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Ensemble Coding of Vocal Control in Birdsong
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Zebra finch song is represented in the high-level motor control nucleus high vocal center (HVC) (Reiner et al., 2004) as a sparse sequence
of spike bursts. In contrast, the vocal organ is driven continuously by smoothly varying muscle control signals. To investigate how the
sparse HVC code s transformed into continuous vocal patterns, we recorded in the singing zebra finch from populations of neurons in the
robust nucleus of arcopallium (RA), a premotor area intermediate between HVC and the motor neurons. We found that highly similar
song elements are typically produced by different RA ensembles. Furthermore, although the song is modulated on a wide range of time
scales (10-100 ms), patterns of neural activity in RA change only on a short time scale (5-10 ms). We suggest that song is driven by a
dynamic circuit that operates on a single underlying clock, and that the large convergence of RA neurons to vocal control muscles results
in a many-to-one mapping of RA activity to song structure. This permits rapidly changing RA ensembles to drive both fast and slow
acoustic modulations, thereby transforming the sparse HVC code into a continuous vocal pattern.
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Introduction

Birdsong is a complex learned behavior consisting of sequential
vocal gestures over a wide range of time scales, from milliseconds
to several seconds (Immelmann, 1969; Fee et al., 1998). Juvenile
songbirds use auditory feedback to accurately reproduce a mem-
orized tutor song by the time they reach adulthood (Konishi,
1965). Adult zebra finch song is composed of a 0.5-1.0 s sound
pattern called a motif, which is repeated a variable number of
times during a song bout. The motif itself is composed of song
syllables, individual bursts of sound ~100 ms in length that occur
in a precise order. Syllables, in turn, are composed of stereotyped
and often complex spectral structure, referred to as subsyllables,
that can change rapidly (<10 ms time scale) or slowly (~100 ms
time scale).

Birdsong is generated by a set of brain nuclei known collec-
tively as the song control system (see Fig. 1A) (Nottebohm et al.,
1976, 1982). The premotor nucleus high vocal center (HVC)
(Reiner, et al., 2004), near the top of this control system, encodes
the temporal sequence in which sounds are generated (Yu and
Margolias, 1996; Hahnloser et al., 2002). HVC neurons that
project to the robust nucleus of the arcopallium (RA) (Reiner et
al., 2004) generate single bursts of spikes (~6 ms duration) at
precisely reproduced times within the song motif (Hahnloser et
al., 2002). RA, in turn, projects to the hypoglossal motor nucleus
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with a weak myotopic organization (Vicario, 1991) and to brain-
stem respiratory areas (Wild, 1993). RA projection neurons also
make local connections within RA (Canady et al., 1988). In con-
trast to the extremely sparse neuronal firing patterns in HVC,
syringeal and respiratory muscles are driven by continuous con-
trol signals that contain a wide range of time scales reflecting the
motif, syllable, and subsyllable acoustic structure (Goller and
Suthers, 1996; Wild et al., 1998). How is the sparse representation
of the song observed in HVC transformed into the continuous
activity of the vocal muscles?

As an intermediary between HVC and the brainstem motor
nuclei, RA is likely to play an important role in this transforma-
tion. Stimulating RA while the bird is singing causes a brief per-
turbation in the bird’s vocalization (Vu et al., 1994; Fee et al.,
2004), which quickly returns to an unperturbed state, implying
that RA encodes the song on a short time scale (10-20 ms).
Previous single-neuron recordings in singing birds have shown
that individual RA neurons generate several high-frequency
bursts per motif (Yu and Margoliash, 1996). The burst onset
times and the pattern of spikes within these bursts are highly
stereotyped and are reproduced with millisecond timing preci-
sion relative to acoustic structure within the bird’s song (Chi and
Margoliash, 2001). The burst patterns in RA are thought to be
driven by RA-projecting HVC neurons (HVCy,,) (Hahnloser et
al., 2002), although RA also contains a long-range inhibitory net-
work that may shape RA firing patterns during singing (Spiro et
al., 1999). In addition to receiving input from HVC, RA is the
only target of a basal ganglia circuit essential for vocal learning,
implicating RA as a crucial locus for learning in the premotor
pathway (Bottjer et al., 1984; Scharff and Nottebohm, 1991;
Mooney, 1992; Stark and Perkel, 1999; Brainard and Doupe,
2000).

We investigated the role RA plays in the motor control of song
by quantifying the structure of the RA population activity during
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singing and its relationship to the spectral and temporal structure
in the bird’s song. We present a model for how sparse patterns in
HVC are transformed into continuous muscle-control signals.
Finally, we will argue that many of the characteristics of the RA
activity patterns could emerge as a result of learning and are a
consequence of the structure of the premotor circuit.

Materials and Methods

Birds were housed in custom-designed Plexiglas cages and had ad libitum
access to food and water. All four birds used in the experiment were adult
male zebra finches, with crystallized songs, implanted with a small tes-
tosterone pellet to increase singing rate. Female zebra finches were
housed in separate Plexiglas cages and were presented to the males after
isolation of one or more RA neurons to elicit directed song.

Electrophysiology

Birds were anesthetized with 1-2% isoflurane, and the microdrive was
implanted onto the skull in a 3 h surgical procedure (Fee and Leonardo,
2001). The microdrive weighs ~1.5 g and contains three motorized po-
sitioners, allowing cells to be isolated remotely. Three independently
controlled electrodes (Microprobe WE3003H3), bundled with 200 um
spacing, were advanced slowly throughout the dorsal-to-ventral extent of
RA. A small lateral positioner allowed us to displace the bundle of elec-
trodes by several tens of micrometers to make a fresh penetration. Our
population of recorded neurons was thus sampled throughout RA. We
were unable to ascertain the precise location of recording sites within the
rough RA myotopy. High-quality single-neuron signals of 1-10 mV in
amplitude were isolated on individual electrodes, comparable with that
seen in a head-fixed anesthetized animal. Single-unit signals were verified
by a spike refractory period in the interspike interval histogram. Neural
and acoustic data were collected by custom-designed software written in
Labview (National Instruments, Austin, TX). The placement of the elec-
trodes within RA was verified histologically at the conclusion of the
experiments.

Data analysis

Instantaneous firing rate. Throughout much of the analysis, we repre-
sented neural activities as instantaneous firing rates, R(#), defined at each
time point as the inverse of the enclosed inter-spike interval as follows:

R(t) = Sfort, <t=t,,,

tix1 — 4
where t; is the time of the ith spike. A burst was defined as the interval
over which the instantaneous firing rate exceeded a threshold of 125 Hz.

Song alignment. The lengths of zebra finch song syllables vary by 2-5%
from song to song. This adds considerable noise to the structure of the RA
spike trains if they are aligned only to the onset of each song motif. To
compensate for this syllable-to-syllable time warping, we used each syl-
lable onset in the motif as an alignment point. Spike times between each
alignment point were linearly stretched or compressed to match the cor-
responding intervals in a representative template motif. This piecewise-
linear time warping is based only on the song and is completely indepen-
dent of the spike trains.

The song alignment algorithm proceeded as follows. Song syllables
were initially segregated automatically using a threshold crossing of the
acoustic power and were labeled manually (a, b, ¢, etc.). For each syllable
n in motif 7, we calculated the time derivative of the song spectrogram,
defined as follows:

>

aSn ilhs
w0 = 3| s
;

where S, ;(tf) is the time-frequency spectrogram of the syllable. The time
derivative typically exhibits a pronounced peak at the syllable onset. For
the motif chosen as the template, the times of these peaks for the set of
syllables within the template define a set of alignment times (T,,), with the
time origin chosen such that T, = 0. The optimal alignment time (,, ;) of
each template syllable onset to the corresponding syllable in the dataset
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was found using cross-correlation of the time derivatives. The quality of
the automatic alignments of the song syllables was checked manually.
Each spike time was then linearly projected onto the time base of the
template motif, using the following relationship:

: : Tn+1 - Tn
rwkn+@w—mQ———,

tn+],i - tn,i

where T;‘i’ike is the time of the jth spike that occurs between ¢, ;and ¢, | ;
in motif i, and F;}l’ike is the time-warped spike time. From the resulting
alignment of spike times across different motif renditions, we infer that
the acoustic alignment was typically better than 1 ms, consistent with
previous measurements of the alignment of acoustic features with RA
spike trains (Chi and Margoliash, 2001).

Analysis of correlations between pairs of RA neurons. The correlation of
instantaneous firing rates G (Ai(t)Aj(l‘))t was calculated for all pairs of
neurons recorded in each bird (including simultaneously and sequen-
tially recorded pairs). The distributions of correlations for all birds were
combined into a single distribution that describes the paired correlations
across the entire dataset. To determine whether the recorded neurons
were significantly correlated, we estimated the distribution of correla-
tions in a simulated data set that lacked any correlation between neurons.
The distributions of burst width and interval durations were measured
for the population of RA neurons in each bird, and simulated data were
constructed with burst width and burst intervals chosen randomly from
the measured distributions. The distribution of cell-cell correlations was
calculated for 500 simulated data sets, and the mean and SD was deter-
mined for the resulting distribution combined over all birds. A Kolmog-
orov—Smirnov (KS) test was used to test the null hypothesis that the
empirical correlations were drawn from the same distribution as the
random correlations.

Neural ensemble correlation matrix. For each neuron in the recorded
population, we found its mean instantaneous firing rate over all recorded
motifs. We defined the representative instantaneous firing rate trace as
the one that had the minimum squared error relative to the mean. The
representative instantaneous firing rate of neuron i was the ith element of
the time-dependent activity vector A;(t). Based on this vector, the corre-
lation between the two patterns of neural activity occurring at times rand
t' was calculated as follows:

(A(DA()) _
Cy(t, t') = T i where A;(t) = Ai(t) — (A(D).
VAT (ONCAL ()
Note that the instantaneous firing rate vector was mean-subtracted be-
fore calculating Cy; this improved the fine structure resolvable in the
correlation matrix. The mean subtraction also resulted in a slight nega-
tive offset in the distribution of neural correlations (as seen in the con-
ditional distributions) (see Fig. 6 D, G). Results equivalent to those dis-
cussed in this study are obtained even if the mean subtraction is not used.
Times at which no neurons in the data set were bursting were excluded
from the analysis, because they contained no data. The fraction of time in
which there was no population activity (i.e., no bursts from any RA
neuron) depended on the number of neurons recorded in each bird. For
each bird, the number of neurons and the fraction of the motif contain-
ing no bursts (off) was as follows: bird 9, 34 neurons (1% off); bird 12, 26
neurons (8% off); bird 10, 10 neurons (30% off); bird 7, 6 neurons (45%
off). In addition to the dot product correlation metric described here, we
also used the Hamming distance to measure the neural ensemble corre-
lations without change in results. The neural ensemble activity was esti-
mated in a 0.5 ms window in 0.5 ms steps.

Song correlation matrix. A multitaper estimate (Thompson, 1982) of
the log power spectrum S;(t) of each song was calculated with a sliding 8
ms window, using a step size of 0.5 ms, and a time-bandwidth product of
NW = 2, where i is the frequency bin and ¢ is the time in the song. The
song spectrogram was normalized by average song spectrum and average
acoustic power to emphasize fine acoustic structure within syllables
rather than simply spectral changes associated with syllables versus silent
internals.
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S(t,w) = S(t,w) — P(1) — a(t)S(w), where P(1) = (S(t,w)),,» S(w) =
(S(tw)), = (S(tw))y,,» and a(t) = ([S(tw) — P(1)]S(w)),,.

The song correlation matrix at times t and ' was then calculated as
follows:

(St 0)S(', ),

) = S ) oS, )

In addition, we repeated the entire analysis using a set of univariate
acoustic features. These features were designed to correspond, as much as
possible, to the muscle control signals used to drive the vocal organ
(Tchernichovski et al., 2000). All of the results and statistical analyses
based on the song correlation matrix were reproduced using the univar-
iate song features in place of the song spectrogram.

Latency correction. It was important to estimate the latency between
neural activity in RA and the sound it generated to properly compare
related time points in the song and neural correlation matrices. For each
bird, we chose a latency correction, 7y, that maximized the overlap of the
structure in the neural and song correlation matrices (over a range of 0
ms < 7, <40 ms). For birds 9 and 12, we found 7*** = 14 ms; for bird 10,
we found 7" = 8 ms. Because there was insufficient data to estimate the
latency for bird 7, a value of 7™ = 14 ms was used. These values are
consistent with a direct measurement of latency using brief electrical
stimulation in RA during singing (7= 15 = 5ms) (Fee et al., 2004). None
of our results were sensitive to the value of latency used (tested over a
range of 0-50 ms in 5 ms steps). The latency correction was applied to
each song correlation matrix, such that in all subsequent analyses, the
time ¢ refers to a pattern of RA neural activity and the sound it generated.

Correlation width analysis. The correlation width of the song and neu-
ral signals was calculated from the width of the diagonal of each correla-
tion matrix. For the time t, this was defined as the radius of the largest
circle that could be drawn around the point (#, #) in the matrix without
containing a correlation value less than the threshold C; = 0.5. This
procedure yielded a contour line around the diagonal of both the song
and neural correlation matrices that corresponds to the instantaneous
full-width half-height of the autocorrelation function. The correlation
width effectively divides the song correlation matrix into two regions:
correlations within the local acoustic structure of a syllable (points lying
between the width contour line and the matrix diagonal) and nonlocal
correlations between different syllables or subsyllables (points that oc-
curred outside the width contour, far from the matrix diagonal). The
scatter plot relating neural and song correlation widths quantifies the
relationship between neural activity and acoustic structure within sylla-
bles. The results reported here do not depend on the choice of correlation
threshold over a wide range of values (C. = 0.2-0.9).

Conditional distributions. The conditional distribution analysis was
used to quantify the relationship between neural activity and acoustic
structure that occurred in separate syllables, that is, in regions of the
correlation matrices that lie above the correlation-width contour. A
two-dimensional histogram, H(Cy, C,), of pairs of correlation values
[Cn(t 1), Cy(t,t')] was accumulated over all time pairs (f, t') greater than
the width contour described above.

The conditional probability distribution, Py, of neural correlations
associated with a given value of song correlation (see Fig. 3d) was deter-
mined by normalizing the histogram at each value of song correlation as
follows:

H(CN1 CG)

PN(CN|CS) = W;

where
1
H(Cy) = j H(Cy, Cs)dCy.
-1

The expected (mean) value of Cy in the conditional distribution was
calculated at each value of song correlation as follows:
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1
;(Cs) = f CNP(CN|CS)dCN)
-1

asshown in Figure 6, D and G. To ensure that the neural and acoustic data
had the same temporal resolution, the instantaneous firing rates used to
calculate the neural correlation matrix were smoothed with the same
window function used to calculate the time-frequency spectrum of the
motif (8 ms width).

Temporal uncertainty calculation. To estimate the temporal uncer-
tainty for a population of N neurons, the following procedure was used
(for each bird). Firing rates were sampled at 10 ms intervals and were set
to 0 or 1 using a threshold of 125 Hz. The neural correlation matrix Cy
was then calculated using randomly selected subsamples of N neurons
from our data set. Entries in the correlation matrix where Cy, = 1 indicate
pairs of times during which identical sets of neurons were active (inde-
pendent of firing rate). The thresholded matrix was then searched to find
the number of unique neural ensembles and the number of occurrences
of each ensemble, from which the entropy of the RA code was calculated
as follows:

N,
I= E pilog,(1/py),

i=1

where Ny is the number of unique neural ensembles exhibited by the
population of RA neurons, and p; is the probability of occurrence of
ensemble i. 2 ' represents the number of time steps that, on average, could
be encoded by a population of neurons with entropy I. By dividing the
length of the song (in milliseconds) by 2, we obtain the temporal uncer-
tainty for the neural population of size N. This number represents the
average temporal error (in milliseconds) that one would have in predict-
ing the location in the song from a randomly chosen pattern of neural
activity. By randomly resampling the original neural data set 500 times,
we obtained a monte-carlo estimate of the mean and confidence intervals
for the N neuron temporal uncertainty in motif time. This procedure was
repeated for 1-34 neurons.

Results

Firing statistics of single RA neurons

A motorized microdrive (Fee and Leonardo, 2001) was used to
record single-unit extracellular signals from neurons in nucleus
RA in four freely behaving adult male zebra finches (Taeniopygia
guttata; n = 78 total neurons). During singing, the majority of RA
neurons we recorded generated well-defined bursts of action po-
tentials (Figs. 1B, 2A, 4A), as observed previously (Yu and Mar-
goliash, 1996). Based on their highly periodic spontaneous firing
patterns (~20-30 Hz) and large spike widths (202 = 63 us),
these neurons were identified as putative projection neurons (n =
76) (Spiro etal., 1999), which project to downstream targets and also
make local collaterals.

A second class of neurons was found that had narrower peak-
to-trough spike widths (75 = 12 us) than the projection neurons
and were not spontaneously active in the nonsinging bird (n = 2
in bird 9; see Materials and Methods). Narrow spike widths and a
lack of spontaneous activity are both characteristics of RA inter-
neurons observed in brain slice recordings, in contrast to RA
projection neurons, which are spontaneously active and exhibit
larger spike widths (Spiro et al., 1999). The two putative inter-
neurons (Fig. 1 B, bottom) became active during the song intro-
ductory notes and had firing rates of 107 * 13 Hz (£SD) and
183 * 8 Hz (£SD) over the duration of the song. These neurons
exhibited spike patterns that were qualitatively less bursting and
less stereotyped than the majority type. The variability of the
firing pattern of each neuron was quantified by computing the
average correlation between all of the spike trains recorded for
that neuron during singing. The average correlation between the
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rons during singing was sharply peaked at
2 ms and had a long exponentially decay-
ing tail for intervals >8 ms (Fig. 2 B). The
distribution of instantaneous firing rates
(the inverse of the interspike intervals) was
strongly bimodal (Fig. 2C), with one mode
reflecting the firing rates within RA bursts
and the other mode reflecting the lower
firing rate between bursts. Burst firing
rates were peaked at 455 Hz with a width
(at half maximum) of =188 Hz. Burst on-
sets and offsets were defined using a
threshold instantaneous firing rate of 125
Hz (see Materials and Methods). RA
bursts had a mean width of 8.7 ms and
ranged from 3 to 20 ms duration (10-90%
of distribution; median, 6.0 = 0.4 ms)
(Fig. 2 D). Intervals between RA bursts had
a mean duration of 53.90 * 50.1 ms SD.
On average, each RA neuron generated 12
bursts per song motif (average burst rate,
16 = 3.7 bursts/s) and was “on” for ~12 *+
2% of the motif (relatively independent of
the choice of threshold over a range of =25
Hz) (Fig. 2E). Simultaneous recordings
were made from 13 pairs of RA neurons
(n =61inbird 9;n = 7 in bird 12) (Fig. 3A).
Simultaneous bursts across neuron pairs
exhibited spike-timing precision 0of 0.28 =
0.3 ms rms jitter (Fig. 3B). At burst sepa-
rations >20 ms, the jitter increased lin-
early at a rate of 0.7 ms per 100 ms
separation.

Firing pattern correlations between
pairs of RA neurons

Using the stereotyped acoustic features of
the song, we were able to align the firing
patterns of all of the RA neurons recorded
in the same bird, thus reconstructing the
patterns of neural activity that occurred
across the entire population of putative

200 300
Time [ms]

Figure1.

figure shows a representative song motif for this bird.

spike trains of each interneuron was 0.62 * 0.1. In contrast, the
average correlation of the projection neuron spike trains from
motif to motif was 0.90 = 0.1 (averaged across 34 neurons; bird
9). The motif-to-motif correlations in interneuron spike patterns
were significantly lower than those of the projection neurons (¢
test; p = 0.002). The putative interneurons were not included in
the analysis or results described in the remainder of this study.
The interspike interval histogram of putative projection neu-

Recording of the activity of a large population of RA neurons in the singing zebra finch. A, Simplified schematic view
of the oscine song control system. The premotor pathway from HVC to RA to nXlits (hypoglossal nucleus) to the vocal organ (syrinx)
is highlighted in red. DLM, Medial nucleus of the dorsolateral thalamus; LMAN, lateral magnocellular nucleus of the anterior
nidopallium (Reiner etal., 2004); NIf, nucleus interface of the nidopallium. B, Raster plot of song-aligned spike activity of all 34 RA
projection neurons recorded during singing in bird 9. Each row shows the spikes produced during one song motif. Different colored
spike trains represent the activities of different RA neurons, which have all been aligned to a common time axis using the song
motif. Each RA neuron produced a pattern of bursts that was generally different from all other RA neurons. Two putative RA
interneurons recorded in the same bird are shown at the bottom (gray box). The time-frequency spectrogram at the top of the

500 projection neurons (n = 6, 34, 10, and 26
neurons in birds 7, 9, 10, and 12, respec-
tively) (see Materials and Methods). A
striking aspect of the RA burst patterns ap-
parent from the aligned spike trains (Figs.
1B, 2A) was that most neurons generated
a unique time-varying pattern of bursts.
The mean correlation between firing pat-
terns of different RA neurons was 0.015 =
0.12 SD. Of the 946 pairwise correlations
in the four birds, only 0.5% exhibited fir-
ing rate correlations >0.5 (three neuron
pairs in bird 9, and one pair each in birds
10 and 12). Furthermore, the distribution of pairwise correla-
tions was not significantly different from the distribution of cor-
relations found for simulated data sets with randomly placed
bursts (KS test; p = 0.07) (Fig. 2 F) (see Materials and Methods).

Occasionally, two putative projection neurons were recorded
on a single electrode in RA. In several cases (three neuron pairs
for bird 9; one neuron pair for bird 12), the waveforms had a
significantly different amplitude, such that the two neurons were
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Figure2. Statistics of RA firing patterns. 4, Instantaneous firing rates of 10 RA neurons from

bird 10 over the course of the song motif. RA neurons exhibit pronounced bursts with rapid
onset and offset. At the top is the spectrogram of the bird’s song. Note the reduction in RA burst
density during the production of simple harmonic syllables versus complex nonharmonic sylla-
bles. B, Interspike interval histogram for all song-related RA spike trains (all birds; dashed line s
a 10X zoom of the solid line). G, Distribution of instantaneous firing rates (all birds). D, Histo-
gram of burst durations (threshold of 125 Hz; all birds). The mean burst length is 8.67 ms; the
gray box marks the 10-90% interval. £, Average fraction of RA bursts with firing rates above
threshold, as a function of threshold (all birds). Note the plateau at ~125 Hz, with a fraction
“on” of 12%. F, Distribution of correlations between all pairs of RA neurons recorded in each
bird, accumulated across all birds (solid black line, 0.02 bin size; n = 946 pairs). The distribution
for simulated data with randomly placed bursts is also shown (mean, dashed black line; 25D,
dark gray region; =3 SD, light gray region). G, Instantaneous firing rate traces for three pairs of
neighboring RA neurons in bird 9. Each pair was recorded simultaneously on the same
microelectrode.

easily distinguished. The close spatial proximity of these neuron
pairs suggests they were in the same myotopic region of RA (Vi-
cario, 1991). Neighboring RA neurons exhibited very different
spiking patterns (Fig. 2G). The firing rate correlations between
these simultaneously recorded pairs on the same electrode were
small (0.00 = 0.11).

RA population activity during simple and complex syllables

We first examined the relationship between bursting probability
and song structure at a coarse level. The fraction of bursting
neurons (firing rates above 125 Hz threshold) during nonhar-
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monic notes was significantly higher than the fraction of bursting
neurons during simple harmonic stack notes (0.155 = 0.005 SE
compared with 0.084 = 0.007; KS test; p < 10 ~ % n = 76 neurons;
four birds) (Fig. 2A). In contrast, there was no significant differ-
ence between the fraction of neurons bursting during syllables
and the fraction bursting during the silent intervals between syl-
lables (0.128 = 0.005 SE compared with 0.129 = 0.007; KS test;
p < 0.57; latency correction of 15 ms) (see Materials and Meth-
ods) (Fig. 4A).

Correlations between RA ensembles

An inspection of the song-aligned RA spike trains showed that
different sets of RA neurons turned on and off in a highly predict-
able manner over the course of the bird’s song (Figs. 1B,2A,4A).
We refer to the collection of RA cells that were active at a given
moment in time as a neural ensemble. Note that in our terminol-
ogy, the ensemble is the active subset of a fixed population of RA
neurons (each moment in the song may be associated with a
different ensemble). To quantify this ensemble activity more pre-
cisely, we used a time-dependent activity vector A;(¢) to represent
the instantaneous firing rate of the ith neuron at time ¢ in the song
motif of each bird (see Materials and Methods). The similarity of
the RA neural ensembles active at different time points in the
song was then determined from a neural correlation matrix Cy(t,
t'), such that each element (t, t') in the matrix was defined as the
correlation of the pattern of RA neural activity at time ¢ with the
pattern of RA neural activity at time ¢ (Fig. 4B) (see Materials
and Methods). Cy(t, t') is a symmetric matrix for which values
can range from 1 (identical patterns of neural activity) to —1
(anticorrelated patterns of neural activity).

By projecting the neural correlation matrix along its diagonal,
we calculated the lag autocorrelation, the function that describes
the average length of time a pattern of neural activity remains
correlated with itself (Fig. 5A). (Note that the autocorrelation of
the time-dependent activity vector, A;(t), is different from the
average autocorrelation of the firing rates from individual cells.)
For all four birds, the autocorrelation shows a strong peak at zero
time with a width of 7.9 = 1.4 ms (full-width at half-height) and
is essentially uncorrelated at time lags >20 ms (Cy, = 0.03 for |t —
t'| > 20 ms). The width of the autocorrelation is consistent with
the 8.7 ms mean burst width of the RA neurons. In summary, at
each time in the song motif, an ensemble of ~10% of RA neurons
lasted for ~10 ms, after which the activity evolved to a different,
uncorrelated ensemble of RA neurons.

Time scale of changes in acoustic structure and RA ensembles
The acoustic structure in zebra finch song contains a wide variety
of time scales that must ultimately be represented by the spike
patterns of neurons in the song control system. As discussed ear-
lier, HVC g, neurons encode the song with sparse bursts of ac-
tivity, whereas the vocal muscle control signals are continuous
with a wide range of temporal structure. Where are RA firing
patterns located along this continuum of time scales? To address
this question, we constructed a song correlation matrix Cg(t, t')
from the song spectrogram (Fig. 4C) in a manner analogous to
the neural correlation matrix (see Materials and Methods). Each
element in Cy represents the correlation between the acoustic
spectra occurring at two different time points. The song and neu-
ral correlation matrices were corrected for the latency shift be-
tween the onset of RA activity and the generation of sound (see
Materials and Methods), such that corresponding times (, t') in
each matrix refer to two RA ensembles and the sounds they
generated. Equivalent results were obtained in the subsequent
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analyses using a set univariate acoustic
features that may more directly corre-
spond to patterns of muscle activation
(Tchernichovski et al., 2000) (see Materi-
als and Methods) (supplementary Fig. 1,
available at www.jneurosci.org as supple-
mental material).

We used the song and neural correla-
tion matrices to quantify the relationship
between the time scale of changes in song
structure and the time scale of changes in
RA activity (see Materials and Methods).
The song correlation width (Fig. 5B) was
found to vary from very short lengths (10
ms) for complex sounds to much longer
lengths (up to 70 ms) for slowly changing
sounds such as harmonic stacks. In con-
trast, the same analysis for the neural cor-
relation matrix revealed a consistently
small neural correlation width (~5-10
ms) throughout the motif. A linear regres-
sion confirmed that there was little corre-
lation between widths of the song and neu-
ral correlation matrices (slope = 0.06;
r* = 0.04; p < 1077). A scatter plot of
these data illustrates that both slowly and
rapidly changing acoustic structure in the
bird’s song are associated with sequences
of rapidly changing RA ensembles (Fig.
5C, seen as vertical clusters of points). In
short, whereas acoustic structure in the
song spanned a wide range of time scales,
the neural ensembles changed continu-
ously on a short time scale, independent of
the acoustic structure being generated.

Relationship between RA ensembles and
song spectral structure
One fundamental question about RA is its
relation to spectral structure in the bird’s
song. In a premotor system, one might
typically examine the correlation between
the firing patterns of individual neurons
and motor activity. However, individual
RA neurons burst only a few times per
song motif, providing only a small sample
of data in which to detect these correla-
tions. Furthermore, because both the song
and the neural firing patterns are so highly
stereotyped, multiple song motifs give lit-
tle more information than a single motif.
A more fruitful approach is to relate the
firing patterns of a large population of RA
neurons to song spectral structure. We use
the presence of repeated vocal patterns in
song to examine how similar vocal outputs
at different times in the song are repre-
sented in RA. Not only does the bird repeat
the song motif multiple times within a
bout of singing, but some birds repeat in-
dividual syllables within a song motif. As-
sociated with each pair of time points in
the song (f, t') is the correlation between
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Figure 5.  Temporal evolution of RA activity patterns and song acoustic structure. 4, Auto-
correlation of population firing patterns. The neural correlation matrix in Figure 4 Bis averaged
along its diagonals to estimate typical duration of a neural ensemble. The full-width at half-
maximum is 7.9 ms; the dashed line shows a 10X zoom of bird 12. B, The time varying width
(At) of the song and neural correlation matrix diagonals (Fig. 48, () shows that many slowly
changing sounds were generated by rapidly changing patterns of RA neural activity. C, Cluster
plot of song and neural correlation widths (At) pooled across all four birds.

the vocal signals Cg(t, ') and the neural signals Cy(t, t'). To
quantify the relationship between correlations in song structure
and correlations in the associated RA ensembles, all pairs of
sounds in the song (at times t and ¢') were sorted by correlation
strength (i.e., 100% correlated sounds, 99% correlated sounds,
98% correlated sounds, etc., in 1% bins). The distribution of
neural correlations was then calculated within each specified level
of acoustic correlation and displayed as the columns of a matrix
(Fig. 6 D, G) (see Materials and Methods).

Based on this analysis, we found that when the bird repeated
an entire syllable at different times in the song [e.g., a syllable
stuttered within a motif (Helekar et al., 2001) or the repetition of
syllables across motifs], the RA ensembles were precisely repeated
(Fig. 6 E, F) and therefore were highly correlated (Cy, = 0.63 = 0.19
for Cs > 0.8) (Fig. 6G,J). This is consistent with previous studies

Leonardo and Fee e Premotor Coding in the Songbird

Frequency [kHz] J>

o N MO

@
E
B
1}
£
=

O

Neural Correlation

-1 1 -1

0 0
Song Correlation Song Correlation

— Bird 7 —Bird 9 (DD)
§ 0.8/ — Bird 9 (ABCD) 5038 ... Bird 12 (Two Motifs)
B — Bird 10 ;-]
0 — Bird 12 ]
B 5o g 5o
20 cO
> >
<® < ®
o0 W €o.0
[0) (]
4 P4
-0.8 0.0 0.8 -0.8 0.0 0.8
Song Correlation Song Correlation
Figure 6.  Analysis of correlation between patterns of activity in RA and acoustic structure in

the song. A, Spectrogram of a song that contains repeated acoustic structure (bird 9). This bird
stuttered syllable d a variable number of times (d1, d2, d3. . . ). The song is divided into two
sections, one with only repeated syllables (d2, d3; green bar) and another with different sylla-
bles that contain regions of similar subsyllables (a, b, ¢,d1; red bar). B, C, Song correlation matrix
and neural correlation matrix for syllables a, b, ¢, and d1. D, Conditional probability distribution
of neural correlations at different levels of song correlation. Each column represents the distri-
bution of neural ensemble correlations associated with the level of song correlation indicated on
the x-axis. £-G, Song correlation matrix, neural correlation matrix, and conditional probability
distribution of neural correlations for syllables d2 and d3. During repeated syllables, the highly
correlated sounds are associated with highly correlated neural ensembles. In contrast, during
the production of different syllables with similar subsyllables, the highly correlated sounds are
associated with uncorrelated neural ensembles. H, Average neural correlation as a function of
song correlation for each bird for the portion of the song motif containing repeated subsyllables
but not repeated syllables. J, Average neural correlation as a function of song correlation for
repeated syllables d2 and d3 in bird 9 and for repeated song motifs in bird 12.

showing that RA activity is precisely repeated from motif to motif
(Yu and Margoliash, 1996) and serves as a useful confirmation that
the analysis method indeed properly associates correlated patterns of
acoustic and neural activity. The correlation between repeated song
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of RA activity specifies a temporal position in the song with a resolution that varies with the
number of RA neurons in the sample. With ~30 neurons, one can predict the temporal position
in the song with a resolution comparable with the average RA burst width (~10 ms).

syllables and repeated patterns of RA activity is strong enough that it
is easily seen in the spike raster patterns themselves (Fig. 1 B).

In addition to repeating entire syllables (~100 ms), zebra
finches can also repeat shorter subsyllabic acoustic patterns (sub-
syllables) that can be as long as 3050 ms (e.g., bird 9) (Fig. 6 A).
Are these sounds associated with similar RA ensembles (Fig.
6B,C)? We found that similar subsyllables were generally not
associated with repeated patterns of RA activity. In fact, in the
nonstuttered portion of the song motif, larger acoustic correla-
tions were not associated with larger neural correlations (Cy =
0.071 = 0.085 for Cs > 0.8) (Fig. 6 D, H). Thus, repeated syllables
(long sequences of sound >100 ms) were generated by repeated
RA ensembles, whereas repeated or similar subsyllables (short
sequences of sound <50 ms) were typically generated by different
RA ensembles. These results were consistent across all four birds.

Predictability of temporal position in the song from RA
ensemble identity

The lack of correlation between RA firing patterns at different
times within the song motif suggests that there may be a one-to-
one correspondence between RA ensembles and time, such that
one could predict the exact temporal position in the song motif
from the current neural ensemble. How many neurons would be
required to do this? If we consider each RA neuron as having two
states, on and off, a single observation that a particular RA neu-
ron is on would constrain our uncertainty in the temporal posi-
tion of the song to one of the ~10 times that this neuron is known
to be active during the motif. An observation of the state of two
RA neurons would further constrain our uncertainty. By ran-
domly sampling subsets of N neurons from the RA data, we esti-
mated the average temporal uncertainty in song position as a
function of neural population size (Fig. 7) (see Materials and
Methods). For populations of ~30 neurons or larger, the RA
ensembles were sufficiently uncorrelated from one another that
an observation of the state of these neurons could be used to
predict the location in the song motif with 10 ms uncertainty, the
time duration over which a typical RA ensemble was active (this
does not apply for the stuttered syllables; in this case, the RA
firing pattern predicts the location within the syllable but not the
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motif). On average, each 10 ms slice of the song was associated
with a unique pattern of RA neural activity.

Thus, one of the remarkable aspects of the activity of RA neu-
rons is the paradoxical observation that RA firing patterns are
precisely reproduced with each rendition of the song motif, and
yet repetitions of highly similar sounds within a motif are often
accompanied by very different firing patterns.

Discussion

By recording large numbers of RA neurons in individual birds, we
have observed several striking properties of the RA circuit activity
that provide insight into the mechanisms of song control: (1)
there is a unique RA ensemble at each moment in the song; (2)
RA ensembles change rapidly on a 5-10 ms time scale regardless
of the temporal structure of the song; (3) similar subsyllables are
associated with uncorrelated RA ensembles; and (4) there is no
difference in RA firing patterns during syllables and silent inter-
vals between syllables. Both appear to be active vocal gestures that
are under explicit neural control. These findings form the basis of
our interpretation that zebra finch song is generated by a dy-
namic circuit that operates on a single underlying clock which
evolves continuously in time steps of 5-10 ms.

The lack of correlation between RA ensembles during re-
peated sounds is not merely a consequence of the features we used
to characterize the song; similar results were obtained with other
feature sets (supplementary Fig. 1, available at www.jneurosci.org
as supplemental material). Is it possible that some other set of
acoustic features would reveal strong correlations between RA
spike patterns and vocal output? Only 0.5% of pairs of RA neu-
rons exhibited correlations in their firing rate >0.5, implying that
among the ~8000 RA projection neurons, there are nearly this
many uncorrelated patterns of activity. Even neighboring neuron
pairs, presumed to be within the same myotopic regions in RA,
showed no correlations in their activity patterns. In contrast,
analyses of birdsong acoustic structure (Tchernichovski et al.,
2000) suggest that the song can be represented by a small number
of vocal parameters. If a small number of vocal parameters were
encoded by a large number of RA neurons (each of which is
correlated with a feature), then we would expect to see strong
correlations between pairs of neurons. The weak correlations be-
tween neuron pairs suggest that RA neurons are not correlated
with specific acoustic features. Note that even if individual RA
neurons are causally linked to activity in particular syringeal
muscles, the sparseness of burst patterns makes it likely that cor-
relations between single-neuron RA activity and the continuous
muscle activity will be small.

RA ensembles are thought to be driven on a short time scale by
RA-projecting neurons in HVC (Hahnloser et al., 2002). Just as
there is an RA ensemble for each time in the song, we infer that
there is a corresponding HVC g, ensemble for each time in the
song. Furthermore, because HVCy,, neurons burst extremely
sparsely, each RA ensemble must be driven by a unique HVC g,
ensemble. Figure 8 synthesizes these ideas into a simple model for
the generation of RA burst sequences during song production.
Interneurons and projection neuron collaterals may eventually
be shown to play an important role in shaping RA activity; how-
ever, at this point, we adopt a simpler model that does not include
these connections.

It is known that repeated song motifs (the entire sequence of
syllables) are produced by reactivating the same sequence of HVC
and RA ensembles (Yu and Margoliash, 1996; Hahnloser et al.,
2002). However, individual syllables can also be repeated at dif-
ferent times within a single motif. Yu and Margoliash (1996) have
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Figure 8.  Model of song motor control. A, Working hypothesis for the generation of vocal

control signals. Each HVC g, neuron (1-7) bursts at a single time in the song motif. Each of
these HVC neurons drives a different subpopulation of RA neurons (cc—y). Activity in RA is then
integrated into continuous muscle control signals by the motor unit. Although only one motor
output is shown, the model is easily extended to an arbitrary number of outputs. B, Activity
patterns in the song motor control model. Discrete and sparse activity in HVC is converted to
discrete and dense activity in RA. At each 10 ms time step in the song, a different population of
RA neurons is active. Note that constant vocal outputs can be generated by rapidly evolving
patterns of RA activity because of convergence and integration from RA to muscles (time steps
1-3). The end-to-end alignment of burst onsets and offsets is for graphical clarity only; it is not
known whether burst patterns in populations of RA or HVC g, neurons are organized in this
manner.

shown that syllable-length repetitions of vocal patterns may be
associated with repeated RA firing patterns. This is similar to the
repetition of RA activity we observe during the stuttered syllable
of bird 9 (Figs. 1 B,d1,d2,d3, 6). Although HVC ) neurons were
found to burst only once during a song motif, these recordings
were not done in birds that repeated or stuttered song syllables
(Hahnloser et al., 2002). The precise reproduction of RA ensem-

Leonardo and Fee e Premotor Coding in the Songbird

bles during stuttered syllables suggests that HVC ,, sequences
are also reactivated during repeated syllables, a prediction that
could be tested by recording from both RA and HVC y ,, neurons
in birds that repeat syllables within the song motif.

With this picture in mind, we return to the fundamental ques-
tion raised earlier: although the neural dynamics in HVC and RA
evolve rapidly on a 5-10 ms time scale, the song itself evolves over
a wide range of time scales, sometimes modulating rapidly on a
~5-10 ms time scale and other times remaining approximately
constant for ~100 ms, as during a harmonic stack. How are the
rapidly evolving RA ensembles transformed into continuous vo-
cal patterns? We frame a simple hypothesis in terms of the con-
vergence of RA neurons onto downstream motor circuits.

There are ~8000 RA neurons that project to the brainstem
(Gurney, 1981) and contribute to the activity of approximately
seven syringeal muscles (Greenewalt, 1968), a ~1000:1 conver-
gence. Although the relationship between syringeal muscle forces
and vocal output can be complex (Fee etal., 1998), recent dynam-
ical models (Gardner et al., 2001; Mindlin et al., 2003) suggest
that in many bird species, song generation is dominated by a
small number of muscle control signals that have a fairly direct
correspondence to acoustic parameters. Although the precise
connectivity between RA neurons and brainstem motor units is
not established, it is known that individual RA neurons project to
subregions of the hypoglossal motor nucleus (Vicario, 1991),
which in turn project to particular vocal muscles. Based on these
findings, we consider a simplified view in which vocal parameters
such as pitch are effectively generated by the convergent and
weighted contributions of RA neuron activity onto the syringeal
muscles (Fig. 8). Similar models have been proposed for cortical
control of arm movements in primates (Fetz and Cheney, 1980;
Todorov, 2000).

The striking relationship we observe between RA activity and
song acoustic structure arises naturally from this model. RA out-
puts are linearly summed to produce vocal control parameters,
allowing any pattern of RA activity that sums to the same value to
generate the same vocal output. Because of the convergence,
there are a large number of uncorrelated RA ensembles that can
produce the same sum and, hence, identical sounds; there is a
degenerate mapping between RA activity patterns and vocal out-
put. (We use the term degenerate in the same sense that the
genetic code is degenerate: different DNA sequences can encode a
single amino acid.) A linear summation of RA outputs is not
required; any mechanism that transforms the high-dimensional
space of RA activity onto the low-dimensional space of muscle
activity will produce a degenerate mapping. If 10 uncorrelated
RA ensembles that produce the same syringeal configuration are
generated in a sequence, the song will have constant acoustic
structure for 100 ms (Fig. 8 B, time steps 1-3). In this manner,
slowly changing vocal control signals can be produced by rapidly
changing patterns of RA activity (Fig. 5B,C). Likewise, if two
degenerate RA ensembles occurred at different times in the motif,
similar sounds could be produced at these different times (Fig. 6,
left panel).

Our data suggest that there are two mechanisms by which the
bird can repeat the same sound within the song motif: (1) by
reactivating the same ensemble of HVC ) neurons and driving
the same RA sequence; and (2) by producing the same vocal
output two times in a nonrepeating HVC y, sequence that drives
degenerate RA sequences. The reason these two mechanisms are
used is not clear; however, if the bird must learn to reproduce the
same sound within a nonrepeating HVC g, sequence, the degen-
eracy between RA and the vocal organ makes it highly likely that
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the RA ensemble learned for each sound will be different. Thus,
even during constant vocal outputs, the sequence of learned RA
ensembles will evolve continuously on the short time scale, set
approximately by the width of the HVC g, bursts.

Degeneracy in the mapping from RA activity to vocal muscle
activity can account for our observation that similar subsyllables
are associated with different RA ensembles. However, conver-
gence between RA and the vocal muscles is not the only possible
source of degeneracy: The same sound could, in principle, be
produced by different patterns of muscle activation or different
configurations of the vocal organ (Suthers, 1996) in the same way
that a given reach trajectory can result from different levels of
activation of antagonistic muscles of the arm (Gribble et al.,
2003). Convergence anywhere in the pathway from premotor
neurons to vocal output would result in an effective many-to-one
mapping between neural activity and vocal output.

Our analysis reveals a degenerate mapping between RA firing
patterns and acoustic output. However, to definitively demon-
strate a degenerate mapping between RA and muscle configura-
tion, one would need to record RA neurons and syringeal EMG
signals simultaneously. There may also be time dependencies in
the motor pathway downstream from RA, such that the RA se-
quences required to produce a particular sound may depend on
the recent history of the vocal configuration. Although previous
results suggest that RA has a short time scale effect on vocal
output (~15 ms) (Fee et al., 2004), the repeated sequences we
observe are also fairly short (30-50 ms). Thus, although we can-
not completely rule out the importance of these effects, we favor
the interpretation that the massive convergence from RA to syr-
ingeal muscles results in a many-to-one mapping of RA ensem-
bles to muscle configuration.

We began by asking how the sparse activity in HVC could be
transformed into continuous activity in the vocal muscles. One
might have expected the time scale of the RA firing patterns to
correspond directly to the time scale of song acoustic structure,
with slow acoustic modulations produced by slowly changing RA
ensembles. However, our data suggest a different solution: motor
degeneracy can explain how the same sound can be produced at
many different times in the motif by precisely reproduced but
uncorrelated patterns of RA activity. The convergent mapping of
many different neural ensembles to the same output state allows
the dynamics of HVC and RA to operate on a single fast clock yet
still generate acoustic modulation over a wide range of time
scales. This degeneracy permits many different patterns of HVC
to RA connectivity to solve the problem of learning a vocal output
and may thereby result in faster or more efficient learning (Fiete
et al., 2004).
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