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Brief Communication

A Calcium Flux Is Required for Circadian Rhythm
Generation in Mammalian Pacemaker Neurons

Gabriella B. Lundkvist,! Yongho Kwak,' Erin K. Davis,! Hajime Tei,?> and Gene D. Block!

ICenter for Biological Timing, Department of Biology, University of Virginia, Charlottesville, Virginia 22903, and 2Research Group of Chronogenomics,

Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo 194-8511, Japan

Generation of mammalian circadian rhythms involves molecular transcriptional and translational feedback loops. It is not clear how
membrane events interact with the intracellular molecular clock or whether membrane activities are involved in the actual generation of
the circadian rhythm. We examined the role of membrane potential and calcium (Ca*") influx in the expression of the circadian rhythm
of the clock gene Period I (Perl) within the rat suprachiasmatic nucleus (SCN), the master pacemaker controlling circadian rhythmicity.
Membrane hyperpolarization, caused by lowering the extracellular concentration of potassium or blocking Ca** influx in SCN cultures
by lowering [Ca> "], reversibly abolished the rhythmic expression of Perl. In addition, the amplitude of Perl expression was markedly
decreased by voltage-gated Ca*>" channel antagonists. A similar result was observed for mouse Perl and PER2. Together, these results
strongly suggest that a transmembrane Ca*" flux is necessary for sustained molecular rhythmicity in the SCN. We propose that periodic
Ca”” influx, resulting from circadian variations in membrane potential, is a critical process for circadian pacemaker function.
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Introduction

The hypothalamic suprachiasmatic nucleus (SCN) plays a critical
role in controlling mammalian circadian rhythmicity. Although
other brain regions and non-neural tissues express circadian
rhythms in molecular expression (Yamazaki et al., 2000; Abe et
al., 2002), the SCN plays a pervasive role in the generation and
control of physiological and behavioral rhythms (Moore, 1991).
SCN rhythm generation is a cell-autonomous property (Welsh et
al., 1995). Several genes, including Period (Perl, Per2, and Per3)
and Cryptochromes (Cryl, Cry2), have been identified that play
critical roles in generating circadian rhythms. Although models
of the mammalian clock continue to evolve, periodicity is pres-
ently believed to be generated by an autoregulatory transcrip-
tional and posttranslational feedback loop involving “clock
genes” and their products (Dunlap, 1999). Membrane phenom-
ena, such as electrical impulses and ionic currents, have not been
generally recognized as part of the core clock mechanism but
rather as part of the pathways by which environmental synchro-
nizing signals reach the clock (Block et al., 1993; Meijer and
Schwartz, 2003) and by which the clock regulates tissue and organ
targets (Schaap et al., 2003). This view has been challenged in
Drosophila, in which silencing of electrical activity leads to ar-
rhythmic expression of the PERIOD and TIMELESS proteins,
core constituents of the circadian clock in Drosophila (Nitabach
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etal., 2002). These data raise the issue of whether electrical activ-
ity and underlying ionic fluxes play a more central role in rhythm
generation.

We now provide data suggesting that a transmembrane cal-
cium (Ca*™) flux is critical for molecular rhythmicity within the
mammalian SCN and at least one peripheral oscillator, the liver.
We used aluciferase reporter to assay real-time clock gene activity
in tissue cultures. Preventing Ca®" influx by hyperpolarizing
SCN neurons, removing extracellular Ca*", or applying Ca*"
channel blockers leads to a loss of rhythmic expression of Perl
and PER2. The apparent requirement for Ca*" influx to main-
tain rhythmicity reveals an unforeseen role for ionic currents in
mammalian circadian rhythm generation.

Materials and Methods

Animals. A Perl-luciferase transgenic rat line [W(perl)l], a Perl-
luciferase transgenic mouse line (C57x+/—) (Dr. Hajime Tei, Mitsubishi
Kagaku Institute of Life Sciences) and a PER2:LUCIFERASE knock-in
mouse line (provided by Dr. Joseph Takahashi, Department of Neurobi-
ology and Physiology, Northwestern University, Evanston, IL) were
raised at the University of Virginia, Department of Biology. The animals
were kept on a 12 h light/dark cycle. All animal use was conducted in
accordance with the recommendations of the Committee on Animal
Care and Use at the University of Virginia.

Dispersed cell culture procedure. SCNs were punched out with a 440 um
diameter neural punch from selected coronal sections (275 um) obtained
from 3- to 7-d-old transgenic rat pup brains. The punches were incubated
with papain enzyme (Sigma, St. Louis, MO), dissociated by trituration, dis-
persed on coverslips (1000-3000 cells/slip; glass or Thermanox), coated with
laminin (5.8 ug/coverslip) and poly-p-lysine (0.02 mg/ml) (Sigma), and
kept in 95% O,-5% CO,. Half of the medium [containing 10 g/L DMEM
2902 (Invitrogen, Grand Island, NY), 10% B27, 84 mm NaHCOj, 180.2 mm
p-glucose, 0.25% penicillin-streptomycin, pH 7.2-7.3, osmolarity 290
mOsm) was exchanged three times each week.
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Figure 1. SCN recordings of membrane potential and bioluminescence of Per7-luc expression in various levels of [K *]. 4, ment of Biology, University of Virginia) calcu-

Current-clamp recordings in culture medium containing 0.5, 2.7, 5.4 (control), or 10 mum K . Each color represents membrane
potential in a single neuron in various levels of [K 1. B, Bioluminescence recordings from explants obtained from transgenic

Per1-luc rats. The explants were cultured in 0,0.5, 1,3, or 5.4 muK *.

Explant cultures. Rats and mice, 2—-3 months of age, were anesthetized with
CO, and decapitated. The brains were removed, hypothalamic coronal sec-
tions (rat, 300 wm; mouse, 250 wm) were cut using a vibroslicer, and bilateral
or unilateral SCNs were explanted. The explants were placed on culture
membranes (Millicell-CM, PICM030-50; Millipore, Bedford, MA) in 35
mm Petri dishes with 1.2 ml of culture medium [pH 7.2; serum-free, low-
sodium bicarbonate, no phenol red; manufactured at the University of Vir-
ginia according to the recipe of DMEM (13000—021; Invitrogen)] supple-
mented with 10 mm HEPES (Sigma), B27 (2%; 17504 —-010; Invitrogen), 0.1
mM luciferin (beetle luciferin, potassium salt; Promega, Madison, WI), and
antibiotics (25U/ml penicillin, 25 mg/ml streptomycin; Sigma). The dishes
were sealed with cover glasses and vacuum grease and transferred to the
recording environment (Yamazaki et al., 2000).

Bioluminescence measurements. Bioluminescence was measured with
photomultiplier tube (PMT) detector assemblies (HC135-11 MOD;
Hamamatsu, Shizuoka, Japan) modified from HC135-01. The modules
and cultures were maintained in light-tight incubators at 36°C and inter-
faced to IBM (White Plains, NY) personal computers for continuous data
acquisition. The PMTs were positioned ~1 cm above the cultures. Pho-
ton counts were made through the glass coverslip and integrated over 1
min intervals (Yamazaki et al., 2000).

Whole-cell patch-clamp recordings. The culture medium was replaced
with a physiological recording solution containing the following (in
mwm): 0.81 MgSO,, 5.37 KCL, 1.8 CaCl,, 110 NaCl, 0.79 NaH,PO,, 10.0
HEPES, 4.19 NaHCOj, and 25.0 p-glucose (Sigma). Osmolarity and pH
were adjusted to 290-300 mOsm and 7.3, respectively. Patch-clamp pi-
pettes (resistance, 3—6 M) were filled with a solution containing the
following (in mm): 140 K *-gluconic acid, 4.0 NaCl, 10 HEPES, 0.38
CaCl,, 5 EGTA, and 0.49 MgCl, (osmolarity, 280 mOsm; pH 7.3). Gi-
gaseal formation was achieved by monitoring changes in current re-
sponses to voltage pulses. Membrane rupture was made by syringe suc-
tion. Resting potentials were recorded in current-clamp mode with an
Axoclamp 2A amplifier (Molecular Devices, Foster City, CA) in conjunc-
tion with a digital interface (Digidata 1200; Molecular Devices) and read
directly from the amplifier. Data acquisition was performed using
pClamp 8.0 software (Molecular Devices). For each recording, the physio-
logical solution in the dish was exchanged several times with three different
solutions containing different concentrations of K* or Ca**. For the three
different solutions, designated as 1 (control; high [ion] solution), 2 (medium
[ion] solution), and 3 (low [ion] solution), the recording in each concentra-
tion and each cell was performed in the following order: 1, 2, 3,2, 1, 2, 3. The
average resting potential in each solution (1, 2, or 3) was then obtained for
each cell and used as one data point.

Drugs. Drugs were solubilized in water or dimethylsulfoxide (DMSO;
Sigma) to make stock solutions 10-1000X the working solutions, which
were added at the time of culture, except for Ca®" channel antagonists,
which were added after 3—5 d in culture. Equivalent volumes of medium
compared with the volume of the added drugs were discarded so the total

lating the 2 h running average of photon counts.
Peaks (defined as maximum) were selected, and
the time between two peaks was defined as the
period during one cycle. For statistical compar-
isons of periods, the average periods of a mini-
mum of four cycles and a maximum of eight
cycles and SEM for each treatment were calculated. A Student’s ¢ test was
used to calculate the p values.

Results

Decreasing [K *] causes membrane hyperpolarization and
stops the Per1 oscillation

We used transgenic rats to measure rhythmic Per] expression. In
these animals, a reporter for the firefly enzyme luciferase (luc) has
been linked to the mouse Perl promoter (Yamazaki et al., 2000),
enabling real-time assay of Perl expression by recording lucif-
erase activity. To examine the effects of membrane hyperpolar-
ization on SCN Per] rhythmicity, we prepared SCN slice cultures
maintained in culture media containing different [K *]. In paral-
lel experiments, we performed patch-clamp recordings to exam-
ine the effects of lowering [K ] on membrane potential (1 = 9).
Dispersed SCN neurons recorded in control medium (5.4 mm
[K™]; n = 20) had an average resting potential of —49.8 = 1.41
mV. In 0.5 and 2.7 mm [K ], the cells were markedly hyperpo-
larized (—58.2 * 2.33 mV; —53.3 = 1.77 mV) and depolarized in
10 mm [K™] (—38.7 = 0.71 mV) (Fig. 1A). In SCN tissue cul-
tures, the Perl-luc signals showed a robust circadian expression
with an average period of 25.4 + 0.11h (1 = 12). When [K "] was
lowered, we found that the amplitude of the Perl-luc signal de-
creased. In 0 mM K™ (defined as 0 mm K added to the culture
medium), no rhythm in Perl expression could be detected (Fig.
1B). This effect was reversible, and the Perl rhythm could be
restored by washing with control medium.

To evaluate whether hyperpolarizing the SCN “stops the
clock,” in three repeated experiments, we cultured three SCN
explants in medium containing 0 mm K™ for 18, 24, and 30 h
before replacing with control medium. We reasoned that if the
clock was stopped, each rhythm would return after 18, 24, and
30 h, respectively, when 0 [K "] medium was replaced with con-
trol medium. As a control, the PerI-luc rhythms were recorded
from three explants that were initially cultured in control me-
dium, which was replaced with fresh control medium after 18, 24,
and 30 h. The Perl-luc rhythms in the control slices were ex-
pressed in phase with each other and remained in phase after
replacement with fresh control medium (Fig. 24). In contrast, in
the three explants started in 0 [K "], there was no evidence of Per]
rhythmicity until the tissue culture medium was exchanged with
control medium. Furthermore, we found that the restored Perl-
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Figure 2.  Example of SCN phase delays in hyperpolarizing medium. A, Bioluminescence

recordings from three explants in control medium represented by green, red, and black traces.
The control medium was replaced with fresh control medium at 6 h intervals the second day in
culture (indicated by arrows), and the phases were compared using the first peaks after medium
replacement as reference points (indicated by dashed lines). B, Bioluminescence recordings
from three bilateral explants in medium containing 0 mm K ™, represented by green, red, and
black traces. The 0 [K ] medium was replaced with control medium at 6 h intervals the second
day in culture (indicated by arrows). Dotted lines indicate the peaks of the Per7-Juc signals after
medium replacement.

luc rhythms in the three cultures were 6 h out of phase from one
another, suggesting that the motion of the clock, as measured by
PerI-luc thythmicity, was stopped in the 0 [K "] environments
(Fig. 2B).

Decreasing [Ca>*] abolishes the PerI rhythm in the SCN

and liver

Depolarization of SCN neurons causes influx of Ca*™ (van den Pol
etal., 1992; Tominaga et al., 1994; Colwell, 2001). We next addressed
the question of whether preventing Ca*" influx by removing extra-
cellular Ca** has a similar effect on SCN PerI expression as does
hyperpolarizing the cells with low [K *]. We cultured SCN slices in
different [Ca**] and found that, as with [K *], the cyclic expression
of Perl was reversibly reduced or abolished in medium containing
low [Ca**] (Fig. 3A). In addition, the period was shortened (24.2 +
0.30hin 0.72mm Ca®", n=5;24.0 = 0.37hin0.54 mm Ca®", n =
4; p < 0.05; Student’s ¢ test) compared with controls. Reversibility
was demonstrated after 12h (n =2), 18 h (n =4),and 24 h (n = 4)
in six separate explants cultured in 0 mm Ca>* (Fig. S1, available at
www.jneurosci.org as supplemental material). Lowering [Ca**] de-
polarized the membrane (—43.8 = 2.85mV in 0 mm; —48.5 * 2.53
mV in 0.33 mm), and increasing [Ca®*] slightly hyperpolarized the
neurons (Fig. 3B) (—52.7 = 1.92mV in 3.36 mM; n = 11) compared
with controls. To further demonstrate that the effect of low [Ca"]
on the PerI-luc rhythm is oscillator specific and not caused by non-
specific effects, such as decreased cell viability or general transcrip-
tion/translation, we added forskolin to SCN slices (n = 7) kept in 0
[Ca**], which transiently increases Per-luc transcription in brain
slices (Yamazaki et al., 2000; Abe et al., 2002). Forskolin markedly
elevated the bioluminescence baseline in slices kept in medium con-
taining 0 [Ca 2] during 12, 18,24, and 48 h, demonstrating that Per]
transcription was functional in the explants (Fig. S2, available at
www.jneurosci.org as supplemental material).

To examine the effects of low [Ca*"] on Perl expression on
non-neural tissues, we cultured liver tissue (n = 3) in various
[Ca®"]. As with the SCN, low [Ca**] blunted or abolished the
rhythm in Perl-luc expression (Fig. 3C).

Lundkvist et al. @ Calcium and Circadian Rhythms

Blocking voltage-dependent Ca** conductances and
buffering intracellular Ca>* cease the rhythmic expression

in Perl

To analyze the role of voltage-dependent Ca®" conductances in
Perl rhythmicity, we added Ca®" channel blockers (specific to
N-, P-, Q-, L-, and T-types) to SCN slices cultured in control
medium (n = 3). The channel blockers did not immediately abol-
ish rhythmicity, but rather rhythms were lost after two to three
cycles. As a control, slices (n = 4) were treated with equivalent
(0.19%) and higher concentrations of DMSO (0.2, 0.3, and 0.4%),
which had no effect on the Per] rhythm (Fig. 3D). DMSO ata very
high concentration (4%) did not affect the amplitude but short-
ened the period of the Per] rhythm (23.75 * 2.01 h). None of the
channel blockers alone led to arrhythmicity, although the L-type
channel blocker nimodipine slightly reduced the amplitude of
Per] expression culture (n = 5) (Fig. S3, available at www.jneu-
rosci.org as supplemental material). To further explore the role of
Ca** in regulating Perl expression, in two different sets of exper-
iments, we treated SCN cultures with the intracellular chelator
BAPTA-AM. Buffering intracellular Ca*" stopped Perl rhyth-
micity at 40, 80, and 100 um but not at 20 um of original loading
concentration of BAPTA-AM (Fig. 3E).

The requirement of Ca’”" for Perl rhythmicity is not species-
specific to rat

To evaluate the generality of the Ca** requirement for the SCN
Per] rhythm, we performed similar experiments on SCN slices
from a transgenic PerI-luc mouse. Mouse slices were cultured in
control medium or 0 mM Ca?" (defined as 0 mm Ca>" added to
the culture medium; #n = 3), and the rhythm in PerI-luc expres-
sion was recorded. In slices cultured in control medium, the PerI-
luc expression was rhythmic (period, 24.4 = 0.39 h). However,
similar to rat slices, the mouse Perl rhythm was immediately
abolished in 0 mM Ca*™, indicating that the Ca*" requirement of
molecular rhythmicity in the SCN is not species specific (Fig. 44).

A Ca”*flux is required also for PER2 rhythmicity

We also evaluated whether Ca** is required for sustained rhythmic-
ity of other clock genes and their protein products. We used slices
from a Per2"““ knock-in mouse (provided by Dr. Joseph S. Taka-
hashi), in which a PERIOD2:LUCIFERASE fusion protein is used as
a real-time reporter. In control medium, the PER2:LUC protein
showed a robust circadian expression (period, 23.9 = 0.21 h;n = 5),
as reported recently (Yoo et al., 2004). When we cultured slices in 0
mMm Ca*" (n = 4), similar to Perl, the PER2 protein rhythm was
immediately attenuated and absent after two to three cycles (Fig. 4B).
In addition, we treated PER2:LUC slices with 20 uM (n = 3) or 80 uMm
(n = 3) loading concentration of BAPTA-AM, which, as for Perl,
abolished the PER2:LUC rhythm (Fig. 4C).

Discussion

Our data provide the first demonstration of an ionic flux require-
ment for rhythms in molecular expression in mammals. These
findings are consistent with the observations in Drosophila that
electrical silencing stops the free-running circadian clock (Nit-
abach et al., 2002). Our experiments extend this observation to
mammals and suggest that a transmembrane Ca** flux is essen-
tial for molecular rhythmicity. A critical role of Ca** influx in
rhythm generation is supported by several observations. First,
reducing the transmembrane flux by hyperpolarizing the mem-
branes of pacemaker cells, and thereby presumably closing
voltage-controlled Ca** conductances, leads to arrhythmicity in
Perl expression. Second, removing extracellular Ca** abolishes
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Figure 3. Recordings of membrane potential and bioluminescence in various concentrations of Ca®™". 4, Bioluminescence
recordings from SCN explants obtained from transgenic Per-luc rats. The explants were cultured in medium containing 0, 0.18,
0.36,0.54,0.72, 0r 1.8 mm (control) Ca**. B, Current-clamp recordings in recording solutions containing 0,0.33, 1.8, and 3.36 mm
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minescence recordings from liver explants obtained from Per7-Juc rats. Liver tissues were cultured in medium containing 0.18,
0.36,0r 1.8 mmCa>*. D, Effect of Ca>* channel antagonists on the SCN Per7-fuc thythm. SCN explants were cultured in control
medium. After 3-5 d in culture, a DMSO control (top trace) or a mixture of Ca®™ channel blockers specific to N-, P-, Q-, L-, and
T-types (bottom trace) was added (indicated by arrows) to the explants. E, The intracellular Ca 2%+ chelator BAPTA-AM (20, 40, 80,
and 100 pum) was added to SCN explants, and bioluminescence was recorded. DMSO was added as a control.
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rhythms in Perl and PER2. Third, block-
ing various Ca®" channels results in ape-
riodicity after two to three cycles. We are
uncertain why Ca*" channel blockers do
not immediately abolish rhythmicity;
however, we suspect that these com-
pounds fail to completely block Ca*™ flux,
which may explain the relatively delayed
effect. Fourth, the membrane-permeable
form of BAPTA blocks rhythmicity of Perl
and PER2. Finally, the phase of the mPerl
rhythm is delayed proportionally to the
time spent in 0 [K "] medium. This sug-
gests that the molecular clock is stopped
rather than the rhythm being “masked” by
any effects of reducing extracellular K or
Ca** on the ability of the reporter gene to
reliably express the state of Per] transcrip-
tion. This result also makes it unlikely that
alow-amplitude rhythm persists in the ab-
sence of K™ or Ca®", hidden within the
noise level of the photomultiplier. Al-
though we did not record the effects of ma-
nipulations with [K "] and [Ca*"] in indi-
vidual pacemaker cells, we think it is
unlikely that the effects observed are
caused by intercellular uncoupling inso-
much as the action of most of our treatments
on rhythmicity was rapid, within 24 h. Al-
though uncoupling would lead to phase
scattering and apparent ensemble arrhyth-
micity, this typically occurs gradually over
5-7 d (Welsh et al., 2004).

The fact that a non-neural tissue, liver,
also becomes arrhythmic in low [Ca**]
suggests that the requirement for molecu-
lar rhythmicity extends beyond neuronal
tissues. Indeed, hepatocytes contain Ca**
channels that are mainly receptor acti-
vated but may also include voltage-
activated Ca®" channels (Sawanobori et
al., 1989; Brereton et al., 1997).

Although previous studies show con-
flicting conclusions regarding the role of
membrane electrical events and ion fluxes
in  mammalian rhythm generation
(Schwartz et al., 1987; Shibata and Moore,
1987; Shibata et al., 1987; Welsh et al,,
1995; Shinohara et al., 1998), our data are
consistent with recent findings in mice
lacking vasoactive intestinal polypeptide
receptor subtype 2 (VPAC,) receptors,
which are activated by vasoactive intestinal
polypeptide (VIP) and pituitary adenylate
cyclase activating polypeptide. Mice miss-
ing the VPAC, receptor are unable to
maintain normal behavioral rhythmicity
and rhythmic expression of Perl, Per2, and
Cryl (Harmar et al., 2002). These mice
also fail to exhibit the midday peak in elec-
trical activity that is characteristic of im-
pulse rhythms from SCN brain slices (Cut-
ler et al.,, 2003). Consistent with these
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results, VIP/peptide histidine isoleucine-deficient mice were found
to exhibit profound abnormalities in locomotor rhythmicity (Col-
well etal., 2003). These studies suggest an important requirement for
the VPAC, receptor in normal SCN rhythmicity. The reductions in
spontaneous electrical activity in SCN neurons and the observation
that these cells are capable of responding with high-impulse frequen-
cies to stimulation suggest that loss of the VPAC, receptor may alter
the resting potential of SCN neurons (Harmar et al., 2002; Cutler et
al., 2003). This situation may therefore be similar to Drosophila (Ni-
tabach et al., 2002), in which expression of Drosophila open rectifier
K™ channels in the pigment dispersing factor-expressing lateral neu-
rons leads to a loss of behavioral and molecular rhythmicity through
presumptive hyperpolarization of the membrane potential. A recent
study, however, calls into question whether the lack of VIP/VPAC,
alters the SCN membrane potential. Aton et al. (2005) reported that
dispersed arrhythmic SCN neurons from Vip~/~ and Vipr2~/~ mice
exhibited normal frequencies of spontaneous impulse activity, sug-
gesting that loss of rhythmicity may not involve hyperpolarization.
The basis of the discrepancy between the different studies using VIP/
VPAC,-deficient mice is presently unclear.

Another study measuring PerI-luc activity within single neu-
rons in a slice (Yamaguchi et al., 2003) supports the view that
membrane electrical activity is critical for circadian rhythmicity.
When SCN slices were exposed to TTX, Perl rhythmicity damped
immediately in individual neurons. Furthermore, TTX treatment
caused decreased levels of Perl and Per2 transcripts and proteins.

In a previous study, Ikeda et al. (2003) demonstrated a TTX-
resistant circadian rhythm in cytosolic, but not nuclear, Ca**
concentration. These data are not necessarily at variance with our
findings. It may indicate that there are two rhythmic systems: one
membrane-related electrical rhythm and one intracellular cyto-
solic Ca”" rhythm. Whether the cytosolic Ca®" rhythm affects
clock gene rhythms or vice versa has not yet been determined and
additional experiments are required to investigate the relation-
ship between molecular, electrical, and intracellular Ca**
rhythms. Another possibility is that TTX does not block rhythmic
membrane oscillations that lead to periodic Ca** influx. A more
direct experiment would therefore be to test whether the cytosolic
Ca** rhythm persists in hyperpolarizing or low [Ca**] medium.

As shown in our previous studies in the invertebrate Bulla
model (McMahon and Block, 1987), a transmembrane Ca*" flux
may also play a major role in entrainment of the mammalian
pacemaker. This has been demonstrated recently in the SCN by
Kim do et al. (2005), who showed that voltage-gated Ca** chan-
nels are required for glutamate-induced phase shifts.

The findings described in our study strengthen the view about the
importance of membrane electrical phenomena and directly impli-
cate Ca®" influx in rhythm generation. Important issues remain
about the nature of the required Ca*" influx (e.g., single cell record-
ings; restricted to specific circadian phases) and intracellular targets
of the flux required for sustained molecular rhythmicity.
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