
previously. We report three main findings. First, the predictive
information conveyed by single cortical neurons is not related to
the contribution that neuron makes to information conveyed by
neuronal ensemble. Second, ensembles of cortical neurons tend
to be highly redundant. Finally, although large ensembles are
highly redundant, significant synergistic interactions exist in
smaller ensembles.

Motor cortex and simple reaction time tasks

In this study, spike trains were collected from chronically im-
planted arrays of electrodes in rat motor cortex during perfor-
mance of a simple reaction time task with a variable foreperiod.
In such a task, there is an increasing likelihood that the trigger
stimulus will occur as time passes during the foreperiod (Naa-
tanen, 1970). Prompt reaction times are thought to depend on
processes of time estimation and stimulus detection that con-
verge on a “response generator,” e.g., motor cortex (Ollman and
Billington, 1972; Kornblum, 1973). The motor cortex should
thus be responsive to temporal and sensory factors during the
foreperiod. However, processes related to stimulus detection
should only occur on trials with conditioned (correct) responses.
There are several large-scale brain potentials that become active
during the foreperiod of simple reaction time tasks (for review,
see Brunia, 1999). One of them, the contingent negative variation
(CNV), is evoked by the trigger stimulus. If rats are capable of
generating this potential (Pirch, 1980), then a CNV-like process
would differentiate neuronal processing on the two types of trials
examined in this study. The lack of activation of motor cortex by
a CNV-like process may have resulted in reduced levels of excit-
ability in motor cortex, as is apparent in the perievent histograms
in Figure 3. This effect might also result in quantitative differ-
ences in neuronal ensemble level activity on conditioned and
premature responses, and these effects might be manifest in re-
dundant interactions among neurons.

The shortest observed RTs may represent anticipatory re-
sponses initiated before the trigger stimulus. If neuronal stimulus
relationships were different on such anticipatory trials, then re-
moving such trials should improve classification of conditioned
versus premature trials. However, when we removed trials with
very short reaction times, we observed equivalent or slightly de-
creased classification of the remaining conditioned responses
versus premature responses (data not shown). These results sug-
gest that motor cortex was influenced more by the absence of the
trigger stimulus than by anticipatory responses on the premature
response trials.

Functional interpretation of synergy and redundancy

Our results suggest that single neurons in the rat motor cortex do
not function as independent encoders of behavioral performance
in a simple reaction time task. Instead, the neurons are highly
redundant. As was pointed out by Meijers and Eijkman (1974),
redundancy may exist in the motor cortex to overcome the large
amount of variability in the onset latencies of corticospinal neu-
rons (Evarts, 1966) relative to onset latencies in muscle (Botwin-
ick and Thompson, 1966). Redundancy might also be attribut-
able to activations of functionally related groups of muscles
(Donoghue et al., 1992; Plautz et al., 2000; Holdefer and Miller,
2002; Jackson et al., 2003; Kargo and Nitz, 2003; Morrow and
Miller, 2003) that are used to control the response lever and
maintain the rat’s posture during the trial. Redundancy in motor
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cortex would allow for increased efficiency in controlling func-
tionally related sets of muscles (Barlow, 2001), or, more practi-
cally, to changes that are known to occur with motor skill learn-
ing in which accessory muscles tend to change with learning more
than primary mover muscles (Heise, 1995). Indeed, increases in
correlated firing in motor cortex, an indirect measure of redun-
dant processing, have been reported recently to accompany the
learning of sensorimotor tasks (Gemba and Sasaki, 1984, 1988;
Laubach et al., 2000; Cohen and Nicolelis, 2004; Kargo and Nitz,
2004; Paz and Vaadia, 2004). More generally, the advantages of
redundancy in cortical neurons may offset the advantages of
channel capacity reduction (Shannon and Weaver, 1949) and
economy of energy (Allman, 1990) because of greatly enhanced
signal-to-noise during goal-oriented behavior (Barlow, 2001).

Distributed coding in neuronal ensembles

Distributed coding has been examined in a relatively small num-
ber of studies. Humphrey et al. (1970) found that small sets of
neurons could accurately predict several motor variables. More
recently, Wessberg et al. (2000) performed a similar analysis in
ensembles with hundreds of neurons in multiple parts of primate
cortex to predict hand position during two- and three-
dimensional arm movement tasks and found that ensembles per-
formed at high levels (prediction above 90% of the variance of
hand trajectory) despite removal of up to one-third of the neu-
rons in the ensemble. Similarly, Averbeck et al. (2003) found
evidence for high levels of redundancy while recording from en-
sembles up to 22 neurons in primate prefrontal cortex during a
shape-copying task. In the rat primary somatosensory cortex,
Ghazanfar et al. (2000) found graceful degradation of cortical
ensembles when discriminating among sites of stimulation on
the whisker pad. These results are consistent with our results and
further suggest that redundancy is a major factor in information
processing in multiple cortical systems.

Studies that have investigated how small cortical ensembles
work together to encode information have found less redun-
dancy than reported here. Gawne and Richmond (1993) studied
responses of pairs of neurons in the inferior temporal cortex to
complex visual stimuli and found that 20% of all pairwise neuro-
nal interactions were redundant. Rolls et al. (2004) report lower
levels of redundancy (4—10%) in inferior temporal cortex when
discriminating between 20 faces. In the primate motor cortex,
Maynard et al. (1999) found only ~20% of all pairwise neuronal
interactions were redundant in the motor cortex during direc-
tional limb movements, whereas the remainder were synergistic.
Reich et al. (2001) found entirely independent interactions be-
tween small ensembles (less than six neurons) of simultaneously
recorded neurons in primary visual cortex. Samonds et al. (2004)
found high levels of synergy for small ensembles (up to six neu-
rons) when recording from cat V1 while a drifting sinusoidal
grating was presented.

In contrast, in the present study, we found that most (99.3 =
0.01%) of large ensembles (more than eight neurons) are entirely
redundant. However, just 36 = 12% of neuron pairs were redun-
dant, with 23 * 9% exhibiting synergistic interactions (the re-
mainder of pairs did not exhibit significant synergy or redun-
dancy). One explanation for the high redundancy we find is that
larger ensembles may mask synergy present in smaller ensembles.
Thus, the low levels of redundancy observed in small ensembles
in previous studies (Gawne and Richmond, 1993; Maynard et al.,
1999; Reich et al., 2001; Rolls et al., 2004; Samonds et al., 2004;
Purushothaman and Bradley, 2005) are entirely compatible with
our results, because we find little redundancy in small ensembles.
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An alternative explanation, however, is that the sensory mapping
studies above used many classes of stimuli, whereas our study had
just two outcomes of task performance. This issue will require
additional experimental studies to be resolved.

Limitations of the statistical pattern recognition approach
Our estimates of mutual information depend to some extent on
the specific algorithm used for classification. As a result, our es-
timates may underestimate limits on mutual information for en-
coding behavioral performance (see Materials and Methods).
Furthermore, we calculated synergy and redundancy based on
estimates generated by statistical classifiers. It is possible that the
classifiers have sources of bias that direct estimates of mutual
information would avoid (see Materials and Methods) (Schnei-
dman et al., 2003). We used different classifiers on benchmark
data and random neuronal data to examine this issue. However,
we cannot rule out bias in our measures of Py ... D€Cause we
know of no practical method to directly measure mutual infor-
mation for large ensembles of neurons. Despite these concerns,
we believe that our approach is a feasible way to analyze interac-
tions among ensembles of neurons. The high levels of redun-
dancy we found in all datasets using multiple statistical classifiers
lends confidence to our interpretation. We hope that future studies
will consider these issues. However, we believe the ultimate test of the
value of synergistic and redundant neuronal interactions for encod-
ing behaviorally relevant information will be through experiments,
perhaps involving real-time analyses of spike trains recorded in
awake, behaving animals (Humphrey et al., 1970; Wessberg et al.,
2000; Serruya et al., 2002; Taylor et al., 2002; Ben-Shaul et al., 2003;
Carmena et al., 2003; Lebedev et al., 2004).
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