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Proopiomelanocortin Neurons in Nucleus Tractus Solitarius
Are Activated by Visceral Afferents: Regulation by
Cholecystokinin and Opioids

Suzanne M. Appleyard,'2 Timothy W. Bailey,' Mark W. Doyle,' Young-Ho Jin,' James L. Smart,> Malcolm J. Low,>>* and
Michael C. Andresen'

'Department of Physiology and Pharmacology, 2Vollum Institute, *Department of Behavioral Neuroscience, and “Center for the Study of Weight Regulation
and Associated Disorders, Oregon Health and Science University, Portland, Oregon 97239-3098

The nucleus tractus solitarius (NTS) receives dense terminations from cranial visceral afferents, including those from the gastrointestinal
(GI) system. Although the NTS integrates peripheral satiety signals and relays this signal to central feeding centers, little is known about
which NTS neurons are involved or what mechanisms are responsible. Proopiomelanocortin (POMC) neurons are good candidates for GI
integration, because disruption of the POMC gene leads to severe obesity and hyperphagia. Here, we used POMC- enhanced green
fluorescent protein (EGFP) transgenic mice to identify NTS POMC neurons. Intraperitoneal administration of cholecystokinin (CCK)
induced c-fos gene expression in NTS POMC-EGFP neurons, suggesting that they are activated by afferents stimulated by the satiety
hormone. We tested the synaptic relationship of these neurons to visceral afferents and their modulation by CCK and opioids using patch
recordings in horizontal brain slices. Electrical activation of the solitary tract (ST) evoked EPSCs in NTS POMC-EGFP neurons. The
invariant latencies, low failure rates, and substantial paired-pulse depression of the ST-evoked EPSCs indicate that NTS POMC-EGFP
neurons are second-order neurons directly contacted by afferent terminals. The EPSCs were blocked by the glutamate antagonist 2,3-
dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline. CCK increased the amplitude of the ST-stimulated EPSCs and the frequency of min-
iature EPSCs, effects attenuated by the CCK1 receptor antagonist lorglumide. In contrast, the orexigenic opioid agonists [p-Ala(2),
N-Me-Phe(4), Gly-ol(5)]-enkephalin and met-enkephalin inhibited both ST-stimulated EPSCs and the frequency of miniature EPSCs.
These findings identify a potential satiety pathway in which visceral afferents directly activate NTS POMC-EGFP neurons with excitatory
inputs that are appropriately modulated by appetite regulators.
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2001; Ibrahim et al., 2003). However, little is known about NTS
POMC neurons.

The NTS is the major portal through which visceral afferent
information for homeostatic reflexes enters the brain. Vagal af-
ferents from the gastrointestinal (GI) tract synapse within subre-
gions of the NTS, and the activation of these afferents inhibits

Introduction

Obesity is a major health problem with multiple underlying eti-
ologies. Mutations in the proopiomelanocortin (POMC) and
melanocortin-4 (MC4) receptor genes produce severe obesity
(Clement et al., 2002). The POMC system comprises two groups
of neurons located in the arcuate nucleus of the hypothalamus

(ARC) and the nucleus tractus solitarius (NTS) in the medulla.
The ARC-POMC system regulates energy homeostasis via wide-
spread limbic, motor, and autonomic projections and is modu-
lated by appetite-regulating hormones such as leptin and glucose
(Cone et al., 2001; Cowley et al., 2001; Spiegelman and Flier,
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food intake (Schwartz, 2000; Broberger and Hokfelt, 2001). The
NTS, in turn, is reciprocally connected to regions of the brain
integral to the regulation of feeding, such as the hypothalamus,
amygdala, and nucleus accumbens (Schwartz, 2000; Broberger
and Hokfelt, 2001). The medial NTS, in which NTS POMC neu-
rons are concentrated, contains highly fenestrated endothelial
cells providing a permeant blood—brain barrier (Gross et al.,
1990) and the potential for neurohumoral integration with the
systemic circulation. However, despite their strategic location, it
is not known whether NTS POMC neurons are regulated by vis-
ceral afferents or which satiety factors are involved.
Cholecystokinin (CCK) is released after a meal and inhibits
food intake in part by increasing the firing rate of vagal afferents
projecting to the NTS (Moran et al., 2001). CCK may interact
with the brainstem POMC system, because CCK-induced satiety
is blocked by fourth-ventricle injection of a melanocortin antag-
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onist and is absent in MC4 receptor knock-out mice (Fan et al.,
2004). However, the site of action of CCK, the role of the vagal
afferents, and the cellular mechanisms underlying CCK activa-
tion of POMC neurons are not known.

Appetite stimulators are also important in energy homeosta-
sis, and, if NTS POMC neurons are involved, one would predict
that they would be targets of orexigenic drugs. Opioids are neu-
romodulatory peptides that stimulate feeding when injected into
the NTS (Kotz et al., 1997). Furthermore, NTS injections of opi-
oid antagonists inhibit food intake, consistent with a basal tone of
endogenous opioid action within the nucleus (Kotz et al., 1997,
2000). Because vagal afferent terminals express opioid receptors,
afferent regulation of NTS POMC neurons represents an inter-
esting potential target for opioids (Aicher et al., 2000).

We used POMC enhanced green fluorescent protein (EGFP)
mice to identify NTS POMC neurons for both in vivo c-fos studies
and in a newly developed horizontal brain-slice preparation. Our
findings show that POMC-EGFP neurons are directly activated
by visceral afferent glutamatergic synapses and that CCK facili-
tates, and opioids depress, glutamate release onto these neurons.
Thus, NTS POMC-EGFP neurons lie in a key position in afferent
reflex pathways and respond to signals from two opposing regu-
lators of feeding behavior, supporting the hypothesis that these
neurons regulate energy homeostasis.

Materials and Methods

Breeding, housing, and genotyping of mice. POMC-EGFP transgenic mice
were housed on a 14/10 h light/dark cycle at an ambient temperature in
the Department of Comparative Medicine murine-specific pathogen-
free facility. Mouse chow (Purina Mills, St. Louis, MO) and water were
provided ad libitum. Genotyping and breeding of mice were as described
previously (Cowley et al., 2001). All animal procedures were conducted
with the approval of the Institutional Animal Care and Use Committee in
accordance with the United States Public Health Service Policy on Hu-
mane Care and Use of Laboratory Animals and the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.

CCK induction of c-fos. Six- to 8-week-old POMC-EGFP mice were
individually housed for 3 d. On the day of the experiment, food was
removed 4 h before the beginning of the dark cycle, and water remained
available ad libitum. At the start of the dark cycle, mice received an
intraperitoneal injection of either saline or CCK (5 or 20 ug/kg doses in
saline). Mice were killed 90 min after the injection, brains were pro-
cessed, and sections were immunostained for c-fos.

Immunocytochemistry. Anesthetized (2% tribromoethanol) 6- to
8-week-old mice were perfused transcardially with 4% paraformalde-
hyde, and free-floating frozen sections were prepared using a sliding
microtome. We processed the sections for immunofluorescence and co-
localization of GFP fluorescence using standard techniques (Cowley et
al,, 2001). Rabbit anti-c-fos (Santa Cruz Biotechnology, Santa Cruz, CA)
was used at a final dilution of 1:1000 v/v. After rinsing, sections were
incubated in biotinylated horse anti-mouse/rabbit IgG (10 ug/ml) (Vector
Laboratories, Burlingame, CA), followed by cyanine 3-conjugated streptavi-
din (1:500 v/v; Jackson ImmunoResearch, West Grove, PA). High-
resolution confocal images were acquired using an Olympus Optical (Tokyo,
Japan) FluoView FV300 confocal laser-scanning microscope.

NTS slices. Hindbrains of male POMC-EGFP mice (612 weeks old)
were prepared as described previously for rats (Doyle and Andresen,
2001; Doyle et al., 2004). Briefly, horizontal slices (250 wm thick) that
contained the ST in the same plane as the NTS were cut with a sapphire
knife (Delaware Diamond Knives, Wilmington, DE) and mounted in a
vibrating microtome (model VT1000 S; Leica Microsystems, Bannock-
burn, IL). Slices were submerged in a perfusion chamber, and all record-
ings were performed in artificial CSF composed of the following (in mm):
125 NaCl, 3 KCl, 1.2 KH,PO,, 1.2 MgSO,, 25 NaHCOj, 10 dextrose, and
2 CaCl,, pH 7.4, bubbled with 95% O,/5% CO, at 31-35°C. Recording
electrodes were filled with a solution composed of the following (in mm):
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10 NaCl, 130 K-gluconate, 11 EGTA, 1 CaCl,, 2 MgCl,, 10 HEPES, 2
ATP, and 0.2 GTP, pH 7.3 (295-299 mOsm). Neurons were recorded
from NTS within 200 wm caudal to obex and medial to the ST. Patch
electrodes (3.0-4.5 M()) were guided to neurons using both fluores-
cence and differential interference contrast (DIC) optics illuminated
with infrared light (Axioskop FS2; Zeiss, Oberkochen, Germany).
Voltage-clamp and current-clamp recordings were made with an Axo-
patch 200B or Axoclamp 2A amplifier and pClamp software versions 8
and 9 (Axon Instruments, Union City, CA). Only neurons with holding
currents not exceeding 100 pA ata V;, of —60 mV for the 15 min control
period (input resistance, >150 M()) were studied further. Synaptic cur-
rents were evoked with an ultrafine concentric bipolar stimulating elec-
trode (200 wm; FHC, Bowdoinham, ME) placed on the ST 1-4 mm from
the recording electrode. Electrical stimuli were delivered from an isolated
programmable stimulator (Master-8; A.M.P.IL., Jerusalem, Israel) trig-
gered to deliver a burst of stimuli (50-200 Hz). Voltage-clamp protocols
included 200 ms voltage-command steps ranging from —80 to 0 mV.

2,3-Dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline (NBQX) and
bicuculline methiodide were obtained from Tocris Cookson (Ballwin,
MO). CCK, met-enkephalin (ME), naloxone, [D-Ala(2), N-Me-Phe(4),
Gly-ol(5)]-enkephalin (DAMGO), and lorglumide were obtained from
Sigma (St. Louis, MO), and TTX was obtained from Alomone Labs
(Jerusalem, Israel). All drugs were applied for a 5 min period. In the case
of pretreatment with antagonists, the antagonist was applied alone for 5
min, and then the agonist was coapplied for an additional 5 min.

All data are presented as means = SEM. Differences in drug effects
were tested by repeated-measures ANOVA (RMA) with Bonferroni’s
post hoc test or Student’s ¢ test. Cumulative distributions of miniature
synaptic current amplitudes and frequencies were compared using the
Kolmogorov—Smirnov (KS) nonparametric analysis. Differences were
considered statistically significant for p values < 0.05.

Results

Selective distribution of POMC-EGFP neurons within caudal
subnuclei of the NTS

EGFP neurons were widely distributed throughout the caudal
NTS from approximately —7.3 to —7.8 mm caudal to bregma
between the ST and central canal, including the medial, interme-
diate, commissural, and ventral subdivisions of the NTS (Paxi-
nos, 2001) (Fig. 1 A). EGFP-labeled neurons were most abundant
caudal to the area postrema (AP). A small population of the EGFP
neurons was also found in the AP itself. This distribution of EGFP
neurons is similar to immunohistochemically identified POMC
neurons in the rat brainstem (Joseph et al., 1983; Schwartzberg
and Nakane, 1983; Bronstein et al., 1992). The bright fluores-
cence made POMC—-EGFP neurons easily identifiable for record-
ing (Fig. 2C-E).

CCK activates c-fos expression in NTS POMC-EGFP neurons
To test whether CCK activates NTS POMC-EGFP neurons in
vivo, we examined the induction of c-fos expression. Intraperito-
neal injections of CCK or saline were administered to mice at
lights off, and the tissue was collected 90 min later. Food was
withheld 4 h before and after the injections to avoid the con-
founding effect of c-fos activation secondary to feeding itself. c-fos
gene expression was remarkably low in POMC-EGFP neurons
under control conditions (<1%). CCK increased c-fos expression
in POMC-EGFP neurons >50-fold (Fig. 1 B—E). No additional
increase in the number of EGFP neurons activated by CCK was
seen at higher doses of CCK (data not shown). CCK also induced
c-fos expression in non-POMC-EGFP neurons (8% of total neu-
rons activated by CCK were POMC-EGFP neurons). Thus, sys-
temic CCK, at concentrations known to induce satiety, dose-
dependently activated NTS POMC-EGFP neurons.
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Solitary tract activation evokes monosynaptic responses in
NTS POMC-EGFP neurons

NTS POMC-EGFP neurons are most densely located in regions
of the caudal NTS that are known to receive vagal afferent syn-
apses. This distribution raises the interesting prospect that these
neurons are directly regulated by sensory afferent signals. To test
this, we cut brainstem slices horizontally to preserve a lengthy
segment of the ST in the same plane as the cell bodies of the NTS
(Doyle et al., 2004). The placement of the stimulating electrode
on the visible ST distant from the recording area eliminated focal
activation of local interneurons and interconnecting fibers (Fig.
2 A, B). Brief shocks (duration, 100 ws) to the ST evoked EPSCs in
NTS POMC-EGFP neurons. Such ST-EPSCs were generally uni-
tary all-or-none responses with sharp stimulus-current thresh-
olds and little suprathreshold recruitment above threshold stim-
ulus levels (Fig. 2F). The response characteristics of the ST—
EPSCs in 58 of 72 (81%) NTS POMC-EGFP neurons were
consistent with monosynaptic transmission using electrophysio-
logical criteria (Doyle and Andresen, 2001). We combined three
measures of synaptic reliability to judge monosynaptic behavior:
(1) short absolute latency (1-10 ms), (2) minimal synaptic jitter,
the SD of the intraneuronal latency (<200 us), and (3) the ab-
sence of synaptic failures at high stimulus frequencies (50-100
Hz) to a burst of five shocks. Successive shocks (train of five
pulses at 50 Hz) evoked a frequency-dependent depression of
EPSC amplitude.

The non-NMDA glutamate receptor antagonist NBQX
blocked all ST-evoked EPSCs (Fig. 2G) (n = 8). Fourteen (19%)
NTS POMC-EGEFP neurons had a higher synaptic jitter that may
reflect polysynaptic events.

CCK facilitates ST afferent transmission

A proportion of vagal afferents from the GI are known to express
CCKI1 receptors on their peripheral terminals (Moran et al., 1990;
Corp etal., 1993; Moriarty etal., 1997; Broberger etal., 2001), and
CCK increases the firing rate of these fibers (Schwartz, 2000;
Broberger and Hokfelt, 2001). Interestingly, some vagal afferent
terminals in the NTS also express CCK1 receptors (Moran et al.,
1990; Corp et al., 1993; Moriarty et al., 1997; Broberger et al.,
2001). We therefore tested whether CCK-sensitive afferent ter-
minals activated POMC neurons by determining the effects of
CCK on ST inputs onto NTS POMC-EGFP neurons. CCK (100
nM) significantly increased the amplitude of the ST-stimulated
EPSC in four of eight (50%) neurons tested (Fig. 3). In contrast,
CCK coapplied with 10 um lorglumide did not change the ampli-
tude of the ST-stimulated EPSC in seven of seven (100%) neu-
rons tested. Together, these observations suggest that a major
portion of the cranial visceral afferents that excite POMC-EGFP
neurons are CCK sensitive and that CCK rapidly enhances this
excitatory drive. CCK did not significantly change the input re-
sistance of the CCK-sensitive neurons, suggesting a presynaptic

<«

Figure 1. (CKinduces c-fos expression in NTS POMC—EGFP neurons. 4, Distribution of NTS
POMC—EGFP neurons in a coronal section of the mouse brainstem. EGFP-positive neurons ap-
pear green. CC, Central canal. B-D, c-fos induction by 20 wg/kg CCK. CCK strongly increased
c-fos gene expression. B, EGFP. €, c-fos. D, Merged image. EGFP-positive neurons appear green,
c-fos expression appears red, and colocalization appears yellow. Arrowheads indicate examples
of colocalization. E, Bar graph showing the average number of c-fos-positive POMC—EGFP neu-
rons after different doses of CCK (*p << 0.05; Student’s t test; compared with saline control).
Saline, 2 0f 231 neurons (9 slices from 4 animals); 5 .g/kg CCK, 64 of 115 neurons (6 slices from
3 animals); and 20 pg/kg CCK, 129 of 175 (8 slices from 3 animals). Scale bars: A, 50 m; B-D,
25 pum. Error bars represent SEM.



Appleyard et al. @ Afferents, CCK, and Opioids Modulate POMCNTS Neurons

Figure 2.  Solitary tract-evoked NTS synaptic responses in NTS POMC—EGFP neurons. 4, B,
Visualization of the NTS brain-slice preparation using both DIC (4) and fluorescence (B). Orien-
tation of the mouse brainstem slices in the horizontal plane allowed the placement of the
concentrichipolar stimulating electrode on the ST several millimeters from the recording region
(dark gray center) in the medial NTS. 4V, Fourth ventricle. C, E, Identification of individual
POMC—EGFP neurons by DIC (C), fluorescence (D), and merge (E). Two POMC—EGFP-positive
neurons can be seen (arrows). F, ST activation evoked monosynaptic EPSCs in an NTS POMC—
EGFP neuron; a total of 10 successive EPSCs are shown. V., = —60 mV. ST shock evoked a
short-latency EPSCwith high reliability (latency, 1.58 ms; jitter, 65 s and no observed failures
at 50 Hz ST stimulation). G, Successive shocks (train of 5 pulses at 50 Hz; arrows) evoked a
frequency-dependent depression of EPSC amplitude. The non-NMDA glutamate receptor an-
tagonist NBQX (10 wum) completely blocked the EPSCs.
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Figure3. ((Kfacilitates ST-afferent transmission onto NTS POMC—EGFP neurons. A, Repre-
sentative current traces for control, CCK (100 nm), and after washing (Wash). CCK significantly
increased the EPSC amplitude in four of eight neurons tested ( p << 0.05; Student’s ¢ test). B,
Graph showing the average maximal increase in the ST-stimulated EPSC by CCK [*p << 0.05
(Student's ¢ test) compared with control and Wash]. Error bars represent SEM.
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site of action that would be consistent with the distribution of
CCKI1 receptors to afferent terminals within the NTS (Moran et
al., 1990; Corp et al., 1993; Moriarty et al., 1997; Broberger et al.,
2001).

Presynaptic CCK1 receptor activation increases miniature
EPSCs on NTS POMC-EGFP neurons

To directly determine whether CCK had a presynaptic or
postsynaptic mechanism of action, we examined miniature EP-
SCs (mEPSCs) by blocking evoked synaptic transmission with
TTX and blocking GABA-mediated IPSCs with bicuculline. CCK
significantly increased the frequency of mEPSCs in all experi-
ments ( p < 0.001; KS; n = 14), suggesting a presynaptic mecha-
nism of action. CCK (10 nM) increased mEPSCs an average of
2.6-fold from 0.35 = 0.06 to 0.89 = 0.11 Hz (n = 7), an effect
reversed by washing to 0.35 * 0.08 Hz (Fig. 4). After 10 min, a
second application of 10 nm CCK again significantly increased
the frequency of mEPSCs to the same level as the first response
(from 0.35 = 0.08 to 0.95 = 0.06 Hz; n = 3). In contrast, if the
CCK1 receptor antagonist lorglumide (1 um) was coapplied with
10 nM CCK, there was no significant change in mEPSC frequency
(from 0.26 * 0.02t0 0.29 * 0.07 Hz; n = 4). CCK (10 nM) caused
no reversible change in amplitude in any individual experiment
(KS test; average amplitudes: control, 24.8 * 3.2 pA; CCK, 27.0 =
3.2 pA; CCK plus lorglumide, 23.3 = 2.7 pA), indicating no
postsynaptic effects of CCK to alter glutamate EPSCs. CCK (100
nM) increased the mean frequency almost fivefold, from 0.25 =
0.19 to 1.2 = 0.3 Hz (n = 5), an effect reversed by coapplication
of 10 uM lorglumide ( p < 0.001; KS), with the mean frequency
returning to 0.37 £ 0.13 (n = 3). NBQX abolished all mEPSCs,
confirming that they were mediated by glutamate. These data,
together with the data on ST-stimulated EPSC amplitude, suggest
that the increase in glutamate release is at least in part from the
solitary tract afferent terminals.

CCK increases the firing rate of NTS POMC-EGFP neurons
In current clamp, POMC-EGFP neurons had an average resting
membrane potential of 71 = 1 mV (n = 50) and rarely spiked
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Figure4. (CKincreases the frequency of miniature EPSCs in NTS POMC—EGFP neurons. TTX
and bicuculline were included in the external solution for all experiments. A, Expanded repre-
sentative current traces of spontaneous mEPSCs in control, with CCK, after washing (Wash), and
with CCK plus lorglumide (LOR). B, Graph showing the frequency of mEPSCs over time. Each bar
represents the number of events in a 10 s time period. CCK (10 nm) increased the rate of EPSCs,
and this effect was reversed by washing for 10 min. A second application of CCK stimulated the
same size increase in mEPSC frequency. In contrast, no increase in mEPSC frequency was seen
when the CCKT receptor antagonist lorglumide (1 um) was coapplied with CCK.

spontaneously (resting firing rate, 0.06 = 0.03 Hz) (Fig. 5A).
CCK (100 nMm) rapidly depolarized these neurons on average by
4.2 = 0.6 mV and increased their firing rate >10-fold to 0.86 =
0.34 Hz ( p < 0.05; RMA; n = 7), an effect reversed after washing
or coapplication of 10 uM lorglumide (0.1 * 0.34 Hz; p < 0.05;
RMA; n = 4) (Fig. 5A). CCK (100 pm) consistently depolarized
NTS POMC-EGEP neurons, although this much-lower concen-
tration of CCK was rarely sufficient alone to increase firing rates
(one of five neurons; data not shown). Under basal conditions,
ST stimuli elicited 2 * 0.4 action potentials per train of five
stimuli. CCK (100 nMm) significantly increased ST-evoked action
potentials to an average of 4 = 0.2 per five stimuli ( p < 0.05;
RMA; n = 7) (Fig. 5B). Washing (5-10 min) or coapplication of
10 uMm lorglumide (2.3 = 0.6 per five stimuli; p < 0.05; RMA; n =
4) reversed such responses.

Presynaptic u receptors inhibit glutamate release

If POMC-EGFP neurons are involved in appetite regulation,
orexigenic factors such as opioids might be expected to affect
their activation by afferent inputs. ME (10 uMm) inhibited the
ST-EPSC amplitude an average of 55 * 6.3% (n = 5), an effect that
was reversed after washing (Fig. 6 A, B). Application of the u-opioid
receptor-specific agonist DAMGO (300 nM and 1 um) substantially
inhibited the ST-EPSC amplitude by 45 = 6%, an action blocked by
the nonselective opioid antagonist naloxone (n = 7) (Fig. 6C,D). In
contrast, neither the k receptor-specific agonist (5a7a, 83)-(—)-N-
methyl-N-(7-(1-pyrrolidinyl)-1-oxaspiro(4,5)dec-8-yl)benzeneac-
etamide (U69,593) (1 um) or the 8-specific agonist [D-Pen®’]-
enkephalin (1 uMm) consistently altered the ST-EPSC amplitude
(average inhibition of 10.1 = 9.7%, n = 4, and 20 * 15%, n = 4,
respectively). DAMGO (1 uMm) also inhibited the ST-EPSC ampli-
tude in NTS neurons not expressing EGFP (55 * 19%; n = 5), and
this effect was attenuated by 1 M naloxone.
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Figure 5.  CCK depolarizes NTS POMC—EGFP neurons and increases ST-stimulated action
potentials. 4, B, Voltage traces from an NTS POMC—EGFP neuron. 4, CCK (100 nw) depolarized
POMCneurons by 4.4 = 0.6 mV and increased their firing rate within 25 min (n = 7). Arrows
indicate where ST was stimulated. B, CCK (100 nm) increases the number of evoked action
potentials aftera train of ST stimulation (5 at 5 Hz). The effects of CCK were abolished after either
being washed for 10 min (data not shown) or coapplication of the CCK1 receptor antagonist
lorglumide (LOR) (10 tum). Three representative traces of each condition are shown.

Asan initial index of whether opioids acted presynaptically on
the terminals, we examined the paired-pulse ratio. Any change
in the ratio of the amplitude of the first stimulated EPSC (P1) and
the second stimulated EPSC (P2) generally indicates an effect on
the presynaptic terminal. ME increased the paired-pulse ratio
(P2/P1) from 0.6 = 0.05 to 0.81 = 0.08 (n = 5; p < 0.05; control
vs ME; Student’s ¢ test) (Fig. 7A). This effect was reversed after
washing to 0.53 = 0.04 (Fig. 6 A) (n = 5; p < 0.01; ME vs washing;
Student’s t test).

To better delineate presynaptic opioid mechanisms, we iso-
lated mEPSCs using TTX and bicuculline. Met-enkephalin re-
versibly decreased mEPSC frequency (ME, 44 * 6% of control
frequency; n = 5) consistent with a presynaptic action (Fig. 7B).
This effect was reversed by washing for 5 min (90 = 7% of con-
trol; n = 5). The u receptor-selective agonist DAMGO (1 um)
also significantly decreased the frequency of mEPSCs (45 * 7%
of control frequency; n = 4) (Fig. 6C), an effect attenuated by
naloxone (91 * 7% of control; n = 4) (Fig. 7C). In all experi-
ments, the decrease in frequency was significant and reversed
after either washing or coapplication of an antagonist ( p < 0.01;
KS;n=09).
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Figure 6.  Opioids inhibit ST-stimulated EPSCs. A, Representative current trace for control,

met-enkephalin (Met-Enk; 10 wm), and after washing (Wash). Met-Enk inhibited the EPSC
amplitude by 55 == 6.3% ( p << 0.05 compared with control and Wash). B, Graph showing the time
course of Met-Enk inhibition of ST-stimulated EPSCs over time. €, Representative current traces show-
ing that DAMGO (1 wum) inhibited the control EPSC and that the opioid antagonist naloxone (1 )
reversed this effect. D, Graph showing the average maximal inhibition of the ST-stimulated EPSC by
DAMGO [*p << 0.05 (RMA) compared with control and DAMGO plus naloxone].

Discussion

The central melanocortin system is well recognized for its impor-
tance to energy homeostasis, yet little is known about its brain-
stem component, the NTS POMC neurons. Three new findings
of this study provide key information about how NTS POMC—
EGFP neurons are regulated: first, they receive direct glutamater-
gic synapses from visceral afferents, including CCK-sensitive af-
ferents. Second, CCK increased the activation of these neurons in
brain slices as well as in vivo. Third, opioids inhibited the afferent
activation of these neurons. These findings suggest a potential
satiety pathway in which visceral afferents directly activate NTS
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Figure 7.  Opioids increase the paired-pulse ratio of evoked EPSCs and decrease the fre-
quency of miniature EPSCsin NTS POMC—EGFP neurons. 4, Graph showing the paired-pulse ratio
of the ST-stimulated EPSC (50 Hz) in control, with 10 wum ME, and after washing (Wash) [*p << 0.05
(Student’s t test) compared with control and Wash]. B, Graph showing the frequency of mEPSCs over
time. ME (10 1um) decreased the rate of mEPSCs, and this effect was reversed by washing for 10min. ¢,
Graph showing the frequency of mEPSCs over time. The w.-opioid agonist DAMGO (1 uum) decreased
the rate of mEPSCs, and this effect was reversed by coapplication of the opioid antagonist naloxone.
NBQX blocked all of the mEPSCs (data not shown).

POMC-EGEFP neurons at a primary synapse capable of being
appropriately modulated by appetite regulators.

CCK activates NTS POMC-EGFP neurons in vivo

Systemic administration of CCK to mice activated c-fos gene
transcription in more than one-half of POMC-EGFP neurons.
This study confirms that POMC-EGFP neurons are strongly ac-
tivated during a satiety response in vivo and provides a direct link
of these specific neurons to systemic eating behavior. Further-
more, the POMC system is required for this behavior, because the
satiety effects of CCK were attenuated by MC4 receptor antago-
nists and absent in MC4 receptor knock-out mice (Fan et al.,
2004). However, such observations do not identify the mecha-
nisms or pathways responsible for the stimulation of NTS POMC
neurons.
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Visceral afferents activate NTS POMC-EGFP neurons

There has been speculation about whether NTS POMC neurons
are activated by incoming afferents; however, this has not been
determined previously. Our electrophysiological results show
that NTS POMC-EGFP neurons are activated by afferents, with
the majority (81%) being second-order neurons receiving direct
afferent synaptic inputs. These data place NTS POMC-EGFP
neurons in a key position in the afferent pathways, because any
modulation of this first synapse in the CNS provides a mecha-
nism to affect all downstream responses.

CCK-sensitive afferents activate NTS POMC-EGFP neurons
in brain slices

CCK increased the amplitude of ST-stimulated EPSCs in 50% of
NTS POMC-EGFP neurons. The finding that POMC-EGFP
neurons are activated by CCK-sensitive afferents suggests that
these neurons are directly contacted by GI afferents providing
inhibitory feedback on food intake (Schwartz and Moran, 1996).
Interestingly, 50% is the same proportion of POMC-EGFP neu-
rons in which 5 ug/kg CCK induced c-fos activation, suggesting
that our in vitro results closely reflect an in vivo pathway. CCK
increased the frequency of mEPSC events, suggesting a presynap-
tic mechanism of action to increase glutamate release onto NTS
POMC-EGFP neurons. This result is consistent with CCK bind-
ing sites located on the terminals of vagal afferents in the medial
NTS (Moran et al., 1990; Corp et al., 1993; Moriarty et al., 1997;
Broberger et al., 2001) and the finding that the cell bodies of the
afferents terminating in the NTS (located in the nodose ganglia)
are activated by CCK (Lankisch et al., 2002). Interestingly, al-
though CCK increased ST-stimulated EPSC amplitude in 50% of
POMC-EGEFP neurons, it increased the mEPSC frequency in all
neurons examined. The reason for this difference is not clear;
however, it suggests the possibility that CCK has effects on both
visceral afferent and nonafferent glutamate terminals in the NTS.

Extensive evidence demonstrates that endogenous and exog-
enous CCK reduce food intake by activating vagal afferents in the
periphery (Moran et al., 2001). However, CCK1 receptor antag-
onists that cross the blood—brain barrier stimulate food intake in
vagotomized animals (Reidelberger et al., 2004). Such observa-
tions, along with considerable evidence of CNS CCK1 receptor
expression, raise the possibility that CCK has both central and
peripheral actions (Ritter, 2004). Injections of CCK into the NTS
inhibit food intake, showing that central actions can cause phys-
iological effects (Talman et al., 1991; Blevins et al., 2000). CCK
has also been shown to both directly and indirectly activate gas-
tric projection neurons in the dorsal motor nucleus of the vagus
(Zheng et al., 2005). Although fenestrated capillaries within the
NTS may permit circulating CCK to directly modulate NTS
POMC-EGEFP neurons, it is unlikely that the levels of circulating
endogenous CCK would reach the maximal concentrations used
in this study. However, local sources of CCK within the NTS raise
the possibility of regional release modulating POMC neuronal
activity (e.g., fibers within the NTS may release peptide from
either local CCK neurons or projections terminating in the NTS)
(Takagi et al., 1984). Interestingly, CCK mRNA expression is
induced in nodose ganglion neurons after vagotomy (Broberger
etal., 2001) so that conceivably, CCK may also be released from
sensory afferents under certain conditions.

Our results, together with previous findings, indicate two
mechanisms by which CCK may activate the brainstem POMC
system. First, CCK may activate the brainstem POMC system
indirectly via activation of afferents that we show directly activate
NTS POMC-EGFP neurons. Second, CCK may activate the

Appleyard et al. e Afferents, CCK, and Opioids Modulate POMCNTS Neurons

brainstem POMC system via central actions to facilitate gluta-
mate release onto NTS POMC-EGFP neurons.

Opioid agonists inhibit afferent activation of NTS
POMC-EGFP neurons

Opioids have opposing actions to CCK on food intake mediated
by actions on multiple brain regions (Levine and Billington,
2004). NTS injections of opioid agonists stimulate food intake,
suggesting that opioids regulate satiety in part via actions at the
level of the NTS (Kotz et al., 1997, 2000). Here, we show that
opioids inhibit afferent activation of NTS POMC-EGFP neurons
by presynaptically decreasing glutamate release. Thus, a key
orexigenic peptide inhibits excitatory inputs onto NTS POMC—
EGFP neurons. These effects are mediated via activation of the
u-opioid receptor, consistent with u agonists stimulating food
intake when microinjected into the NTS (Kotz et al., 1997). Opi-
oid inhibition of afferent inputs was not limited to POMC-EGFP
neurons, because unlabeled NTS neurons responded similarly.
This NTS mechanism may underlie the behavioral effects of the
opioid antagonist naloxone to shorten meal size without chang-
ing meal number (Kirkham and Blundell, 1984; Levine and Bill-
ington, 2004). Endogenous opioids are likely to modulate this
synapse, given that opioid antagonists alter food intake (Kotz et
al., 1997, 2000). Endogenous opioids may originate from
B-endorphin being released from the NTS POMC neurons them-
selves or from enkephalin-positive neurons also located in the
NTS (Velley et al., 1991). Whatever the source of the endogenous
opioid, regulation of their release would provide a potent mech-
anism to modulate afferent input and N'TS neuronal activity.

Role of NTS POMC-EGFP neurons in the regulation of
energy homeostasis

Substantial evidence indicates that global disruption of the
POMC system leads to obesity (Coll et al., 2004 ). However, these
studies cannot distinguish between the ARC and NTS POMC
neurons, because both were affected. Our present results provide
a potential framework for how NTS POMC-EGFP neurons con-
tribute to a satiety reflex. Visceral afferent activation and its mod-
ulation by appetite regulators suggest that NTS POMC neurons
play a role in energy homeostasis in addition to the ARC-POMC
neurons. Many important details remain to be determined, in
particular how NTS POMC neurons interact with the rest of the
system. Previous studies described projections from NTS POMC
neurons to other medullary nuclei (Palkovits and Eskay, 1987;
Palkovits et al., 1987), and it is possible that NTS POMC-EGFP
neurons modulate feeding and GI and autonomic activity via
such direct projections. Alternatively, local contacts by NTS
POMC-EGFP neurons may modulate the activity of other NTS
neurons that in turn project to feeding centers. Actions in the
brainstem are also important for the effects of many other regu-
lators of energy homeostasis, and future studies will need to ad-
dress whether these factors also regulate NTS POMC neurons
(Grill and Kaplan, 2002; Grill et al., 2002, 2004; Faulconbridge et
al., 2003).

Role of NTS POMC-EGFP neurons in the regulation of other
autonomic functions

The ST contains a broad array of sensory afferents, in addition to
GI vagal afferents, including cardiac and baroreceptor afferents.
NTS POMC-EGFP neurons may receive information from these
additional sensory afferents and participate in neuronal circuits
widely influencing autonomic functions. Interestingly, melano-
cortins, opioids, and CCK all modulate heart rate and blood pres-
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sure (Versteeg et al., 1998; Bodnar and Hadjimarkou, 2002; Ver-
berne et al., 2003). Given the epidemiological relationship
between obesity and hypertension, NTS POMC-EGFP neurons
could provide a bridge between cardiovascular and energy ho-
meostatic regulatory pathways.

In summary, NTS POMC-EGFP neurons are directly acti-
vated by CCK-sensitive afferent inputs, and this pathway is reg-
ulated by both suppressors and activators of appetite. Thus, the
distribution of POMC neurons in both the hypothalamus, a re-
gion integral to the long-term regulation of food intake, and the
NTS, in which neurons respond to incoming afferents carrying
short-term information on satiety, endows the POMC system
with the potential to integrate two different feedback pathways
involved in energy homeostasis.
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