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The Roles of the Caudate Nucleus in Human
Classification Learning

Carol A. Seger and Corinna M. Cincotta
Department of Psychology, Colorado State University, Fort Collins, Colorado 80523

The caudate nucleus is commonly active when learning relationships between stimuli and responses or categories. Previous research has
not differentiated between the contributions to learning in the caudate and its contributions to executive functions such as feedback
processing. We used event-related functional magnetic resonance imaging while participants learned to categorize visual stimuli as
predicting “rain” or “sun.” In each trial, participants viewed a stimulus, indicated their prediction via a button press, and then received
feedback. Conditions were defined on the bases of stimulus-outcome contingency (deterministic, probabilistic, and random) and
feedback (negative and positive). A region of interest analysis was used to examine activity in the head of the caudate, body/tail of the
caudate, and putamen. Activity associated with successful learning was localized in the body and tail of the caudate and putamen,; this
activity increased as the stimulus- outcome contingencies were learned. In contrast, activity in the head of the caudate and ventral
striatum was associated most strongly with processing feedback and decreased across trials. The left superior frontal gyrus was more
active for deterministic than probabilistic stimuli; conversely, extrastriate visual areas were more active for probabilistic than determin-
istic stimuli. Overall, hippocampal activity was associated with receiving positive feedback but not with correct classification. Successful
learning correlated positively with activity in the body and tail of the caudate nucleus and negatively with activity in the hippocampus.
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Introduction

Learning associations between stimuli and responses or catego-
ries is an important ability across species (Wise and Murray,
2000), and the striatum, particularly the caudate nucleus, plays a
key role in such learning. Functional magnetic resonance imag-
ing (fMRI) and positron emission tomography studies in humans
have found caudate activity in many tasks ranging in complexity
from learning to respond to individual stimuli with arbitrary
responses (Toni et al., 2002) to classifying multiple stimuli with
varying features into categories (Poldrack et al., 1999, 2001; Seger
and Cincotta, 2002; Volz et al., 2003). Performance on these tasks
is impaired in patients with compromised striatal functioning
(Packard and Knowlton, 2002). Common features of task that
involve the caudate include the presence of feedback and indica-
tion of decisions via distinct motor responses. Tasks with these
characteristics are learned by a system that is behaviorally and
neurally dissociable from two other human category learning
systems (Ashby and Casale, 2003): categorizing on the basis of
verbalizable rules, reliant on lateral frontal systems (Smith et al.,
1998; Seger et al., 2000; Filoteo et al., 2005b), and learning single
categories consisting of distortions of a prototypical stimulus,
reliant on extrastriate visual areas (Reber et al., 1998a,b, 2003;
Aizenstein et al., 2000)
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A puzzling discrepancy is that the main area of activity re-
ported in human functional imaging studies is typically in the
head of the caudate (Table 1), whereas research in monkeys
shows the body and tail of the caudate to be crucial (Brown et al.,
1995; Teng et al., 2000; Fernandez-Ruiz et al., 2001). Although
there is a large degree of divergence in projections from the cortex
to the striatum (Mink, 1996; Wise et al., 1996), it is generally
accepted that the head and tail of the caudate participate in func-
tionally dissociable corticostriatal loops. The head of the caudate
interacts with dorsolateral prefrontal cortex as part of the “cog-
nitive” corticostriatal loop, whereas the tail interacts with inferior
temporal areas as part of the “visual” corticostriatal loop
(Middleton and Strick, 1996; Lawrence et al., 1998). Many func-
tional imaging studies link activity in the head of the caudate with
executive functions related to receiving feedback, as summarized
in Table 2. Activity in the ventral striatum is also associated with
error in prediction (Berns et al., 2001). Feedback-processing de-
mands are typically high in classification tasks, particularly when
stimulus—response contingencies are probabilistic and perfect
performance cannot be achieved.

Our primary goal was to use event-related fMRI to separate
striatal activation linked to learning of associations from activa-
tion resulting from processing feedback. We also examined inter-
actions between the caudate and the medial temporal lobe.
Learning mediated by the caudate nucleus is dissociable from
memory mediated by the medial temporal lobe. Patients with
amnesia show relatively preserved learning on categorization
tasks with feedback (Knowlton et al., 1994; Reber et al., 1996;
Myers et al., 2003) (but see Hopkins et al., 2004). Both animal
and human research finds an antagonistic relationship be-
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Table 1. Striatal activation foci in functional imaging studies of visual categorization and visuomotor learning

Total number of

Total number categories or
of different different possible Contingency
Reference Rightx, y, z Leftx,y,z Striatal region  stimuli used responses Feedback?  type Task name
Aron etal., 2004 6,—12,—6 —6,—12,—6  Head, ventral 14 2 Yes P Probabilistic classification
9,12,0 —9,9,0
Haruno et al., 2004 12,3,10 0,—3,0 Head/body 2 2 Yes P Stochastic decision
Lieberman et al., 2004 12,—2,22 Head 32 2 No P Artificial grammar
14,16,0 Head
17,—4,24 Body
34, —34,2 Tail
—32,—10,20 Putamen
0'Doherty et al., 2003, 2004 —8,22,0 Head 2 2 Yes p Instrumental conditioning
Poldrack et al., 1999 6,2,0 Head 14 2 Yes p Probabilistic classification
Poldrack et al., 2001 9,6,21 —12,3,21 Head/body 14 2 Yes P Probabilistic classification
Seger and Cincotta, 2002 24,-2,—2 —22,-8,0 Head, putamen U 2 Yes p Information integration
Toni and Passingham, 1999 24,18, 16 —12,8,18 Head 4 4 Yes D Visuomotor associations
Tonietal., 2001a —18,18,4 Head 4 4 Yes D Visuomotor associations
Tonietal., 2001b —14,6, —2 Putamen 4 4 Yes D Visuomotor associations
Vogels etal., 2002 —24,18,0 Head U 3 Yes P Dot pattern classification
Uindicates that the potential size of the stimulus set was unlimited, and novel exemplars were presented on each trial. D, Deterministic; P, probabilistic.
Table 2. Activation in dassification tasks associated with feedback or set shifting
Striatal ROls Feedback or shift comparison
Reference Rightx, y, z Leftx,y,z Striatal region Shifting: objects > rule Task name
Monchi et al., 2001 12,12,3 —16,14,4 Head Negative feedback > control WCST
4,6,4 —8,8,4 Head Negative > positive feedback
—26,—10,4 Putamen Matching after negative feedback
Monchi et al., 2004 —12,2,2 Head Negative feedback > control WCST
—10,—6,2 Head Negative > positive feedback Healthy elderly participants
26, —4,4 —24,-38,2 Putamen Matching after negative feedback
Rogers et al., 2000 —6,16,8 Head Reversal > other shifts Three kinds of shifting tasks: intradimensional,
extradimensional, and reversal
—16,8,20 Head
Cools et al., 2002 —10,8, —4 Head Final reversal error trial Reversal learning
Cools etal., 2004 9,-3,-3 Head Shifting > no shift Shifting between objects and/or rules

tween striatal and medial temporal lobe systems (Poldrack and
Packard, 2003).

Materials and Methods

Participants. Participants were 15 members of the Stanford community
(Stanford University, Stanford, CA) (seven males, eight females) with an
average age of 24 years (range, 19-33). Participants were right handed,
fluent speakers of English, met the criteria for MRI scanning (no metallic
implants, no claustrophobia, head size compatible with the custom head
coil), and were neurologically healthy (no known neurological or psychi-
atric injury or disease; not taking any psychoactive medication or drugs).
Two of the participants completed only the first functional imaging scan
because of limited scanning time. Functional data from the first scan
from a third participant was lost because of technical problems.

Materials. In the behavioral task, participants viewed arbitrary visual
patterns (Fig. 1) and used them to predict one of two possible outcomes,
“rain” or “sun.” Each stimulus was formed from five line segments of
equal length; two lines were vertical, two were ~105° from vertical, and
one was 45° from vertical. The lines were arranged in arbitrary relation to
each other to form visually distinct patterns. The stimuli were not de-
signed to have any features in common across categories.

The relationship between each stimulus and the two response catego-
ries varied in probability. Two stimuli were assigned to the deterministic
condition; each was consistently paired with the same outcome (one
stimulus was always paired with sun, and the other stimulus was always

paired with rain). Four stimuli were assigned to the probabilistic condi-
tion, in which each was paired with one outcome for 80 or 90% of the
time and the opposite outcome for 10 or 20% of the time (one stimulus
was 90/10 sun/rain, one was 80/20 sun/rain, one was 90/10 rain/sun, and
one was 80/20 rain/sun). Two stimuli were assigned to the random con-
dition, in which they were paired with each outcome for 50% of the time.
The stimuli were randomly assigned to each condition for each partici-
pant to avoid specific item effects. Additionally, there was a baseline
condition, in which participants viewed a large black plus sign and made
no response.

Procedure. A “weather prediction” cover story was used, in which par-
ticipants were asked to pretend to be meteorologists and use the visual
stimuli to predict rain or sun. In each trial, one stimulus appeared on the
screen for 2000 ms, during which the participants made a button press
response. The stimulus was followed by a blank screen for 250 ms, the
feedback “Correct!” or “Incorrect” for 500 ms, and finally a blank screen
again for 250 ms. During baseline trials, the baseline stimulus alone
appeared for a variable amount of time (typically between 1500 and 4500
ms). The presentation sequence for all trials and the variable stimulus
presentation times for baseline trials were determined by using optseq2
version 2.0 (Dale, 1999) (available at http://surfer.nmr.mgh.harvard.
edu/optseq) to provide an optimum-jittered sequence for event-related
analysis. The resulting order was pseudorandom; stimuli of the same type
occasionally appeared in adjacent positions but were not purposefully
grouped by type. Participants were not informed that the stimulus—out-
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Figure 1. Stimuli used in the experiment.

come contingencies would differ across stimuli and were not explicitly
informed of the trial type during each trial.

There were 640 trials: 160 baseline (Base), 120 deterministic (Det), 240
probabilistic (Prob), and 120 random (Ran). Because of scanner memory
limitations, the task was broken into two 15 min scans with 326 trials in
scan 1 and 314 trials in scan 2; the total number of trials differed across
scans because of variations in stimulus timing dictated by optseq2. To
examine changes in activity of areas across learning, we divided the study
into three blocks with approximately equal numbers of each trial type in
each block (e.g., 53 baseline trials, 40 deterministic trials, 80 probabilistic
trials, and 40 random trials). This division provided the best tradeoff
between maximizing trials per block for statistical power in the imaging
contrasts and the desire to follow changes in learning.

fMRI image acquisition. Imaging was performed with a custom-built
whole-head coil in a 3.0 tesla MRI Signa LX Horizon Echospeed (General
Electric Medical Systems, Milwaukee, WI). Head movement was mini-
mized for participants using a “bite-bar” formed with the participant’s
dental impression. In addition to the functional scans, three anatomical
scans were performed: a coronal T1-weighted localizer scan, a three-
dimensional high-resolution T1-weighted spoiled gradient echo scan
with 124 contiguous 1.5 mm slices [minimum full echo time (TE); 30°
flip angle; 24 cm field of view; 256 X 256 acquisition matrix] and a
in-plane anatomical T1-weighted spin-echo scan with 22 contiguous 5
mm axial slices [minimum full TE; 500 ms repetition time (TR); 24 cm
field of view; 256 X 256 acquisition matrix]. Functional scanning was
performed using a T2*-sensitive gradient echo spiral in—out pulse se-
quence (Glover and Law, 2001; Preston et al., 2004) (30 ms TE; 1500 ms
TR; 65° flip angle; 24 cm field of view; 64 X 64 acquisition matrix) of the
same 22 contiguous 5 mm axial slices as the in-plane images.

Stimuli were presented using a magnet-compatible projector (Reso-
nance Technology, Van Nuys, CA) that back-projects visual images onto
a screen mounted above the participant’s head. E-prime software (Psy-
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chology Software Tools, Pittsburgh, PA) running on a personal com-
puter was used to generate visual stimuli and control experimental pa-
rameters. Responses were obtained using a fiber-optic finger-switch
response system.

Image processing. Image analysis was performed using BrainVoyager
2000 4.9, with the exception of the striatal region of interest (ROI) anal-
yses, which were performed using BrainVoyager QX 1.0.9 (Brain Inno-
vation, Maastricht, The Netherlands). The functional data were first sub-
jected to preprocessing, consisting of three-dimensional motion
correction, slice scan time correction, and temporal data smoothing with
a high-pass filter of three cycles in the time course and linear trend
removal. Each participant’s high-resolution anatomical image was normal-
ized to the Montreal Neurological Institute brain template. The normaliza-
tion process in BrainVoyager consists of two steps: an initial rigid body
translation into the anterior commissure—posterior commissure plane, fol-
lowed by an elastic deformation into the standard space performed on 12
individual subvolumes. The resulting set of transformations was applied to
the participant’s functional image volumes to form volume time course rep-
resentations to be used in subsequent statistical analyses. Finally, the volume
time course representations were spatially smoothed with a Gaussian kernel,
full-width at half-maximum of 6.0 mm.

Statistical analysis. Trials were first divided by stimulus types: Base,
Det, Prob, and Ran. The categorization trial types were further divided
into eight subcategories based on the correctness of the response and the
feedback given to participants. Deterministic trials were divided into
those that the participants classified correctly (in accordance with the
dominant category assignment) and received positive feedback (Det-CP)
and those that the participants classified incorrectly and received nega-
tive feedback (Det-IN). Probabilistic stimuli were classified both in terms
of whether the participant responded correctly (in accordance with the
dominant category assignment) and in terms of the feedback received by
the participants. In Prob-CP trials, stimuli were classified correctly and
the participant received positive feedback. In Prob-IN trials, the stimuli
were classified incorrectly and the participant received negative feedback.
In Prob-CN trials, participants classified the stimulus correctly but re-
ceived negative feedback. Finally, in Prob-IP trials, the stimulus was clas-
sified incorrectly but the subject received positive feedback. For random
stimuli, it was not possible to be correct or incorrect in the sense of
responding according to the dominant assignment. Therefore, random
stimuli were divided into two categories: Ran-P (positive feedback) and
Ran-N (negative feedback). There were very few trials in three of the
conditions (Det-IN, Prob-CN, and Prob-IP), and thus these conditions
were not subjected to statistical analysis.

Because of the a priori prediction that striatal structures would be
important for categorization, the primary statistical analysis was limited
to eight ROIs in the striatum: the right and left head of the caudate
nucleus, the right and left body/tail of the caudate nucleus, the right and
left putamen, and the right and left ventral striatum. These areas were
defined anatomically using a single subject’s high-resolution normalized
anatomical image and were confirmed to encompass the structure in all
subjects. The ROIs were drawn with generous margins to ensure cover-
age of each structure across subjects; thus, the borders of the ROIs ex-
tended into surrounding white matter and ventricles but not into gray
matter areas such as the thalamus, insula, or globus pallidus. The result-
ing ROIs are shown in Figure 2. The head of the caudate and putamen
ROIs were limited to parts of these nuclei considered to be in the dorsal
striatum. The ventral striatum is defined in primates to include the ros-
tral ventral caudate and putamen nuclei in addition to the nucleus ac-
cumbens (Haber et al., 2000). In humans, the dividing line between
dorsal and ventral is approximately z = —1. Studies that have found
ventral striatum activity have typically localized it to z = —4 or —8 (Berns
etal., 2001; McClure et al., 2004; O’Doherty et al., 2004).

The ROI general linear model tool of BrainVoyager QX 1.0.9 was used
to analyze contrasts between conditions, separately within each ROI.
This tool calculates the average time course of all voxels in the ROI for
each subject, compares the time course across subjects and conditions in
an ANOVA with subjects treated as random effects, and computes ¢ and
p values for contrasts of interest between specified conditions. Only con-
trasts with potential theoretical interest were analyzed.
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Figure2. Three-dimensional rendering of the eight striatal regions of interest, viewed from the
left, from above, and from the front. Green, Body and tail of the caudate; blue, head of the caudate;
yellow, putamen; red, ventral striatum. White lines indicate the planes of z = 0,x =0,y = 0, and
y = —20,asusedin the brain atlas in the study by Talairach and Tournoux (1988). The putamen ROIs
extended inferiorally to superiorally from z = —1toz = 15, anteriorally to posteriorally fromy =
—15toy = +15, and laterally from x = =15 to ==33. Within the caudate nucleus, the border
between the head and the body/tail ROIs was along an oblique plane angled at 45° from horizontal
running between thelines defined byy = 0,z = 14andy = 10,z = 24.Thehead of the caudate ROl
extended inferiorally toz = —1and laterally from the ventricles tox = ==13. The body/tail of the
caudate ROIs extended superiorally to z = 28, inferiorally in the body portion to z = 16, in the tail
portiontoz = —3, laterally from approximatelyx = 9tox = 22inthe body region, and posteriorally
toy = —38atthe tip of the tail. The ventral striatum ROl encompassed the nucleus accumbens and
the mostinferior portions of the caudate and putamen; it extended in the inferior—superior dimension
fromz= —2toz= —10.

Seger and Cincotta e Role of the Caudate in Learning

In addition to the ROI analysis of striatal structures, an exploratory
whole-brain analysis was performed to identify additional structures that
may be associated with classification learning. BrainVoyager was used to
analyze contrasts between conditions. First, a model of the hemody-
namic response for each condition was formed by convolving a proto-
typical hemodynamic response function with the time course of the con-
ditions. Then, conditions were compared using the general linear model
with separate subject predictors and subjects treated as random effects.
Again, only contrasts with potential theoretical interest were analyzed.
Given the exploratory nature of this analysis, the threshold was setat p <
0.005, uncorrected, which corresponded to a t value threshold of 3.3. This
threshold was chosen to minimize “misses” of potentially interesting
cortical areas that would not be activated using a higher threshold. How-
ever, this choice of threshold also increases the risk of “false positives”
and should be kept in mind when interpreting the results.

Changes in brain activity across blocks were examined within certain
ROIs. As detailed in Table 3, one of the conditions examined in the
striatal ROI and whole-brain analysis, Prob-IN, had few or no trials per
block for many participants. Thus, time course analyses were limited to
the following conditions: Base, Det-CP, Prob-CP, Ran-P, and Ran-N.
For the striatum, ROIs were defined anatomically, as described above.
For areas identified in the exploratory whole-brain analysis (left superior
frontal gyrus and right hippocampus), ROIs were defined based on func-
tionally activated clusters using the tools in BrainVoyager. The ROI is
identified via a region-growing process, which starts with a central voxel
indicated by a mouse click and spreads to suprathreshold adjacent voxels,
stopping at the boundaries of the functional cluster. The percentage of
signal change within each ROI was calculated for each participant, for
each block of each condition, using the event-related averaging functions
and the ROI analysis function. The average percentage of signal change
measured from trial onset was calculated from 4—8 s, inclusive; this time
period was chosen to encompass the peak of the hemodynamic response
function, which is typically ~6 s after stimulus onset.

Results

Behavioral results

Classification accuracy across blocks for probabilistic, determin-
istic, and random trials is plotted in Figure 3. For probabilistic
stimuli, being correct was defined in terms of whether the partic-
ipants responded in accordance with the dominant assignment of
the stimulus, rather than in terms of the feedback received, be-
cause this measure best reflects learning of the contingencies. A
3 X 3 block by stimulus type (deterministic, probabilistic, ran-
dom) ANOVA with the dominant assignment accuracy values as
the dependent measure revealed a main effect of block (F, .,y =
11.2; p < 0.0005), a main effect of stimulus type (F, ,4) = 40.0;
p < 0.0001), and an interaction between block and stimulus type
(F(4, 24y = 5.6; p < 0.001). A visual inspection of the graphs in
Figure 3 indicated that the interaction between block and stimu-

Table 3. Trials in each condition

Block 1[mean (range)] ~ Block 2 [mean (range)]  Block 3 [mean (range)]

Det-CP 24.9 (13-36) 27.8 (13-37) 38.3(18—-44)

Det-IN? 13.7 (2-24) 8.6 (0-24) 6.7 (1-27)

Prob-CP 51.8 (39-66) 50.5 (31-64) 55.2 (44-63)
Prob-CN‘ 8 6(6-12) 10.3 (8-13) 10.3 (8-11)

Prob-IP? 4(0-9) 3.1(0-10) 0.8(0-3)

Prob-IN® 24 6 (10-41) 13.6 (1-30) 7.6 (0-19)

Ran-N 20.7 (17-23) 21 (15-25) 18.6 (10-23)

Ran-P 20.3 (18-24) 19.7 (16-25) 18.9 (15-24)

“Conditions not analyzed because of insufficient trials.
bCondition excluded from the time course analyses because of low numbers of trials in block 2 and block 3.
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Learning Across Blocks
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Figure 3.  The percentage correct across blocks for deterministic, probabilistic, and random

stimuli, with correct defined as classifying the stimulus consistent with its dominant assign-
ment, is shown.

lus type was driven by the (expected) lack of learning of random
stimulus—outcome associations. To examine differences in learn-
ing between deterministic and probabilistic stimuli, we performed a
3 X 2 block X stimulus type ANOVA, which indicated only a main
effect of block (F(,, 1, = 13.4; p < 0001), with no main effect of
stimulus type or interaction of block by type, Fs < 1.0. We conclude
that deterministic and probabilistic stimuli were learned equally
well, and accuracy increased across blocks for both.

Striatal ROI analyses

Areas associated with classification: Det-CP and Prob-CP > Base
We first examined correct classification of both deterministic and
probabilistic stimuli in comparison with the baseline task. Only
correct trials were examined to avoid variability in the propor-
tions of correct responses and negative feedback across stimulus
types; however, each trial does include feedback. Contrasts were
calculated separately for each striatal ROI, but all are shown in
Figure 4 for convenience. Activation was significantly higher dur-
ing classification than baseline in the right body and tail of the
caudate [t,,) = 5.61; p < 0.0001], the left body and tail of the
caudate [#(,4) = 3.48; p < 0.005], the right putamen [¢(,,4, = 3.71;
p < 0.005], and the left putamen (¢, = 3.42; p < 0.0005].
Activation did not differ between classification and baseline for
the right or left head of the caudate.

As shown in Figure 5, activity in the right and left body and tail
of the caudate and right and left putamen ROIs followed a very
similar pattern across blocks. In block one, activity during classi-
fication was at or below baseline. In blocks two and three, activity
during classification rose above baseline activity. As shown in
Table 4, activity in the right body and tail significantly positively
correlated with accuracy during the second half of the experi-
ment; there was a trend toward a correlation between the left
body/tail, right putamen, and left putamen and accuracy during
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Classification across striatal ROIs
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Figure4. Percentage of signal change during classification (Det-CP and Prob-CP combined)
and baseline trials in the eight striatal ROIs: right head (RH) and left head (LH) of the caudate,
right ventral striatum (RV) and left ventral striatum (LV), right body and tail (RBT) and left body
and tail (LBT) of the caudate, and right putamen (RP) and left putamen (LP).
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Figure 5.  The percentage of signal change in the right and left body and tail of the caudate
nucleus and right and left putamen across blocks for classification (Det-CP and Prob-CP com-
bined) and baseline stimulus trials is shown.

the second half. Thus, participants who were more successful in
learning to categorize stimuli recruited the body and tail of the
caudate and putamen to a greater degree than participants who
were less successful at learning.
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Table 4. Correlation hetween accuracy and regional blood flow in the caudate body
and tail, putamen, and the hippocampus

Accuracy

First half Second half
Right body tail 0.33 0.56%
Left body tail 0.19 0.47%*
Right putamen 0.15 0.47%*
Left putamen 0.16 0.49**
Right hippocampus —0.55*% —0.24

*p < 0.05;**p < 0.1. Accuracy was calculated in terms of consistency with the dominant category assignment for
probabilistic stimuli. Responses to random stimuli were not included in the accuracy measure.

Feedback activation across striatal ROIs
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Figure6. Percentage of signal changein the Ran-P and Ran-N conditions in the eight striatal
ROIs: right head (RH) and left head (LH) of the caudate, right ventral striatum (RV) and left
ventral striatum (LV), right left body and tail (RBT) and left body and tail (LBT) of the caudate,
and right putamen (RP) and left putamen (LP).

B Ran-N

Percent Signal Change

Effect of stimulus contingency: pairwise comparisons between
Det-CP, Prob-CP, and Ran-P

Activation was significantly higher for Prob-CP than for Det-CP
in the left body and tail of the caudate [t,,) = 2.36; p < 0.05] and
showed a trend toward higher activation in the right body and tail
of the caudate [t,,) = 1.84; p = 0.086]. Activation did not differ
between Prob-CP and Det-CP in the right or left putamen or the
right or left head of the caudate (p > 0.1). Activation did not
significantly differ between Ran-P and either Prob-CP or Det-CP
in any of the eight striatal ROIs (p > 0.1).

Effect of feedback: Ran-P > Ran-N

There was greater activity for Ran-P than for Ran-N in all eight
striatal ROIs: right head of the caudate [¢,,, = 3.49; p < 0.005],
left head of the caudate [¢,,) = 2.59; p < 0.05], right body and tail
of the caudate [f,,) = 2.46; p < 0.05], left body and tail of the
caudate [,y = 2.2; p < 0.05], right putamen [, = 3.75; p <
0.005], left putamen [#,4) = 3.1; p < 0.01], right ventral striatum
[t14) = 3.39; p < 0.005], and left ventral striatum [t,,) = 3.75;
p < 0.005]. As shown in Figure 6, the difference between blood
oxygen level-dependent signal in Ran-P and Ran-N trials was

Seger and Cincotta e Role of the Caudate in Learning

-#Ran-N ,
Left head caudate ~+-RanP Right head caudate
s ol
0.08 !
;"Eoggg 0203
cq 0
EERT) 00
e 14
g 006 -0.06
-0.08 -0.08
0.1 -0.1
1 2 3 1 2 3
Block Block
. -aRan-N . ,
Left ventral striatum —+RanP Right ventral striatum
0.08 !
T 006 0.06
5o 04 0.4
7 00,02 0.02
E E () Og 0 Og
= 008
.1 0.1
1 2 3 1 2 3
Block Block
Figure7.  The percentage of signal change in the right and left head of the caudate and right

and left ventral striatum across blocks for random stimuli receiving positive feedback and ran-
dom stimuli receiving negative feedback (Ran-P and Ran-N) is shown.

greater in the right and left head of the caudate and right and left
ventral striatum than in the other areas of the striatum. Paired ¢
tests with the difference (percentage of signal change during Ran-
P — percentage of signal change during Ran-N) as dependent
measure showed that the difference in the left head of the caudate
was significantly greater than the difference in the right head of
the caudate [t,,) = 2.42; p < 0.05], right body and tail of the
caudate [t,,y = 2.87; p < 0.05], left body and tail of the caudate
[ta) = 2.70; p < 0.05], and right putamen [t = 2.22; p <
0.05]. The difference in the right head of the caudate was signif-
icantly greater than that in the right body and tail [#(,,) = 2.15;
p < 0.05]. The difference in the left ventral striatum was signifi-
cantly greater than the difference in the right body and tail
[t(14y = 2.7; p < 0.05] and left body and tail of the caudate [t,,, =
2.5; p < 0.05]. As shown in Figure 7, the difference between the
head of the caudate and right ventral caudate activity in Ran-P
and Ran-N trials decreased with learning; the difference was
greater in blocks 1 and 2 than in block 3.

Whole-brain analysis of cortex

Areas associated with classification: Det-CP and Prob-CP > Base
The goal of this contrast was to identify cortical areas active dur-
ing classification of deterministic and probabilistic stimuli in
comparison with the baseline task. A conjunction analysis was
performed, which identified areas that were active for both stim-
ulus types in comparison with baseline. As shown in Table 5,
Det-CP and Prob-CP both activated the left insula, posterior cin-
gulate, and precuneus. Several areas were more active during
baseline trials than during classification, including bilateral me-
dial frontal areas, the bilateral superior temporal gyri, the right
inferior parietal lobe, and the left cerebellum.
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Table 5. Areas of activation during correct classification versus baseline outside of the striatum

J. Neurosci., March 16, 2005 - 25(11):2941-2951 = 2947

Prob-CP comparison. Bilateral cerebel-

lum and lingual gyri areas and the left lat-

eral middle temporal gyrus were active
only in the Ran-P > Det-CP comparison.
45 Because frontal activation has been
found in other categorization tasks, the
pattern of activity in the left frontal pole
was examined in more detail using an ROI
analysis. The ROI was defined based on the
contrast between Det-CP and Prob-CP
with the threshold set to p < 0.0064. The
resulting cluster was 357 voxels, centered
atx = —11,y=44,and z = 45, and was a
subsection of the cluster activated in the

BA X y Voxels tmax
(lassification > baseline
Right insula 32 6 —6 1237 45
Leftinsula =27 18 6 1684
Left posterior cingulate 3 -21 —37 38 1956 5.8
Bilateral posterior cingulate/precuneus 31 —4 —37 31 174 4.4
Baseline > classification
Right inferior parietal lobule 40 49 -33 36 8431 54
Right superior temporal and inferior 43,44,6,22 57 3 20 4867 53
frontal gyri
Left superior temporal and inferior 43,40,6,22 —59 4 14 2566 5.2
frontal gyri
Bilateral medial frontal 9,32 -7 32 32 3334 47
Cerebellum 6 =50 =15 307 55

Ran-P > Prob-CP comparison. As shown

(lustersare based on arandom effects conjunction analysis of two contrasts: deterministic correct (1) versus baseline (—1) and probabilistic correct (1) versus
baseline (—1). x, , , Talairach coordinates (Talairach and Tournoux, 1988) of the central voxel of the activated cluster. t max, t value of the maximally

activated voxel within the cluster.

Table 6. Areas of activation affected by stimulus probability and learnability outside of the striatum

in Figure 9, the greatest differences be-
tween the conditions occurred in block 2,
with Det-CP more active than Ran-P,
which in turn was more active than Prob-

CP. Activity in the left frontal pole was sig-

BA X y z Voxels t max
Det-CP > Prob-CP
Left superior frontal gyrus/frontal pole 8 -1 44 45 357 45
Prob-CP > Det-CP
Left middle temporal gyrus 39 =37 —64 24 375 3.8
Left lingual gyrus 19 —6 —56 0 828 43
Prob-CP > Ran-P
No significant clusters
Det-CP > Ran-P
No significant clusters
Ran-P > Prob-CP
Left superior frontal gyrus/frontal pole 8 9 -9 40 36 4150 5.0
Left supramarginal and angular gyri 39,40 —34 =55 35 2357 5.0
Right supramarginal and angular gyri 39,40 40 —53 34 1685 4.8
Right precuneus and superior occipital gyrus 19 37 —76 41 1958 5.2
Ran-P > Det-CP
Left supramarginal and angular gyri 39,40 —32 —56 36 2223 4.8
Left superior occipital gyri 19 —36 —83 26 1608 47
Right supramarginal, angular and sup. occ. Gyri 19,39,40 36 —69 38 3054 53
Bilateral cerebellum and lingual gyri 18 0 =57 -2 2855 47
Left middle temporal gyrus 39 =35 —44 9 946 5.0

nificantly correlated with overall accuracy
when probabilistic stimuli were classified
(r = 0.60; p < 0.05) but not when deter-
ministic (r = 0.30; p > 0.1) or random
(r =10.02; p > 0.1) stimuli were classified.

Effect of feedback: Ran-P versus Ran-N

As shown in Table 7, several areas were
more active in Ran-P than Ran-N, partic-
ularly a large area of the right hippocam-
pus (Fig. 8b) and smaller areas of the left
parahippocampal gyrus and left fusiform
gyrus. In addition, there were activations
in the right anterior cingulate and the bi-
lateral precuneus.

Because previous studies have shown a
negative relationship between caudate and
hippocampal activity, we defined a func-
tionally based ROI of the right hippocam-

X,Y,2, Talairach coordinates (Talairach and Tournoux, 1988) of the central voxel of the activated cluster. t max, t value of the maximally activated voxel within

the cluster.

Effect of stimulus contingency: pairwise comparisons between
Det-CP, Prob-CP, and Ran-P

Differences in neural activity in processing deterministic rela-
tionships in contrast to probabilistic relationships were examined
by comparing Det-CP trials with Prob-CP trials. Aslisted in Table
6 and shown in Figure 8a, deterministic stimuli led to greater
activity than probabilistic in a small area of the left frontal pole.
Conversely, probabilistic stimuli led to greater activity in the left
lingual gyrus and left middle temporal gyrus.

Conditions in which successful learning occurred (Det-CP
and Prob-CP) were compared with Ran-P, in which no classifi-
cation learning could occur, to examine the effects of the presence
or absence of learned relationships on brain activity during clas-
sification. No areas outside of the striatum were significantly ac-
tivated in the Det-CP > Ran-P or Prob-CP > Ran-P compari-
sons. Conversely, several brain areas were more active in the
random condition. In both Ran-P > Prob-CP and Ran-P > Det-
CP, there were significantly activated clusters in the bilateral su-
perior occipital, supramarginal, and angular gyri. A large area of
the left frontal pole, including both lateral and medial aspects of
the superior frontal gyrus, was active only in the Ran-P >

pal cluster using a threshold of p < 0.001.
The resulting ROI was 1561 voxels, cen-
tered atx = 24,y = —20,and z = —4. The
activity in the right hippocampus during
classification (Det-CP and Prob-CP) trials did not correlate sig-
nificantly with activity in the right body (r = —0.12), left body
(r = —0.03), right putamen (r = 0.04), left putamen (r = 0.00),
righthead (r = 0.06), lefthead (r = —0.01), right ventral striatum
(r=0.12), and left ventral striatum (r = 0.23) ( p > 0.1 forall). As
shown in Table 4, activity in the right hippocampus activity cor-
related negatively with accuracy during the first half of the exper-
iment, indicating that people who recruited this area were slower
at learning in the early stages. As shown in Figure 10, activity in
the right hippocampus for Ran-P trials was greater than that for
Ran-N trials in blocks 1 and 2 but not block 3.

Discussion

Successful learning and the body and tail of the caudate

and putamen

In this study, we found a close association between learning to
classify stimuli and activity in the bilateral body and tail of the
caudate nucleus. First, the body and tail of the caudate was con-
sistently active on trials in which participants correctly classified
stimuli regardless of positive or negative feedback, including the
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Det-CP > Prob-CP

Figure 8. A, Areas of the left frontal pole that were more active in Det-CP than Prob-CP
(positive t values; red-yellow scale) and areas of the left lingual gyrus that were more active in
Prob-CP than Det-CP (negative ¢ values; blue-green scale). B, Right hippocampal and left para-
hippocampal gyrus clusters that were more active in Ran-P than Ran-N (positive ¢ values; red-
yellow scale).

ROI analysis comparing Prob-CP and Det-CP with baseline and
Prob-CP with Ran-P. Second, activity increased across trials as
learning occurred. Third, activity correlated significantly with
accuracy during the second half, indicating that participants who
recruited the body and tail of the caudate learned better than
those who did not. The involvement of the body and tail of the
caudate in learning is consistent with a large body of research
with monkeys (Brown et al., 1995; Levy et al., 1997; Teng et al,,
2000; Fernandez-Ruiz et al., 2001). Performance on complex vi-
sual stimulus—outcome tasks is impaired in patients with com-
promised striatal functioning (Knowlton et al., 1996a,b; Filoteo
et al., 2001, 2005a; Keri et al., 2001, 2002; Maddox and Filoteo,
2001; Witt et al., 2002; Myers et al., 2003; Sage et al., 2003; Sho-
hamy et al., 2004). It is also consistent with the theory of Ashby et

Seger and Cincotta e Role of the Caudate in Learning

-mDet-CP
—o—Prob-CP
—A—Ran-P

Left Frontal Pole

0.3 -
0.25 -
0.2 -
0.15 -
0.1 |

Percent Signal Change
e
(=
wn

1 2 3
Block

Figure9. The percentage of signal change in the left frontal pole across blocks for determin-
istic (Det-CP), probabilistic (Prob-CP), and random (Ran-P) stimuli receiving positive feedback is
shown.

al. (1998) and Ashby and Casale (2003) that the “visual” cortico-
striatal loop underlies human classification learning via feedback.

ROI analyses indicated that the putamen was significantly ac-
tivated during classification learning, with a pattern of activity
more similar to the pattern in the body and tail of the caudate
than the head of the caudate. Putamen activity was greater in
classification trials than baseline trials, increased with learning,
and correlated positively with classification accuracy. Previous
studies have reported putamen activity associated with classifica-
tion learning (Table 1).

Executive functions and the head of the caudate

Previous functional imaging research on human categorization
has reported activation in the head of the caudate rather than the
body and tail regions. In contrast, we found that activity in the
head of the caudate was not related to learning to categorize but
instead was related to feedback processing. The right and left
heads were more active when receiving positive feedback than
negative feedback during classification of random stimuli. Al-
though other areas of the dorsal striatum were also significantly
more active during Ran-P than Ran-N, the modulation was
strongest in the head. Sensitivity of the head of the caudate to
feedback is consistent with its interaction with the dorsolateral
prefrontal cortex in the cognitive loop.

Effects of stimulus outcome contingencies
Probabilistic stimuli led to greater activation of the bilateral body
and tail of the caudate and extrastriate visual areas than deter-
ministic stimuli. Conversely, deterministic stimuli led to greater
activity in the left superior frontal gyrus. Many of the previous
stimulus—outcome learning studies that have shown caudate ac-
tivation have indicated probabilistic relationships between stim-
ulus and outcome because of category overlap or stochastic de-
sign (Table 1). In contrast, Bischoff-Grethe et al. (2001) found
greater recruitment of the head of the caudate for learning deter-
ministic than probabilistic sequences.

Activation differed as a result of stimulus—outcome contin-
gencies in two visual processing areas: the lingual gyrus and left
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Table 7. Areas of activation affected by feedback outside of the striatum: random trials with positive feedback

versus negative feedback
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The medial temporal lobe and its
interactions with the striatum

BA X y z Voxels tmax  Activity in the medial temporal lobe was
Ran-P > Ran-N not associated with successful categoriza-
Right hippocampus 2% Y 4 £330 67 tion learning in this study. The only com-
Left parahippocampal gyrus 27,30 —12 -35 2 3035 5.0 parison in which hippocampal activity was
Left fusiform gyrus 36 —16 —30 —13 735 47 found was in Ran-P > Ran-N, indicating
Left fusiform gyrus 19 —24 —50 —-10 689 5.4 that the hippocampus was more active
Left superior frontal 6 —16 14 54 3884 4.6 when participants were told they had cor-
Rightanterior cingulate 32 15 24 | 7250 5.0 rectly Classiﬁed a random stimulus than
Left posterior cingulate / =15 —48 41 5553 57 when told they were incorrect. However,
D N I
tic relationship between striatal and me-
Ran-N > Ran-P, No significant clusters. dial temporal lobe learning systems, which
led us to examine whether such antago-
Right Hippocampus —o—Ran-N nism’was. apparent in. our data. ’Poldfack etal. (2001) compared
—e—Ran-P learning in a probabilistic classification task with feedback and
0.08 - via explicit instruction. The caudate was active in the task with
feedback, whereas the medial temporal lobe was active in the
g 0.06 - instructed version. Furthermore, caudate and medial temporal
g 0.04- activity was negatively correlated. In contrast, we found that hip-
= pocampal and caudate activity did not correlate, either positively
© 0.02 or negatively. Some antagonism was indirectly observed in cor-
s 01 relation analyses between brain activation and learning. Caudate
%‘) activity was positively correlated with late classification accuracy,
< -0.02 - whereas hippocampal activity was negatively correlated with
8 _ 0.04 - early classification accuracy. Thus, participants who successfully
5 learned tended to activate the body and tail of the caudate and not
A~ .0.06 - activate the hippocampus to a greater degree than participants
0.08 who were less successful.

1 2 3 Task complexity and structure
Block Studies that indicate caudate involvement in stimulus—outcome
learning have several features in common, including learning
Figure 10.  The percentage of signal change in the right hippocampus across blocks for ~ with feedback and mapping stimuli to distinct motor responses.

random stimuli receiving positive feedback (Ran-P) and random stimuli receiving negative
feedback (Ran-N) is shown.

middle temporal gyrus. Activity in both areas was greater for
probabilistic and random stimuli than deterministic stimuli. The
visual corticostriatal loop connects the body and tail of the cau-
date with inferior temporal lobe visual processing areas. Research
in monkeys has shown that visual discrimination learning relies
on the interaction of the body and tail of the caudate with tem-
poral lobe visual processing area TE (Gaffan and Eacott, 1995;
Buffalo et al., 1998, 1999).

The left superior frontal gyrus was more active during classi-
fication of random and deterministic than probabilistic stimuli.
This area is approximately equivalent to the presupplementary
motor area and encompasses portions of Brodmann’s area (BA) 8
and BA 9. The differences between conditions were most appar-
ent on block 2, with deterministic stimuli showing the most ac-
tivity, random stimuli showing intermediate amounts of activity,
and probabilistic stimuli showing the least activity. Activity in the
left superior frontal gyrus during probabilistic trials correlated
positively with accuracy. Therefore, overall, participants tended
to have lower levels of activity on probabilistic trials, but partici-
pants with relatively high activity in this area were more success-
ful at learning. Volz et al. (2003) found that activity in a similar
location was associated with making predictions under uncer-
tainty, with higher activity as uncertainty increased. In contrast,
in our study, activity was lowest for the probabilistic stimuli.

However, the tasks vary greatly in complexity, as shown in Table
1. In some tasks, participants learn to respond to four different
stimuli with four different finger presses. In other tasks, stimuli
are generated according to complicated patterns or rules, and
novel stimuli are presented on each trial. The present study is
intermediate in complexity, using eight different stimuli and
two different categories. It should be noted that the stimuli
were not related to other stimuli within the category, and thus
participants were not able to abstract a rule, pattern, or pro-
totype or make similarity-based judgments (Seger, 1994;
Ashby and Casale, 2003).

Feedback processing in dorsal and ventral striatum

In the present study, when classifying random stimuli, positive
feedback led to greater activity than negative feedback across the
basal ganglia, particularly in the right and left heads of the cau-
date and right and left ventral striatum. Delgado et al. (2004)
found the same pattern of activation in a gambling task with
random stimulus—reward contingencies. A pattern that emerges
across studies is that the dorsal head of the caudate is sensitive to
feedback or reward only when it is the result of an action (Trem-
blay et al., 1998; Lauwereyns et al., 2002; O’Doherty et al., 2004;
Tricomi et al., 2004).

We found a similar pattern of activity in the ventral striatum,
which is consistent with a wide variety of studies showing reward
sensitivity in this area (Ravel et al., 2001; McClure et al., 2003),
regardless of whether the feedback was linked to an action
(O’Doherty etal., 2004). The ventral striatum receives input from
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dopaminergic cells of the midbrain, particularly in the ventral
tegmental area, that are also sensitive to reward (Fiorillo et al.,
2003). Aron et al. (2004) found more activity for negative feed-
back than positive feedback in the midbrain during a probabilis-
tic classification task.

Role of caudate in feedback-related learning

We found that all areas of the striatum were sensitive to feedback,
particularly when expectations about feedback were violated. The
sensitivity of areas of caudate that were important for classifica-
tion (e.g., the body and tail of the caudate) to feedback is consis-
tent with theories that the striatum may play a general role in
reward-mediated learning (Ashby and Casale, 2003). Behavioral
and neuropsychological studies show that categorization learn-
ing is dependent on the presence of feedback. Learning is worse in
observational conditions than feedback conditions (Ashby et al.,
2002) and is impaired when feedback is delayed (Maddox et al.,
2003). Classification tasks impaired in Huntington’s or Parkin-
son’s diseases typically involve feedback; patients with Parkin-
son’s disease learn normally on observational tasks (Reber and
Squire, 1999; Shohamy et al., 2004).

In conclusion, we have shown two ways that the caudate nu-
cleus contributes to classification learning. The bilateral body and
tail is associated with successful classification learning, and the
head of the caudate is associated with processing feedback. These
results underline the importance of accounting for different lev-
els of feedback in learning tasks to more accurately separate brain
areas involved in memory representations from areas involved in
executive functions.
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