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Neurobiology of Disease

Transgenic Mouse Model of Tau Pathology in Astrocytes
Leading to Nervous System Degeneration
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ICenter for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and 2Institute on Aging, University of Pennsylvania
School of Medicine, Philadelphia, Pennsylvania 19104

Filamentous tau inclusions in neurons and glia are neuropathological hallmarks of sporadic and familial tauopathies. Because tau gene
mutations are pathogenic for the autosomal dominant tauopathy “frontotemporal dementia and parkinsonism linked to chromosome
17,” tau abnormalities are implicated directly in the onset and/or progression of disease. Although filamentous tau aggregates are
acknowledged to play roles in degenerative mechanisms resulting in neuron loss, the contributions of glial tau pathology to neurodegen-
eration remain essentially unexplored. To begin to elucidate the role of glial pathology in tauopathies, we generated a transgenic (Tg)
mouse model of astrocytic tau pathology by expressing the human tau protein driven by the glial fibrillary acidic protein (GFAP)
promoter. Whereas endogenous tau was not detected in astrocytes of control mice, in GFAP/tau Tg mice there was robust astrocytic tau
expression that was associated with a redistribution of the GFAP network. Subsequently, there was an age-dependent accumulation of tau
pathology in astrocytes that was Gallyas and variably thioflavine S positive as observed in many tauopathies. The tau pathology in these
Tg mice was abnormally phosphorylated, ubiquitinated, and filamentous, and the emergence of this pathology coincided with accumu-
lation of insoluble tau protein. Furthermore, in regions with robust astrocytic tau pathology, there was mild blood- brain barrier
disruption, induction of low-molecular-weight heat shock proteins, and focal neuron degeneration. Thus, these Tg mice recapitulate key
features of astrocytic pathology observed in human tauopathies and demonstrate functional consequences of this pathology including

neuron degeneration in the absence of neuronal tau inclusions.
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Introduction

Filamentous inclusions composed of the microtubule-associated
protein (MAP) tau are defining pathological hallmarks of neuro-
degenerative diseases referred to as tauopathies, including Pick’s
disease (PiD), progressive supranuclear palsy (PSP), corticobasal
degeneration (CBD), and Alzheimer’s disease (AD) (Lee et al.,
2001). The pathological description of tauopathies other than AD
that manifest tau pathology in the absence of A3 deposition pro-
vided indirect evidence for a causative role of tau in neurodegen-
eration (Feany and Dickson, 1996). However, the discovery of
mutations in the fau gene in frontotemporal dementia and par-
kinsonism linked to chromosome 17 (FTDP-17) provided un-
equivocal confirmation of the central role of tau abnormalities in
the pathogenesis of tauopathies (Hutton et al., 1998; Poorkaj et
al., 1998; Spillantini et al., 1998).
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Tau is a low-molecular-weight MAP that is abundant in the
CNS, where it is expressed predominantly in axons (Cleveland et
al., 1977). Tau regulates the assembly and stability of microtu-
bules (Weingarten et al., 1975; Cleveland et al., 1977), and this
microtubule-binding function of tau is regulated negatively by
phosphorylation (Drechsel et al., 1992; Biernat et al., 1993; Bram-
blett et al., 1993). However, tau protein in the filamentous inclu-
sions is abnormally phosphorylated and highly insoluble (Lee et
al., 2001).

In many tauopathies, the tau pathology occurs not only in
neurons but also in astrocytes and oligodendrocytes (Nishimura
et al., 1992; Feany and Dickson, 1995; Komori, 1999). This con-
trasts with normal CNS expression, wherein tau is present at low
levels in glia (Shin et al., 1991; LoPresti et al., 1995). The distri-
bution of tau pathology in astrocytes does not correlate with the
pattern of neuron loss, suggesting that this pathology reflects an
independent degenerative change rather than a reactive process
(Togo and Dickson, 2002). Therefore, the expression or catabo-
lism of tau protein is altered in glial cells by unknown mecha-
nismsleading to the accumulation of aggregated tau. Whereas the
role of tau pathology in neurons is mostly accepted, the role of the
glial tau pathology in neurodegeneration is completely unknown.
Thus, there are numerous transgenic (Tg) models of tau pathol-
ogy in neurons, some of which recapitulate many of the features
of tauopathies, including the age-dependent accumulation of fil-
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Table 1. Antibodies

Antibody Source Specificity Reference/source

Ntau Rabbit Tau; 1-12 Dabir et al., 2004

0112 Mouse Tau; human specific, exon 2 V.M.-Y. Lee, unpublished observation
T4 Mouse Tau; human specific, 141-178 Kosik et al., 1988

AT8 Mouse Tau; pSer202/pThr205 Goedert etal., 1993

AT10 Mouse Tau; pThr212/pSer214 Mercken etal., 1992

PHF6 Mouse Tau; pThr231 Hoffmann et al., 1997

PHF41 Mouse Tau; pThr231 Hoffmann et al., 1997

PHF1 Mouse Ptau; pSer396/pSer404 Greenberg and Davies, 1990

T46 Mouse Pltau; 404 —441 Kosik et al., 1988

17026 Rabbit Recombinant tau Ishihara et al., 1999

T49 Mouse Pl murine tau Mawal-Dewan et al., 1994

GFAP Rabbit GFAP DakoCytomation (Carpinteria, CA)
RM024 Mouse NFH; multiphosphorylation repeats Leeetal., 1988

RMO0189 Mouse NFM; multiphosphorylation repeats Leeetal., 1988

RM0217 Mouse NFH; multiphosphorylation repeats Leeetal., 1988

1510 Mouse Ubiquitin Chemicon (Temecula, CA)

Hsp27 Goat Hsp27 StressGen Biotechnologies (Victoria, British Columbia, Canada)
aB-crystallin Rabbit aB-crystallin StressGen Biotechnologies
Mouse Ig Rabbit Mouse Ig Jackson InmunoResearch
Albumin Sheep Albumin Biogenesis (Sandown, NH)

NeuN Mouse NeuN Chemicon

PI, Phosphorylation independent; NFH, neurofilament heavy molecular weight; NFM, neurofilament middle molecular weight.
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astrocytic tau pathology to the pathogene-
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mouse model of tau pathology restricted
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Materials and Methods
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Generation of GFAP/tau Tg mice. A wild-type
tau cDNA construct containing the T34 human 50
tau isoform (Goedert and Jakes, 1990) was sub-
cloned into the eukaryotic expression vector 37
pGfa2-expression vector at the BamHI restric-
tion site that uses the astrocyte-specific GFAP
promoter (Brenner etal., 1994). T34, one of the ~ Figure 1.  Expression of human tau in GFAP/tau Tg mice. A-C, Western blot analysis of HS-TBS-soluble proteins (10 g per
most abundant tau isoforms, contains both lane) extracted from cortex, brainstem (BS), and spinal cord (SC) samples of 2-month-old GFAP/tau Tg and control mice [non-Tg
exon 2, the first of two alternatively spliced  (NTg)].Immunoblots were detected with antibodies that detect human tau only (T14; A), murine tau only (T49; B), or both human
N-terminal exons, and exon 10, encoding for  and murine tau (T46; €). D, Western blot analysis of native (—) and dephosphorylated (+) HS-TBS-soluble proteins extracted
the second of four microtubule-binding repeats  from brainstem and probed with T46 that recognizes both mouse and human tau. Arrows in C and D indicate migration of T34
that is also alternatively spliced (Goedert and  human tau that s specifically expressed in GFAP/tau Tg mice. Molecular weight standards are indicated to the left of each panel.
Jakes, 1990). Linearized constructs were micro-  WT, Wild type; DeP, dephosphorylated.
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tified by Southern blotting with **P-labeled T34 cDNA probes. Candi-
date founder lines were backcrossed to non-Tg mice to establish germline
transmission. Human tau heterozygous mice were bred subsequently to
homozygosity, and non-Tg littermates were inbred and maintained as
control mice.

Histochemical and immunohistochemical analysis. Tg and non-Tg mice
were anesthetized lethally by intraperitoneal injection of ketamine hy-
drochloride (1 mg/10 g) and xylazine (0.1 mg/10 g) and perfused intra-
cardially with 15 ml of PBS followed by 15 ml of 10% neutral buffered
formalin or 70% ethanol in isotonic saline in accordance with protocols
approved by the University of Pennsylvania. The brains and spinal cords
were removed and fixed for an additional 24 h, processed by sequential
dehydration in ethanol, paraffin-embedded, and cut into 6-um-thick

Astrocyte-specific regional tau expression in GFAP/tau Tg mice. A-H, Immunohistochemistry was performed with
the human tau-specific MAb 0T12 on 6-month-old non-Tg (4-D) and GFAP/tau Tg line 4 (E-H) mice from the CNS regions as
indicated. Consistent with the biochemical analysis (Fig. 1), the highest levels of expression were observed consistently in the gray
matter of the spinal cord. The insetin E shows morphology of cortical astrocytes at high magnification. Scale bars: (in A) A-C, E-G,
200 m; (in D) D, H, 400 wm; E, inset, 25 m. I-Q, Spinal cord sections from 6-month-old non-Tg (/K) and GFAP/tau Tg, line
4 (L-Q) mice were double-labeled with 0T12 (green; /, L, 0) and GFAP (red; J, M, P). Merged images are depicted in K, N, and Q.
Prominent GFAP staining is observed in astrocytes within the gray matter of Tg mice that is not detected in non-Tg animals.
Arrowheads in @indicate the junction of the gray and white matter in the anterior horn of the spinal cord. Scale bars: (in K) I-N,
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sections. Sections were stained with Gallyas sil-
ver, thioflavine S, and hematoxylin/eosin stains
using standard protocols. For immunohisto-
chemical analysis, sections were rehydrated and
endogenous peroxide blocked by incubation
with methanol/hydrogen peroxide. Sections
were blocked with 2% fetal bovine serum in 50
mw Tris, pH 7.4, 150 mm NaCl, and incubated
with primary antibody (Table 1) overnight at
4°C. Subsequently, sections were incubated
with  horseradish  peroxidase-conjugated
anti-Ig antibodies (Vector Laboratories, Bur-
lingame, CA) followed by visualization with the
avidin—Dbiotin peroxidase method with 3,3'-
diaminobenzidine as chromagen (Vectastain
ABC kit; Vector Laboratories).

Double-labeling immunofluorescence stud-
ies were performed by coincubating sections
with antibodies as indicated (Table 1). After ex-
tensive washes, sections were labeled using Al-
exa Fluor 488- and 594-conjugated secondary
antibodies (Molecular Probes, Eugene, OR),
washed, and coverslipped with Vectashield
4',6'-diamidino-2-phenylindole ~ mounting
medium (Vector Laboratories). The sections
were viewed with an Olympus (Melville, NY)
PX51 microscope equipped with bright-field
and fluorescence light sources. Both bright-
field and fluorescent images were obtained
from the same field using a ProGres C14 Jenop-
tik camera (Laser Optik Systeme, Mainz,
Germany).

Biochemical analysis of tau expression and sol-
ubility. The cerebral hemispheres, brainstem
including cerebellum, and spinal cord were dis-
sected from mice after they were anesthetized
lethally in accordance with protocols approved
by the University of Pennsylvania. The tissue
samples were homogenized in 2 ml/g wet tissue
in high-salt Tris-buffered saline (HS-TBS; com-
posed of the following: 50 mm Tris, pH 7.6, 750
muM NaCl, 1 mm EGTA, 0.5 mm MgS0,, 20 mm
NaF, 100 um EDTA) supplemented with pro-
tease inhibitors (1 mm PMSF and 100 wg/ml
each of pepstatin A, leupeptin, soybean trypsin
inhibitor, N-tosyl-L-phenylalanyl chloromethyl
ketone, and N-tosyl-lysine chloromethyl ke-
tone) and centrifuged at 100,000 X g for 30 min
at 4°C. The supernatant was boiled for 5 min
and centrifuged at 15,000 X g for 20 min at 4°C.
The resulting supernatant contains the soluble
tau fraction. To remove myelin and associated
lipids, the insoluble pellets were reextracted
with 1 M sucrose in HS-TBS and centrifuged at
100,000 X g for 30 min at 4°C. The resulting
pellets were homogenized in radioimmunopre-
cipitation assay buffer (composed of the follow-
ing: 50 mM Tris, pH 8.0, 150 mm NaCl, 5 mm EDTA, 0.5% sodium
deoxycholate, 1% NP-40, 0.1% SDS supplemented with protease inhib-
itors) at 2 ml/g starting tissue and centrifuged as before. The supernatant
were saved as the detergent-soluble samples, which contained only low
levels of tau protein. The detergent-insoluble pellets were extracted with
70% formic acid (FA) at 1 ml/g starting wet tissue and disrupted with
sonication. FA was evaporated in an Automatic Environmental Speed-
Vac system (Savant Instruments, Holbrook, NY). The dried pellets were
resuspended in SDS sample buffer at a concentration of 1 ml/g starting
wet tissue. Where indicated, tau was dephosphorylated by treatment with
Escherichia coli alkaline phosphatase (Sigma, St. Louis, MO) at 67°C for
1 h. For Western blot analysis, nitrocellulose replicas were prepared from

Spinal cord
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7.5% SDS polyacrylamide slab gels containing
either the soluble, detergent-soluble or
-insoluble (FA) tau extracts and probed with a
panel of anti-tau antibodies (Table 1). Primary
antibodies were detected with horseradish
peroxidase-conjugated anti-mouse and anti-
rabbit IgG, respectively (Jackson ImmunoRe-
search, West Grove, PA). Immunoreactive pro-
teins  were revealed  using  ECL
chemiluminescence (NEN, Boston, MA).
Quantitative Western blot analysis was per-
formed using either T46 or 17026 followed by 1
pCi/ml 1'*-labeled goat anti-mouse or goat
anti-rabbit Ig, respectively (NEN) as secondary €@
antibodies. The radiolabeled blots were ex- F=
posed to PhosphorImager plates, and the pro- <
tein bands were visualized and quantified with
ImageQuant software using endogenous tau
protein expression as an internal standard (Mo-
lecular Dynamics, Sunnyvale, CA).

Ultrastructural analysis. Transmission elec-
tron microscopy (EM) was performed for the
Tg and control mice at 20-24 months of age
(n = 3). These mice were anesthetized deeply ~ @
and perfused intracardially with 10 ml of 0.1 m g
cacodylate buffer, pH 7.4, containing 0.05% o)
glutaraldehyde and 0.5% paraformaldehyde, s
followed by 50 ml of 0.1 M cacodylate buffer
containing 2% glutaraldehyde and 2% parafor-
maldehyde. The brain and spinal cord were re-
moved, fixed in 2% glutaraldehyde/2% para-
formaldehyde overnight, and postfixed in 2%
osmium tetroxide for 60 min at 4°C. After de-
hydration with graded alcohol and propylene
oxide, the tissues were embedded in Epon-812
and polymerized at 60°C for 72 h. Sections (65
nm thin) were cut and mounted on 200 mesh
copper grids. The sections were stained with 1%
uranyl acetate in 50% ethanol and bismuth sub-
nitrate and examined with a JEM1010 electron
microscope (Jeol, Peabody, MA) at 80 kV.

Preembedding immuno-EM was performed

P 5
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24 months.

Accumulation of tau pathology in aged GFAP/tau Tg mice that resembles astrocytic pathology in human tauopathies.

on 20- to 24-month-old Tg and control mice
(n = 2 per group). The mice were anesthetized
deeply and perfused intracardially with 10 ml of
0.05% glutaraldehyde, 0.5% paraformaldehyde

A—F, Immunohistochemical analysis was performed on sections of medulla from 6-month-old (4, D), 12-month-old (B, E), and
24-month-old (C, F) GFAP/tau Tg mice, line 4, as indicated with antibodies to recombinant tau (17026; A-() or tau phosphory-
lated at Ser202 and Thr205 (AT8; D—F). There is an age-dependent accumulation of phosphorylated tau epitopes detected in
GFAP/tau Tg mice. G-L, High-power photomicrographs of astrocytic pathology of Tg mice (G-/) and human tauopathies (J-L).
The astrocytic pathology in the Tg mice resembles the tufted astrocytes (G, J), astrocytic plaques (H, K), and thread pathology (/,

in 0.1 M cacodylate buffer, pH 7.4, followed by
50 ml of 0.2% glutaraldehyde, 2% paraformal-
dehyde in 0.1 M cacodylate buffer. The brains
and spinal cords were removed and postfixed with 4% paraformalde-
hyde, 0.2% glutaraldehyde, 0.2% picric acid in 0.1 M cacodylate buffer
overnight. Representative regions from the brainstem and spinal cord
were dissected and cut into 50-um-thick vibratome sections. Sections
were quenched in 0.1% sodium borohydride in TBS for 10 min followed
by 20% ethanol for 10 min. Nonspecific staining was blocked with 5%
donor horse serum in PBS with 0.1% cold-water fish skin gelatin and 1%
chicken egg albumin for 60 min, and sections were incubated subse-
quently with primary antibody in 0.1% bovine serum albumin/PBS over-
night at 4°C. Sections were washed and incubated with biotinylated sec-
ondary antibodies for 2 h at room temperature followed by visualization
with diaminobenzidine and silver-gold intensification using silver
methenamine developer containing 3% methenamine, 5% silver nitrate,
and 1% sodium tetraborate at 60°C for 10 min as described previously
(Ishihara et al., 2001). The reaction was stopped with 2% sodium acetate
and then stabilized in 3% sodium thiosulfate for 5 min. Gold toning was
performed by incubating the sections in 0.1% gold chloride for 5 min,
followed by stabilizing with 3% sodium thiosulfate for 5 min and over-
night fixation with 2% glutaraldehyde in PBS buffer. Sections with pos-
itive staining were postfixed in 0.5% osmium tetroxide for 20 min at 4°C,

L) observed in tauopathies such as PSP and CBD. Scale bars: (in A) A—F, 200 wm; (in G) G, H, J, K, 40 um; (in 1) 1, L, 80 wm.

dehydrated with graded series of ethanols, and embedded in Epon-
Araldite resin at 60°C for 48 h. Ultrathin sections of these blocks were cut
and mounted on 100 mesh EM grids and examined using a JEM1010
electron microscope at 80 kV.

Results

Generation of Tg mice that express human tau specifically

in astrocytes

Two founder lines (lines 4 and 7) of GFAP/tau Tg mice were
obtained that expressed the human tau gene driven by the GFAP
promoter stably with germline transmission, and both lines were
bred to homozygosity (Fig. 1). Regional tau protein expression
from cortex, brainstem, and spinal cord was determined by im-
munoblot analysis of the soluble protein extract from 2-month-
old mice. In both line 4 and line 7, tau expression levels was
region dependent, with the highest levels consistently observed in
the spinal cord (Fig. 1A). The expression of human tau protein
did not affect the expression of endogenous mouse tau (Fig. 1 B),
and the relative overexpression of human tau protein versus murine
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tau is depicted in Figure 1, C and D. Quantitative Western blot anal-
ysis indicated an increase of ~25, 50, and 100% of total tau protein
expression in cerebral cortex, brainstem, and spinal cord, respec-
tively, relative to endogenous mouse tau. The relative overexpression
of human tau compared with endogenous mouse tau levels was con-
sistently highest in the spinal cord of both lines as a result of the lower
levels of endogenous tau in the spinal cord and the enigmatic in-
creased human tau expression in the spinal cord driven by the GFAP
promoter. Dephosphorylation of the extracted tau protein with al-
kaline phosphatase demonstrated a unique tau protein isoform in
the GFAP/tau Tg versus non-Tg mice that comigrated with recom-
binant T34 human tau (Fig. 1 D, arrow). Because both GFAP/tau Tg
lines showed comparable tau expression, the majority of the studies
to follow, except where indicated, were performed using line 4.
However, both line 4 and line 7 showed comparable results.

Human tau expression in astrocytes is associated with altered
GFAP expression

To analyze the cell-type-specific tau expression in the GFAP/tau
Tg mice, an immunohistochemical analysis was performed on
6-month-old Tg and control mice using the human-specific
monoclonal antibody (MAb) OT12 (Fig. 2). There was robust tau
expression throughout the brain and spinal cord in the GFAP/tau

Characterization of tau pathology in GFAP/tau Tg mice. A—E, Immunohistochemical analysis was performed on
sections of pons (A, B) and thalamus (C~E) from 22-month-old GFAP/tau Tg mice, line 4 with a panel of antibodies to distinct
phosphorylated tau epitopes (4—D) and ubiquitin, as indicated. Ubiquitin (E) is detected only in a subset of tau pathologies. F~1,
Gallyas silver impregnation (F) and thioflavine S (ThioS) (G-1) staining of astrocytic tau pathology in brainstem of 22-month-old
GFAP/tau Tg mice. There is robust Gallyas-positive tau pathology in both astrocytic processes and cell soma. The thioflavine S stain
detects only a subset of the pathology observed with antibodies to tau phosphoepitopes or Gallyas stains. Scale bars: (in A) A-G,
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Tg mice, predominantly in areas of gray
matter (Fig. 2 E-H). High magnification
revealed tau-positive cells with morphol-
ogy of protoplasmic astrocytes (Fig. 2E,
inset). Furthermore, consistent with the
biochemistry data above (Fig. 1), tau stain-
ing was more robust in spinal cord relative
to cerebral cortex, subcortical nuclei, and
brainstem regions. In contrast, in non-Tg
mice, there was no immunoreactivity with
human tau-specific antibodies (Fig. 2A-
D), whereas antibodies that detect human
or murine tau revealed diffuse weak neu-
ropil immunoreactivity consistent with
axonal staining of endogenous mouse tau
(data not shown). To confirm the
astrocyte-specific tau expression, two-
color immunofluorescent staining was
performed with antibodies specific for tau
and GFAP (Fig. 2). In non-Tg mice, there
was no detectable tau immmunostaining
using a human-specific anti-tau antibody
and GFAP staining preferentially in white
matter (Fig. 2I-K). In contrast, human
tau protein colocalized in GFAP-positive
astrocytes, predominantly within gray
matter in the GFAP/tau Tg mice (Fig. 2 L—
Q). These astrocytes resemble reactive as-
trocytes observed in many pathological
conditions of the CNS. Thus, the expres-
sion of tau protein in astrocytes leads to
the altered expression of GFAP, a change
that was observed at all ages analyzed from
1 to 24 months of age (data not shown),
although this did not correspond to in-
creased total GFAP by Western blot anal-
ysis (data not shown). This change in
GFAP staining may reflect a redistribution
of the intermediate filament network sim-
ilar to that described with the overexpres-
sion of tau protein in primary rat astrocyte cultures (Yoshiyama
et al., 2003).

Tau pathologies in GFAP/tau Tg mice resembles astrocytic
pathology in human tauopathies

Human tauopathies such as PSP and CBD are characterized by
the accumulation of abnormally phosphorylated and biochemi-
cally insoluble tau protein in astrocytes, oligodendrocytes, and
neurons (Feany and Dickson, 1996; Lee et al., 2001). To further
characterize the GFAP/tau Tg mice, immunostaining was per-
formed on mice from 6 to 24 months of age with antibodies that
detect recombinant tau as well as phosphorylation-dependent
tau epitopes characteristic of the human diseases (Figs. 3, 4).
Whereas there was little change in staining pattern of young and
old mice with antibodies generated to recombinant tau (Fig. 3A—
C), there was an age-dependent increase in expression of
phosphorylation-dependent tau epitopes in GFAP/tau Tg mice
(Figs. 3D-F, 4). These phosphoepitopes epitopes were first de-
tected in brainstem and spinal cord of ~30% of Tg mice by 12
months of age, and by 18 months, the phosphoepitopes were
observed in >90% of animals in brainstem, spinal cord, and
subcortical nuclei, especially thalamus. By 24 months of age,
there was extensive tau pathology in all animals throughout these
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same regions, as well as cortical pathology
in a subset of animals (Fig. 5). Of note, the
astrocytic tau pathology was often asym-
metric in distribution, similar to that de-
scribed in many of the tauopathies and in
particular CBD (see Fig. 8). And at high
magnification, the astrocytic tau pathol-
ogy resembled the tufted astrocytes, astro-
cytic plaques, and thread pathology ob-
served in the human tauopathies (Fig. 3G-
L). Furthermore, the detection of
pathological tau phosphoepitopes coin-
cided with positive Gallyas silver impreg-
nation stains (Figs. 4 F, 5E-H ) (Ikedaetal.,
1994; Takahashi et al., 1996). A subset of
these tau pathologies were both ubiquitin
positive (Fig. 4E) and stained by thiofla- I
vine S, a histochemical dye that binds amy-
loid fibrils (Fig. 4G-I). Thus, the GFAP/
tau Tg mice develop an age-dependent
accumulation of tau pathology in astro-
cytes that histochemically and immuno-
histochemically resembled that observed
in tauopathies.

Because aggregated pathological tau in
human tauopathies is biochemically insol-
uble (Lee et al., 2001), we assessed the sol-
ubility of the tau in our GFAP/tau Tg mice
by sequential extraction of CNS tissue with
buffers of increasing protein solubilization
strength followed by Western blot analysis
of soluble (Fig. 6A) and insoluble FA-
extractable tau proteins (Fig. 6 B-D). Spe-
cifically, cortex, brainstem, and spinal
cord extracts were analyzed from pairs of
GFAP/tau Tgand non-Tg mice at 6, 12, 18,
and 24 months of age. Soluble extracts
from the brain and spinal cord showed
only mild and variable changes in tau ex-
pression with aging (Fig. 6A and data not
shown). However, there was a progressive
accumulation of insoluble and heavily ag-
gregated tau protein in the brainstem and
spinal cord of GFAP/tau Tg mice (Fig. 6).
There was little insoluble tau in cortex,
consistent with the low and variable corti-
cal tau pathology detected by immunohis-
tochemistry. In non-Tg mice, endogenous
tau protein was not detected in the insoluble fraction of brain and
spinal cord (Fig. 6C and data not shown). Furthermore, insoluble
tau was abnormally phosphorylated similar to human tauopa-
thies (Fig. 6 D) (Lee et al., 2001). Finally, the insoluble tau protein
was detected with human tau-specific antibodies (T14) but not
antibodies that detect only rodent tau (T49), indicating that the
astrocytic tau pathology is composed exclusively of human tau
(Fig. 6 D), which presumably reflects low levels of endogenous
tau expression in murine astrocytes (Couchie et al., 1985, 1988).
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Figure5.

Formation of tau filaments in astrocytes of aged GFAP/tau

Tg mice

Ultrastructurally, tau inclusions in astrocytes of human tauopathies
exhibit various morphologies ranging from poorly formed fibrils to
straight tubules with a diameter of 15-20 nm (Komori, 1999). To
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Distribution of tau pathology in GFAP/tau Tg mice. A-H, Immunohistochemical analysis with AT8 (4-D) and Gallyas
silver impregnation stain (E-=H) of CNS regions indicated from 24-month-old GFAP/tau Tg mouse. Robust pathology was ob-
served consistently in the spinal cord, brainstem, and thalamus, whereas cortical pathology was highly variable. Scale bars: (in E)
A—C,E-G,100 pm; (in H) D, H, 200 wum. 1, Diagrammatic summary of astrocytic tau pathology shown as coronal sections of the
mouse neuroaxis. The density of dots corresponds to frequency and quantity of observed pathology in aged Tg mice. Amyg,
Amygdala; Aq, aqueduct; Aud Cx, auditory cortex; Cau/Put, caudate—putamen; CC, corpus callosum; Cereb, cerebellum; DH, dorsal
horn; Ent Cx, entorhinal cortex; Hip, hippocampus; Hypo, hypothalamus; LV, lateral ventricle; Mam, mamillary body; Med, me-
dulla; Mid, midbrain; Mot Cx, motor cortex; OIf Cx, olfactory cortex; PC, posterior column; Pir Cx, piriform cortex; Sen Cx, sensory
cortex; SN, substantia nigra; Vis Cx, visual cortex; VH, ventral horn; third, third ventricle; fourth, fourth ventricle.

determine whether the astrocytic tau pathology in the GFAP/tau Tg
mice was filamentous, immuno-EM was performed with antibodies
specific for tau phosphoepitopes (Fig. 7). In the thalamus, brain-
stem, and spinal cord of 20- to 24-month-old Tg mice, we detected
accumulations of tau-positive fibrils ranging from 15 to 25 nm in
diameter irregularly arranged in the soma and processes of cells with
the morphology of astrocytes (Fig. 7A-D). These filaments were
composed of either straight fibrils or filaments with a subtle twist;
however, AD-like paired helical filaments were not identified. Fur-
thermore, the fibrils did not form large bundles as is typical of the
neuronal and oligodendroglial pathology in tauopathies (Komori,
1999). In contrast, the coarsely bundled astrocyte-specific interme-
diate filaments were distinguished easily from the tau filaments and
labeled avidly with antibodies to GFAP but were nonreactive with a
panel of anti-tau antibodies (Fig. 7E, F).



Forman et al. ® Tau Pathology in Astrocytes

A. Soluble, human tau
Line 4 Line 7

18 24 24

C. NTg vs tau Tg mice

100~
75—

1

50—
37—

B. Insoluble, human tau

D. Insoluble tau epitopes
WT4 WT7

J. Neurosci., April 6, 2005 - 25(14):3539-3550 * 3545

(data not shown), in regions with astro-
cytic tau pathology that colocalized with
phosphorylated tau epitopes (data not
shown). In contrast, there were no changes
in the staining pattern of hsp70 that is as-
sociated with the formation of insoluble
tau protein in neurons (Dou et al., 2003)
but not glia (data not shown) (Dabir et al.,
2004). Thus, tau protein expression in as-
trocytes leads to two distinct stages in the
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molecular weight markers are depicted on the left. WT, Wild type.

Tau pathology induces phenotypic changes in astrocytes

In neurodegenerative diseases, tau pathology is associated with
reactive changes in affected brain regions including gliosis and
expression of specific heat shock proteins (HSPs) such as hsp70 in
neurons (Dou et al., 2003) and the low-molecular-weight HSPs
hsp27 and aB-crystallin in astrocytes and oligodendrocytes
(Dabir et al., 2004). To address specifically the role of the astro-
cytic tau pathology in these phenotypic changes, we analyzed the
GFAP/tau Tg mice before and after the development of astrocytic
tau inclusions. As described above, the initial expression of tau in
astrocytes before the onset of pathological inclusions was associ-
ated with an increase in the somatic expression of GFAP (Figs. 2,
8). In contrast, the development of pathological tau inclusions
resulted in a redistribution of stainable GFAP in affected astro-
cytes (Fig. 8). This was associated with a remarkable masking of
tau epitopes such as exon 2 (Fig. 8) and the N terminus (data not
shown) that presumably was caused by the altered folding and/or
fibrillization of the tau protein (Fig. 8). Furthermore, tauopathies
with prominent glial pathology are associated with the induction
of the low-molecular-weight HSPs such as hsp27 and oB-
crystallin (Dabir et al., 2004). We detected a prominent increase
in staining of hsp27 (Fig. 8), and, to a lesser extent, aB-crystallin

Age-dependent accumulation of insoluble, aggregated, and phosphorylated tau protein in GFAP/tau Tg mice. Cortex
(Cx), brainstem (BS), and spinal cord (SC) from pairs of non-Tg (NTg) and GFAP/tau Tg mice at 6, 12, 18, and 24 months of age were
sequentially extracted as described in Materials and Methods. A, Immunoblot analysis of 10 g of soluble protein extracted from
the brainstem of GFAP/tau Tg mice at the age indicated and detected with the human-specific anti-tau MAb T14. There is only mild
and variable change in tau protein expression with increasing age. B, Inmunoblot analysis of insoluble tau corresponding to 25
mg of starting wet tissue weight extracted from GFAP/tau Tg mice at the age indicated and detected with the human tau-specific
MAb T14. C,Immunoblot analysis of insoluble tau corresponding to 25 mg of starting wet tissue weight extracted from the spinal
cord of non-Tg and GFAP/tau Tg mice at the age indicated and detected with polyclonal antibody 17026. Insoluble and heavily
aggregated tau is detected in brainstem and spinal cord by 18 months of age. Insoluble tau is not detected in non-Tg mice.
Arrowheads indicate nonspecific bands that are not recognized by other tau antibodies. D, Immunoblot analysis of insoluble tau
extracted from cortex, brainstem, and spinal cord of 24-month-old GFAP/tau Tg mice and detected with a panel of tau-specific
MADb as indicated. In contrast to Band Cabove, samples corresponding to only 5 mg starting wet tissue weight were loaded on the
gels to reduce the smearing associated with heavily aggregated, insoluble tau protein, which facilitated the visualization of the
predominant tau protein band at ~66 kDa. Insoluble tau is phosphorylated at multiple sites (PH1, AT8, and PHF6) and is
composed of human tau only (compare human tau-specific antibody T14 to murine tau-specific antibody T49). The position of

astrocytic response. Initially, there is an al-
teration of the intermediate filament net-
work with an increase in immunohisto-
chemically detectable GFAP. This is
followed by the accumulation of phospho-
tau epitopes, which coincides with the de-
tection of insoluble tau aggregates, a sec-
ond alteration in the GFAP network and
the induction of low-molecular-weight
heat shock proteins.

Astrocytic tau pathology is associated
with mild disruption of the

blood-brain barrier

Astrocytes now are known to play roles in
response to CNS injury, maintenance of
the blood—brain barrier (BBB), immune
modulation, and modulation of synaptic
activity (Ransom et al., 2003). We exam-
ined the GFAP/tau Tg mice for impair-
ments in BBB function because we ob-
served frequent pathology in astrocytic
end feet that abut endothelial cells to form
the BBB (Fig. 9). There was evidence of
mild BBB disruption by staining brain and
spinal cord sections from GFAP/tau Tg
animals for serum proteins including
mouse immunoglobulin and albumin be-
fore and after the development of pathol-
ogy. For example, in non-Tg mice of all
ages and GFAP/tau Tg mice before the de-
velopment of tau pathology, there was no extravascular immu-
noglobulin or albumin detected. In contrast, in brain regions
with robust tau pathology, we detected low levels of murine im-
munoglobulin (Fig. 9) and albumin (data not shown) in the brain
parenchyma, typically associated with cell soma. Although an
ultrastructural analysis of aged GFAP/tau Tg mice did not reveal
overt alterations of the astrocyte foot processes and endothelial
cell tight junctions (data not shown), these findings suggest the
pathology causes a subtle alteration in astrocyte structure and/or
function that leads to a mild disruption of the BBB. Similar alter-
ations in the BBB are seen occasionally in the tauopathies, which
over the course of the disease, might contribute to the process of
neurodegeneration (Claudio, 1996; Ujiie et al., 2003).

Neuron degeneration associated with astrocytic

tau pathology

To assess the impact of the astrocytic tau pathology on neurons
and their processes, we performed immunohistochemistry on
young and aged GFAP/tau Tg and non-Tg mice with panel of
antibodies to phosphorylated neurofilament (NF) epitopes.
Phosphorylated NF is normally expressed in axons, and detection
of these epitopes in neuronal perikarya is indicative of neuronal
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Figure 7.  Immuno-EM demonstrates filamentous tau accumulation in astrocytes of aged
GFAP/tau Tg mice. A, Immuno-EM of filamentous inclusion in spinal cord gray matter of a
22-month-old GFAP/tau Tg mouse labeled with AT8. B, High-power photomicrograph of the
boxed area in A showing tau-positive filaments. C, D, High-power photomicrographs of the
tau-positive filaments depicted by the arrowhead (C) and the arrow (D) in B. Arrowheads in €
and Dindicate filaments that areimmunolabeled with the AT8. E, Inmuno-EM of GFAP-positive
filaments in astrocytes of spinal cord from same mouse depicted in A-D. F, High-power pho-
tomicrograph of the boxed area in E showing coarsely bundled GFAP-positive intermediate
filaments. Scale bar: (in F) A, 1.25 mm; B, E, 500 nm; C, D, F, 100 nm.

injury (Julien and Mushynski, 1998). In aged non-Tg mice, all
antibodies to phosphorylated NFs stained axons, whereas the cell
bodies were nonreactive (Fig. 10). In contrast, in regions with
abundant astrocytic tau pathology, there were frequent neurons
that were stained with multiple antibodies to these phosphory-
lated NF epitopes, thereby indicating neuronal injury, features
similar to that observed in ballooned neurons characteristic of a
variety of neurodegenerative diseases including CBD (Dickson et
al., 1986). To further characterize the changes in neurons, we
performed transmission EM on Tg and non-Tg mice. In aged
GFAP/tau Tg mice (>20 months of age), we observed frequent
axonal degeneration with disruption of the associated myelin
(Fig. 10). Occasional axons showed well circumscribed inclusions
composed of amorphous granular material that on immuno-EM
were negative for antibodies to tau (Fig. 10 H). In addition, there
were numerous degenerative foci with myelin breakdown, mac-
rophage infiltration, and electron-dense bodies. These changes
were not observed in Tg mice <12 months of age or in age-
matched non-Tg animals. To determine whether the neuronal
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degeneration was associated with neuron loss, neuronal-specific
nuclear protein (NeuN)-positive neurons were quantified in the
spinal cord of aged (20—-24 months of age) Tg and non-Tg mice.
However, there was no statistically significant difference in the
number of NeuN-positive neurons between the two groups (data
not shown).

Discussion

The defining feature of tauopathies is filamentous tau inclusions
in neurons and glia. It is mostly accepted that neuronal tau inclu-
sions play a pathogenic role in neurodegeneration, especially in
view of data from animal models of neuronal tau pathology in
species ranging from C. elegans to mouse (Gotz et al., 2004).
However, the contribution of the glial tau pathology, particularly
that in astrocytes, to brain degeneration remains a mystery. In
fact, it is still debated whether the glial tau pathology is a reactive
or a degenerative process (Ikeda et al., 1995; Komori, 1999).
However, it was demonstrated recently that the astrogliosis ob-
served in PSP was associated with neurofibrillary tangle forma-
tion and not astrocytic tau pathology (Togo and Dickson, 2002),
and preliminary evidence implicates the astrocytic pathology in
tauopathies with glutamate excitotoxicity and oxidative stress
(Komori et al., 1998; Komori, 1999). To address specifically the
role of the astrocytic tau pathology in pathogenesis of neurode-
generation in tauopathies, we sought to model this astrocytic
pathology in mice, and we report data from this model implicat-
ing astrocytic tau pathology in brain generation.

There are few reports of model systems enabling investigation
of the role of tau pathology in glia. In 2001, Gotz et al. described
tau inclusions in oligodendrocytes as well as neurons in Tg mice
expressing the “272Y FTDP-17 mutation in an inducible system
using the prion protein promoter. The oligodendrocytic inclu-
sions were reported as thioflavine S positive, immunoreactive
with antibodies to phosphorylated tau protein, and ultrastructur-
ally, composed of tubulofilamentous aggregates that were 17-20
nm in diameter with a periodicity of 75 nm. However, in contrast
to authentic tauopathies, the inclusions were not Gallyas silver
positive, tau showed only a limited shift to insoluble species, and
there were no functional consequences of these tau pathologies.
More recently, Higuchi and colleagues described tau pathology in
oligodendrocytes, and to a lesser extent, in astrocytes, in aged Tg
mice using a tau minigene construct combined with the murine
Tal tubulin promoter leading to expression of tau isoforms with
three microtubule-binding repeats (Higuchi et al., 2002a). Aged
mice accumulated thioflavine S- and Gallyas-positive filamen-
tous aggregates in oligodendrocytes and, to a lesser extent, astro-
cytes, in association with the accumulation of insoluble tau pro-
tein. Furthermore, the pathology was associated with glial cell
degeneration and motor deficits, providing the first direct evi-
dence linking glial pathology to neurodegeneration. However,
the relative contribution of the tau pathology in oligodendrocytes
versus astrocytes to the observed phenotype was difficult to de-
termine, especially because neuronal tau abnormalities also oc-
curred in this model. Finally, tau inclusions were reported to
occur in oligodendrocytes and astrocytes of Tg mice expressing
four microtubule-binding repeat tau isoforms with the "301"
mutation driven by the prion protein promoter in association
with amyotrophy and progressive motor dysfunction (Lin et al.,
2003). But, as in the other models systems described above, it was
difficult to dissect out the independent contributions of glial tau
pathologies to the observed phenotype.

Recent in vitro studies have contributed to understanding the
biological consequences of tau abnormalities in astrocytes by us-
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ing adenoviral-mediated gene transfer to overexpress the longest
human tau isoform in primary rat astrocytes that led to decreases
in stable, detyrosinated microtubules and the accumulation of
destabilized (acetylated and tyrosinated) tubulin (Yoshiyama et
al., 2003). Because these changes also were associated with a dis-
ruption of the intermediated filaments, kinesin-dependent or-
ganelle trafficking, and Golgi fragmentation culminating in non-
apoptotic cell death, it is plausible that tau accumulation in
astrocytes disrupts microtubule stability. Similarly, in the GFAP/
tau Tg mice, the expression of tau in astrocytes leads to a redis-
tribution of the intermediate filament GFAP. However, no fila-
mentous tau inclusions occurred in the in vitro model system,
and the effects of tau overexpression on the function of astrocytes
were not assessed.

Thus, by developing tau pathologies exclusively in astrocytes,
the GFAP/tau Tg mice described herein provide unique insights
into the role of astrocytic tau abnormalities in mechanisms of

Phenotypic changes associated with tau pathology in astrocytes. A-1, Two-color immunofluorescence staining of
spinal cord from 24-month-old GFAP/tau Tg mice. 0T12, which s specific for exon 2 of human tau, colocalizes with GFAP (G-/). In
contrast, in regions with AT8-positive tau pathology in astrocytes, there is a relative reduction of stainable GFAP (A-F).J, K,
Immunohistochemistry for hsp27, from the thalamus of 24-month-old GFAP/tau Tg and non-Tg (NTg) mice. Tau pathology (J,
inset) isassociated with increased staining of hsp27. Scale bars: (in 4) A-C, 6—1,400 um; (in D) D—F, 100 em; (in K) J, K, 200 mm.
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neurodegenerative disease. First, we
showed that there is somatic expression of
the human tau protein in young Tg mice,
which initially is not detected with anti-
bodies to phosphorylated tau epitopes,
and this early stage is characterized by sta-
ble tau expression associated with a redis-
tribution of GFAP resembling reactive as-
trocytes at this early age (Pekny and Pekna,
2004). Although tau expression in astro-
cytes is normally low, the specific mecha-
nism leading to the altered tau expression
in the disease state is unknown, and tau
pathology in astrocytes is not typical of all
tauopathies such as AD with extensive
neuronal tau pathology (Lee et al., 2001).
Thus, the alteration in tau expression most
likely reflects a disease-specific alteration
in tau protein metabolism.

The GFAP/tau Tg mice develop an age-
dependent accumulation of tau pathology
restricted to astrocytes that morphologi-
cally, histochemically, and biochemically
bears verisimilitude to the astrocytic tau
pathology characteristic of a subset of
tauopathies such as PSP, CBD, PiD, and
the autosomal dominant disorder FTDP-
17. This second stage of tau pathology is
characterized by the emergence of
phospho-tau epitopes that coincides with
their detection by Gallyas silver stains and
the accumulation of insoluble, FA-
extractable tau protein. A subset of the tau
pathology in the GFAP/tau Tg mice also is
detected with antibodies to ubiquitin and,
similar to human tauopathies, there is in-
duction of low-molecular-weight HSPs in
regions with robust pathology (Dabir et
K al., 2004). Ultrastructurally, the astrocytic
inclusions in the GFAP/tau Tg mice are
composed of tau filaments with a diameter
of 15-25 nm. Although some of the tau
inclusions in these mice resemble the as-
trocytic plaques and tufted astrocytes typ-
ical of CBD and PSP, respectively (Feany
and Dickson, 1996; Komori, 1999), the
majority of the pathology was similar to the thread pathology char-
acteristic of CBD (Dickson et al., 2001). In addition, similar to CBD,
the pathology often showed an asymmetric distribution that is not
described in other tau Tg model systems (G6tz et al., 2004 ), suggest-
ing the possibility that astrocytic pathology contributes to the asym-
metric pattern of pathology observed in some of the human tauopa-
thies. The astrocytic tau pathology is most prominent in subcortical
nuclei, brainstem, deep cerebellar nuclei, and spinal cord, particu-
larly within the gray matter similar to that observed in the tauopathy
PSP. However, this topographic distribution of tau pathology most
likely reflects the regional variation in tau expression driven by the
GFAP promoter in the pGfa2 vector (Brenner et al., 1994), and al-
though robust spinal cord pathology is not typical of tauopathies, tau
inclusions do occur in the spinal cord of patients with PSP, CBD, and
amyotropic lateral sclerosis/parkinsonism dementia complex of
Guam (Mori et al., 1994; Oyanagi et al., 1997; Schmidt et al., 2000;
Vitaliani et al., 2002).
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Figure 9.  Astrocytic tau pathology is associated with mild BBB disruption. Histochemical

analysis of 24-month-old GFAP/tau Tg (A, B, D-F) and non-Tq (NTg; C). A, B, There is promi-
nent tau pathology in astrocytic foot processing surrounding blood vessels detected by both
immunostaining with AT8 (A) and Gallyas silver stains (B). C~F, The perivascular astrocytic tau
pathology is associated with a mild disruption of the BBB. Inmunohistochemistry performed on
the indicated brain regions with prominent AT8-positive tau pathology showed focal somatic
and perivascular staining with a polyclonal rabbit anti-mouse IgG antibody (D—F). No staining
was detectable with age-matched control non-Tg mice (€) orin brain regions of Tg mice without
tau pathology (data not shown). Scale bars: (in 4) A, B, F, 40 pm; (in €) (—E, 100 um.

Because it is now known that astrocytes contribute to a wide
array of CNS functions including the BBB, detoxification, im-
mune modulation, neurogenesis, synaptogenesis, and modula-
tion of synapse function (Ransom et al., 2003), the GFAP/tau Tg
mice described here offer opportunities to investigate the conse-
quences of tau pathologies on astrocyte function. We showed that
there was evidence of a mild disruption of the BBB in the GFAP/
tau Tg mice that coincided with the detection of tau pathology
including detection of phospho-tau epitopes and Gallyas-
positive staining. Although the significance of the BBB disruption
in the Tg mice is unclear, there is evidence in AD that A pathol-
ogy perturbs the BBB (Claudio, 1996; Ujiie et al., 2003), but there
is little data on BBB abnormalities in other tauopathies.

More importantly, the accumulation of astrocytic tau pathol-
ogy was associated with focal neuronal injury in the GFAP/tau Tg
mice as indicated by aberrant expression of phosphorylated NF
proteins in neuronal perikarya (Julien and Mushynski, 1998). In
addition, there was ultrastructural evidence of axonal degenera-
tion, which is likely to play a pivotal role in the pathogenesis of
tauopathies (Higuchi et al., 2002b). Unfortunately, we were not
able to document any statistically significant neuron loss in con-
junction with these morphological alterations in neurons. The
absence of neuron loss may reflect the patchy and asymmetric
distribution of astrocytic pathology. Conversely, the tau pathol-
ogy in astrocytes may have limited impact on neuron survival.
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However, experiments to assess behavioral abnormalities are cur-
rently underway, and preliminary evidence indicates impaired
motor function in GFAP/tau Tg mice in comparison to non-Tg
age-matched controls (data not shown). Longitudinal studies on
alarge cohort of animals are currently underway to further char-
acterize these motor deficits and determine the relationship be-
tween the behavioral phenotype and tau expression in astrocytes
versus the development of bona fide astrocytic tau pathology.
Although the specific mechanism underlying the neurodegenera-
tive changes is unknown, it might reflect the toxic effects of the
tau aggregates as proposed in Alexander’s disease, which is caused
by mutations in the GFAP gene leading to filamentous inclusions
composed of GFAP in astrocytes (Head et al., 1993; Brenner et al.,
2001; Johnson and Brenner, 2003; Mignot et al., 2004). Notably,
these astrocytic GFAP aggregates have been proposed to lead to
neurodegeneration by a variety of mechanisms including myelin
destruction, excitotoxicity, oxidative stress, and disruption of the
BBB (Mignot et al., 2004).

In summary, the GFAP/tau Tg mice provide the first model of
tau pathology exclusively in astrocytes. As such, these Tg mice
will be useful in delineating the role of astrocytic pathology in the
pathogenesis of neurodegeneration in a variety of tauopathies
including PSP, CBD, PiD, and FTDP-17.
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