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History-Dependent Multiple-Time-Scale Dynamics in a
Single-Neuron Model
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History-dependent characteristic time scales in dynamics have been observed at several levels of organization in neural systems. Such
dynamics can provide powerful means for computation and memory. At the level of the single neuron, several microscopic mechanisms,
including ion channel kinetics, can support multiple-time-scale dynamics. How the temporally complex channel kinetics gives rise to
dynamical properties of the neuron is not well understood. Here, we construct a model that captures some features of the connection
between these two levels of organization. The model neuron exhibits history-dependent multiple-time-scale dynamics in several effects:
first, after stimulation, the recovery time scale is related to the stimulation duration by a power-law scaling; second, temporal patterns of
neural activity in response to ongoing stimulation are modulated over time; finally, the characteristic time scale for adaptation after a step
change in stimulus depends on the duration of the preceding stimulus. All these effects have been observed experimentally and are not
explained by current single-neuron models. The model neuron here presented is composed of an ensemble of ion channels that can
wander in a large pool of degenerate inactive states and thus exhibits multiple-time-scale dynamics at the molecular level. Channel
inactivation rate depends on recent neural activity, which in turn depends through modulations of the neural response function on the
fraction of active channels. This construction produces a model that robustly exhibits nonexponential history-dependent dynamics, in
qualitative agreement with experimental results.
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Introduction

A ubiquitous feature of neuronal systems, at all levels of orga-
nization, is the appearance of a wide range of history-dependent
time scales; not only the responses but also their characteristic
time scales themselves are history and context dependent.

At the level of an ensemble of ionic channels, history-
dependent characteristic time scales have been measured directly
(Toib et al., 1998). This work showed the existence of a scaling
relationship between stimulation duration and recovery time
scale in Na ™ channels. These results could not be understood by
the simple picture of channel kinetics with a few well defined slow
inactivation time scales. It was suggested that the observed scaling
relationship reflects the existence of multiple inactive states of the
sodium channel. This is consistent with other known multiple-
time-scale behaviors of ionic channels that reflect their complex
internal structure (Bassingthwaighte et al., 1994).

At the level of the single neuron, Tal et al. (2001) showed that
temporal patterns of neural activity are strongly dependent on
cumulative history of stimulation and activity. Indirect evidence
for history dependent dynamics comes from scale-free fluctua-

Received Aug. 2, 2004; revised May 26, 2005; accepted May 26, 2005.
This work was supported in part by the United States—Israel Binational Science Foundation. We thank Shimon
Marom for many illuminating discussions and Erez Braun for critical reading of this manuscript.
Correspondence should be addressed to Naama Brenner, Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 32000, Israel. E-mail: nbrenner@tx.technion.ac.il.
DOI:10.1523/JNEUR0SCI.0763-05.2005
Copyright © 2005 Society for Neuroscience  0270-6474/05/256479-11$15.00/0

tions in the activity of neurons (Teich, 1989), heart cells (Soen
and Braun, 2000), and synapses (Lowen et al., 1997). At a still
higher level of organization, in vivo measurements on flies have
shown that the time scales characteristic of adaptation in a visual
interneuron depend on the conditioning stimulus parameters
(de Ruyter van Steveninck et al., 1986; Fairhall et al., 2001). Thus,
history-dependent multiple-time-scale dynamics appear repeat-
edly in experimental on excitable systems at several levels of or-
ganization. It is not clear, however, how multiple-time-scale dy-
namics at one level gives rise to multiple-time-scale dynamics at
the next higher level. Here, we approach the question by focusing
on the interaction between the levels of ionic channels and single-
neuron activity.

Experiments have shown that probing neurons with complex
stimuli and on long time scales results in temporally complex
responses. These are often understood in terms of context- and
history-dependent slow modulations of neural response param-
eters. Several underlying molecular mechanisms support these
modulations in an activity-dependent manner (LeMasson et al.,
1993; van Ooyen, 1994; Marom, 1998; Wang, 1998; Carr et al.,
2003). Such mechanisms are usually understood to operate by
adding uniquely defined slow time scales (Marom and Abbot,
1994; Fleidervish et al., 1996; Kim and Rieke, 2003) and cannot
capture multiple-time-scale dynamics.

In this work, we construct a model that aims to describe mod-
ulations in neural response in connection with multiple-time-
scale dynamics of ion channels. The ensemble of ion channels
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making up the neuron is assumed to have a space of inactive states
modeled by a simple scheme (Millhauser et al., 1988). We start by
investigating this model in the context of experiments on a mem-
brane patch, using the same protocol of Toib et al. (1998) and
finding a similar scaling relationship as that observed in the ex-
periment. We then use the concept of neuronal excitability, the
sensitivity of a neuron to inputs, to define a variable that scales up
these kinetics to the level of the neuron. This idea is inspired by
experiments suggesting that neuronal excitability is well defined
locally in time and can be modulated by activity and stimulation
over long time scales (Marder et al., 1996; Desai et al., 1999).
Justification for the use of a single variable to describe neuronal
excitability is derived from properties of the Hodgkin-Huxley
neural response function, and construction of the neuron model
is presented in detail. We then proceed to investigate some prop-
erties of the neuron model under different stimulation protocols.
The model is shown to robustly reproduce several effects of
multiple-time-scale dynamics that have been observed in exper-
iment and are not explained by standard or biophysical models.

Materials and Methods

Membrane patch model. The kinetics of ion channels is described by a
model based on the one proposed and studies by Millhauser et al. (1988),
in which channels can occupy a linear chain of N inactive states; pairs of
neighboring states are coupled by the same transition rate 8. An addi-
tional rate constant, «, characterizes the transition from active to inac-
tive states under depolarization. Following the suggestion of Toib et al.
(1998), we extend this model to include a voltage-dependent inactivation
rate (see Results, scheme in Eq. 6). Rather than specifying this depen-
dence in detail, because our stimulation protocol consists of fixed-level
voltage pulses, we assume that the inactivation rate is zero in the absence
of voltage and equal to a constant ¢ in the presence of the applied
voltage. Thus, in dimensionless time 7 = #[3, the model behavior is de-
termined by a single dimensionless parameter, the ratio oy/. Because
the values of the rate constants among inactive states are not known, we
choose values that correspond to typical transition times of 10—100 ms.
Choosing other values for 3 will scale the time axis accordingly, whereas
different values of o,/ will modify the shape of the curves.

Neuron model. We start from a model of an ensemble of ion channels
as described above and seek to connect it to neuronal dynamics. Denot-
ing by p,(t) the population of the state j at time #, we define the dynamical
variable of neuronal excitability X as the fraction of channels in the active
(zeroth) state: X = w,(#). The neural response is described by a contin-
uous firing rate, which is assumed to be averaged over a time scale of
many spikes (i.e., details of spikes and spike times are intentionally ne-
glected), because we are interested in long-term modulations of neural
activity. The rate is characterized by a sigmoid function of the input
stimulus s, depicted in Figure 34, and defined by the following:

1
ax(s) = [ F o G- e (1)

where the subscript X indicates that this function is parametrically de-
pendent on neuronal excitability X. Here, s is the (dimensionless) stim-
ulus, which can in principle be any stimulus that directly or indirectly
activates the neuron; most conveniently, one may think of s as a current
injected into the cell body. 6, is the activity threshold and o the sigmoid
width. Activity is normalized to be dimensionless (i.e., the maximal ac-
tivity is 1), whereas the dimensionless stimulus and sigmoid parameters
0, and o are measured in units of the typical range of stimulus. Excit-
ability modulates the response function (Eq. 1) through the activity
threshold 0, (X) = ¢,/X. This form is consistent with the behavior of the
Hodgkin-Huxley model (see Fig. 2), where X is the ratio between Na *
and K" maximal conductance. If these maximal conductances can be
slowly modulated, then X can be thought of as a slow dynamic variable.
The value of the constant ¢, determines the sigmoid threshold when all
channels are available (X = 1); it affects the steady-state value of the
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excitability under stimulation. Neural activity is coupled back to a chan-
nel model by setting the inactivation rate at time ¢ equal to be o, X
ay(s(1)); the higher the neural activity, the higher is the rate to inactivate,
and «, is the maximal inactivation rate achieved when the activity of the
neuron is maximal (=1).

Numerical simulation. The kinetics of the channels among their possi-
ble states was simulated by Markov matrices, which represent the
discrete-time approximation of the rate equations describing the time
evolution of the channel distribution. Neural activity is assumed to be
instantaneously responsive to the stimulus and thus was updated contin-
uously over time. A more detailed calculation, by Monte Carlo simula-
tions of the individual channels, was also performed but does not add to
the results that are presented here in terms of distributions. In the simu-
lations presented here, unless stated otherwise, we used a number of
channel inactive states N = 100 and rates in the range of 10-20s ', ¢, =
1/2, and o = 0.1. The time step for the discrete time evolution was taken
to be 0.02 times the shortest time scale in the problem (inverse transition
rate) and was verified to be in the range in which discretization does not
affect the results. The basic properties of the neural model were found to
be robust with respect to these parameters.

Diffusion approximation. The continuous diffusion equation on a half
space in one dimension is a useful tool to gain intuition about the model.
Defininga coordinate z along the chain of channel states, we approximate
the discrete states by a continuum and the random walk among the states
by a diffusion process in z. This approximation has been used successfully
in previous studies of ion channel dynamics (Millhauser et al., 1988;
Frauenfelder et al., 1991; Goychuk and Hanggi, 2002). We assume that
the coordinate z extends to infinity; this will be a good approximation as
long as the stimulation time is short enough that the channels do not
populate significantly the states farthest from the active state (+ << (N/
) /B, where N is the number of inactive states and § the typical rate of
transition among them).

We use the diffusion approximation to estimate the recovery of the
fraction of active channels u,(#) (excitability in the neuron model) after
stimulation of duration #. During recovery, the problem is that of diffu-
sion with an absorbing boundary, and thus, given the initial value u(t;)
and the distribution of inactive channels uj( tg) (j > 0), one can in prin-
ciple calculate this recovery time course exactly.

As explained in detail in Results, the neuron model under constant
stimulation displays a stable value of excitability, X(t5) = w,(#); there-
fore, at the end of a stimulation period X is approximately independent of
stimulation time ¢y In the membrane patch model, on the other hand,
channels continue to inactivate as long as stimulation persists, and there-
fore the population of the active state decreases with stimulation time
(see Fig. 3b). This empirical observation is then used as an initial condi-
tion to calculate the recovery curve in each case. To estimate the distri-
bution of inactive channels, we use the solution of the diffusion equation
with a reflecting boundary, representing the fact that during stimulation,
channels are constantly being pushed back into the inactive pool. This
solution reads as follows, after time t:

P(t,2) = R 2)

2

e
In the neuron model, we treat D an effective diffusion constant, which
takes into account deviations from simple diffusion near the boundary. It
can be empirically derived from a fit to the mean versus time of the
simulation data (see Fig. 8). The approximation in Equation 2 captures
well the decay of the channel distribution at large z and the behavior of
the mean as a function of time but not the details of the distribution near
the origin. For calculating the recovery to high thresholds, our results
indicate that it is a sufficiently good approximation.

The relationship between the channel distribution at the end of the
stimulation period and the dynamics in the recovery phase is established
by considering the recovery from a single point on the z-axis. Starting the
entire distribution at z, the fraction of channels at the origin after time tis
equal to the probability to return to the origin up to this time, as follows:

z
X(zt) =1 — er[<7vﬂ> . (3)
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This expression enables to calculate the recovery after time ¢ from any
given (normalized) distribution P(tg, z) as follows:

®

X(tstg) =1 — f dz P(tgz) erf( \/Z%) . (4)

0

Using the distribution of Equation 2, one finds the following:

2 ts
X(tstg) =1 — o aretg e (5)
The argument ¢4 here denotes the dependence of this solution on the
history of stimulation duration. The scaling of the recovery time t as
defined by crossing a threshold 6, with the stimulation time g is found
from the implicit equation X(tg; tz) = 0x. This leads to the linear scaling
described in Results.

We use the diffusion approximation also to explain the dynamics of
neural activity under strong stimulation. It is easiest to gain intuition into
this problem in the limit of a hard threshold neural response (o << 1);
here, one is looking for the time it takes the excitability variable to over-
come the threshold for activity. In contrast to the dynamics of recovery to
a high threshold, which are dominated by the tails of the channel distri-
bution at the end of stimulation, here, the time to threshold is short and
depends on the channel distribution in the vicinity of the active state. For
strong inactivation, the frequency of activity is small and activity domi-
nated by the dynamics of inactivation rather than that of the stimulus
(see Fig. 9). Therefore, the boundary is absorbing most of the time, and
only once in a while, a portion of the channels are returned to the state I.
In this limit, one can approximate the distribution of channels immedi-
ately after activity by the solution of the diffusion equation with an ab-
sorbing boundary and an additional 6 function near the boundary result-
ing from the recently inactivated channels. Then, the time to the next
threshold crossing behaves approximately as V'#;, where t is the stimu-
lation duration. The activity itself then decays as 1/\V/t, in agreement
with the simulation result in Figure 10.

Results

Multiple-time-scale dynamics in a model of a

membrane patch

We first consider the dynamics of an ensemble of ion channels in
a membrane patch, following the experiments of Toib et al.
(1998), who showed that the characteristic time scale of recovery
from inactivation exhibits a power law relationship with the du-
ration of conditioning stimulus. These authors suggested that
such behavior may arise from a multiplicity of inactive channel
states, with a transition from active to inactive state that depends
on the voltage: during the conditioning period, channels are
pushed further into the inactive subspace, such that recovery
becomes dependent on the distribution of channels among inac-
tive states. Assuming that this basic phenomenon is independent
of the specific configuration of inactive states and values of tran-
sition rates, the simplest form of a linear chain of inactive states
was suggested, as shown in the following scheme:

a) B B P p
Aol ol ol o.....ol, (6)
R Y A s

Here, A is the active state, and {I,. .. I, } are states in which the
channels are unavailable to respond to voltage. We refer to these
states in what follows as inactive. Transitions among the inactive
states are voltage independent and take place with a rate (3,
whereas the transition rate for inactivation depends on the ap-
plied voltage according to a( V). This scheme is a modification of
the one introduced and studied by Millhauser et al. (1988); in
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Figure 1. Multiple time scales in a model of a membrane patch. a, Fraction of inactivated
channels after a depolarizing voltage applied for various durations, plotted as a function of time
from end of depolarization. Model parameters: 8 = 1Hz; oy = 0.8 Hz. b, Characteristic time
scale for recovery, defined by the decrease of inactivated fraction toa given threshold, plotted as
a function of stimulation duration. These times obey a power-law scaling relationship with a
power of ~1. This scaling is weakly dependent on the choice of threshold for recovery (0.5 for
top lines, crosses, and circles and 0.6 for bottom line). The same scaling is observed under
cumulative inactivation; the dashed line with crosses shows the results for a periodic pulse train
stimulus (25 Hz).

their model, the transition rate between active and inactive was
constant, and the multiplicity of inactive states was shown to
result in a power law distribution of residence times.

We use this model to carry out the experimental protocol of
Toib et al. (1998), applying a fixed voltage stimulus V to the
membrane patch for varying durations of time. The inactivation
rate is taken to be constant in the presence of voltage, a(V) = «,
whereas in the absence of voltage, there is no inactivation, a(V =
0) = 0. (We do not specify the precise functional dependence of
a(V); it is not important because we use only two values of volt-
age in the stimulation protocol.) Figure 1a shows the dynamics of
recovery from inactivation presented as the fraction of inactive
channels relative to the fraction at the end of the stimulation
time. It is seen that the characteristic time course of these curves
is nonexponential and depends on the history of the stimulation
(i.e., on stimulation duration). In the experiments on ion chan-
nels, the recovery curves were approximately biexponential, and
characteristic time scales could be extracted by fitting. Here, we
define the characteristic time scale by a threshold crossing of the
relative active fraction or equivalently, the time required to re-
cover back a constant fraction of the missing channels. Figure 10
shows that this time scales with the stimulation duration accord-
ing to a power law, tg = ¢ £, similar to the experimental obser-
vation (Toib et al., 1998); moreover, the value of the scaling
power 7y is close to 1, which is similar to the one observed in the
experiment (0.5-0.8, depending on the type of sodium channel).

The model represented by the scheme above is characterized
by one dimensionless parameter, the ratio of the two transition
rates ay/B. The scaling exponent was found to be essentially in-
dependent of this parameter and gave a value between 0.9 and 1
for a ratio extending over two orders of magnitude, 0.1-10. Re-
lating once again to the experiments, it was tested whether the
scaling holds also for cumulative inactivation, namely in the pres-
ence of periodic voltage pulses extending over various durations
instead of a constant voltage (Toib et al., 1998). Keeping the total
integrated strength of the depolarizing voltage fixed, the scaling
exponent was found to be the same as that for a constant voltage,
again in the range of 0.9-1.

The scaling law of recovery in the model can be derived, at
least in some limit, from the diffusion approximation to the
channel dynamics. In this approximation, the channels are as-
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sumed to undergo continuous diffusion in one dimension, in
which the origin represents the active state, and the rest of the
space represents the degenerate inactive states. For large inacti-
vation rates, the barrier for activation of channels is very high and
can be approximated by a reflecting boundary at the origin. Dur-
ing the recovery time, in which no voltage is applied, the origin
acts as an absorbing boundary. In both these cases, the dynamics
of the channel distribution is exactly solvable; in relation to the
experimental protocol, one solves the diffusion equation with
reflecting boundary for a duration t, thus obtaining the channel
distribution at the end of the stimulation phase. This distribution
then serves as an initial condition for the recovery phase, in which
the boundary is absorbing. This computation results in the scal-
ing law tg = ¢ tz, namely a scaling power of y = 1 (see Materials
and Methods for details).

Defining the neuronal excitability variable

To connect the history-dependent time scales of the ensemble of
ion channels with the dynamics of a neuron, we assume that the
slow inactivation and recovery of channels affect the sensitivity of
the neuron to inputs. Experiments have shown that slow inacti-
vation of sodium channels induces slow modulations in the re-
sponsiveness of neurons to inputs (Fleidervish et al., 1996; Kim
and Rieke, 2003). In general, excitability depends on many vari-
ables, for example, the availability of many different ion channel
types or the level of calcium. In this section, we provide justifica-
tion for a simplified description of excitability by one variable,
which changes over typical time scales much slower than those of
the action potential.

We motivate our description by examining the excitability
of the Hodgkin-Huxley model, as reflected by its input/output
function in a dynamic stimulus environment. Figure 2 shows
this function computed for random slowly varying (al,a2) or
rapidly varying (b1,b2) stimuli. For a slowly varying stimulus,
the input/output function is computed by counting spikes in
an interval and plotting the local rate as a function of the mean
stimulus in the interval. For a rapidly varying stimulus, one
may use white-noise analysis techniques and characterize the
response to different components of the stimulus (Rieke et al.,
1999; Simoncelli et al., 2004). The simplest of these compo-
nents is the projection of the stimulus onto the spike-triggered
average, and this is the component used here, which defines
the x-axis of the input/output response. The nonlinear input/
output function to this stimulus component is then extracted
from the data by statistical analysis (Brenner et al., 2000).
Figure 2, b1 and b2, presents such an input/output function
for the Hodgkin-Huxley model stimulated by a random signal
that is drawn independently from a distribution each
millisecond.

Slow channel inactivation can be represented in the
Hodgkin-Huxley model by changes in maximal conductances:
a significant fraction of inactivated sodium channels is equiv-
alent to a corresponding fractional decrease in the maximal
sodium conductance. As a quasi-static approximation, some
insight can be gained by varying the maximal conductances
“by hand” and observing the effect of this variation on the
model behavior. Figure 2, al and b1, depicts the input/output
functions for different values of the maximal sodium and po-
tassium conductances in the two regimens of stimulus: in gen-
eral, changing these values modifies the effective response
threshold. As the sodium maximal conductance is increased,
or as the potassium maximal conductance is decreased, the
input/output function increases its sensitivity (lowers its
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Figure2.  Motivation for defining neuronal excitability. The normalized output firing rate is

shown as a function of input current for the Hodgkin-Huxley model, with various values of the
maximal conductances. Stimulus is a Gaussian noise with a correlation time of 500 ms (a) or 1
ms (b). Different values of the maximal conductances generally result in a different input/
output function (a7, b7). In both curves, g, = 30 uS/cm % ,,,is changed between 90 11S/cm 2
(+) and 120 wS/cm? (diamonds). Changing the maximal conductance while keeping their
ratio fixed (here 3) results in the same input/output function (a2, b2). g, = 30 wS/cm 2(+);
g, = 40 uS/cm? (diamonds). a3, b3, Dependence of the response threshold, defined as the
input at half-maximal output, on the ratio of sodium to potassium maximal conductance.

threshold). Figure 2, a2 and b2, shows that the normalized
input/output functions overlap if the maximal conductances
are changed such that their ratio is kept constant (the maximal
value of response in physical units changes by 10-20%). Thus,
the response sensitivity depends strongly on the ratio of so-
dium to potassium maximal conductance and not on their
individual values, at least in a limited range of parameters in
which excitability is retained.

This result suggests that the ratio of available sodium to po-
tassium channels can serve as an effective variable that controls
the excitability or responsiveness to stimuli of the neuron. Char-
acterizing the response function by a threshold, the input value at
half-maximal response, Figure 2, a3 and b3, shows the depen-
dence of this threshold on the ratio between the two types of
conductance for the slow and rapid stimuli, respectively.
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Figure3.  Closing the loop between neural activity and channel kinetics. a, Neural activity is

characterized by a sigmoid rate function with a fixed width and a threshold that is modulated by
neuronal excitability X. As excitability increases from 0 toward 1, the activity threshold de-
creasesas 6, = ¢,/X. b, The effect of closing the loop on the dynamics of excitability: fraction of
available ion channels as a function of time during stimulation in the neuron model (solid lines)
compared with the model of a membrane patch (dashed, bottom line). In the neuron model,
this fraction, the neural excitability, fluctuates around a steady-state value, X = ¢,. In the
membrane patch, it continuously decreases with time as more and more channels are driven
into inactivation.

Closing the loop: activity-dependent inactivation and
excitability-dependent activity

Following the motivation and justifications of the previous sec-
tions, we now specify the detailed structure of our model. The
neuron is composed of an ensemble of sodium channels that can
populate a large pool of inactive states, thus exhibiting a scaling
behavior as discussed above, and an ensemble of potassium chan-
nels without such dynamics. This is consistent with the experi-
mental findings of Toib et al. (1998), who reported that potas-
sium channels of type ShakerB did not show a scaling behavior.
Although other types of potassium channels may have complex
temporal behavior, we here neglect this for sake of simplicity and
attribute the modulations in excitability only to the sodium chan-
nels. Thus, in the model neuron, we follow the dynamics of one
type of channel, the excitatory force, and assume that the restor-
ing force remains of constant maximal value. The distribution of
these channels among their different states is represented by a
vector of length N + 1, p(t), where j = 1:N are the inactive states
and j = 0 is the active (available) state. Neural excitability X is
defined as the fraction of sodium channels in the active (avail-
able) state, X(t) = uo(1).

Neural activity a is described by a rate function, a coarse-
grained, time-averaged representative of firing; temporal details
at the resolution of action potentials are neglected. The time scale
for averaging should be larger than the instantaneous interspike
time. For typical firing rates measured in sensory neurons of up to
100 Hz, this implies an averaging over at least 10 ms. Activity is
assumed to be evoked instantaneously by the external stimulus s
according to a sigmoid input/output function ay(s) (Fig. 34, Eq.
1). This assumption is consistent with a stimulus that varies over
time scales also longer than the typical interspike time. The stim-
ulus represents sensory or direct electrical input that drives spik-
ing in the neuron; the precise type of input and its units will
depend on the system and the experimental setup. For example,
one may imagine a current directly injected into an isolated cell
body in a slice experiment. Both stimulus s and neural activity a
are defined to be dimensionless variables. In particular, for pro-
tocols in which the input is bounded, both variables have a max-
imal value of 1. Modulations in neural excitability are modeled by
the parametric dependence of this input/output function on the
internal excitability variable X. Drawing from the results for the
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Hodgkin-Huxley model shown in Figure 2, we take the input/
output function to have a threshold that depends inversely on
excitability as follows: 6, = c,/X, where c, is a constant.

Neural excitability X is a dynamic variable representing the
fraction of inactive channels. The rate of ion channel inactivation
at a given time generally depends on neural activity: the higher
the activity, the longer the membrane will be depolarized and the
more channels will inactivate. We represent this property by
making the inactivation rate proportional to neuronal activity in
the model ac,, where a is the (normalized) neural activity and «,
is a constant inactivation rate. Once inactivated, the Na* chan-
nels are allowed to move among the inactive states, I,. . . Iy, con-
nected by transition rates of similar magnitude, as in the model of
the ensemble of channels described above. The scheme of transi-
tion rates and their connection with neural activity is depicted in
Equation 7, as follows:

ax(s) — vV

A%valﬁfﬂlﬁ ﬁ[
B ]ﬂzﬂEﬁ ﬁNm
X 1-X

We note that closing the loop between activity and inactivation
has a stabilizing effect on the fraction of channels that populate
the available state A. This effect is illustrated in Figure 3b.
Whereas in a collection of ion channels continuous stimulation
results in a continuous depletion of channels from the active
state, in the neuron model, if too many channels inactivate, there
is little activity evoked, which in turn slows down inactivation
and allows for some recovery. This implies that at the neuron
level excitability may fluctuate around some value but will not
continuously drift away, and thus neural excitability will be kept
stable for a long time. Still, the fraction of inactivated channels
changes its properties considerably through its distribution
among the inactive state, and this property will affect the typical
time scales that will arise in neural dynamics, as will be shown
below.

The closing of the loop between neural activity and channel
kinetics is a key ingredient of our model: the fraction of available
channels determines neuronal excitability X, which parametri-
cally modulates the neuronal input/output function; this func-
tion determines the responsiveness of the neuron to stimuli and
hence its activity; neural activity, in turn, affects the rate of chan-
nel inactivation. The dynamical variable of excitability plays a
central role here; it is a phenomenological variable at the neuro-
nal level, which carries information about dynamics of the chan-
nel level. In simpler models of inactivation, a rate of transition
out of a single inactivated state is defined, which determines the
time scale of relaxation in the long-term behavior of the neuron
(Zeevi and Bruckstein, 1981; Tabak et al., 2000; Kim and Rieke,
2003). Here, we have incorporated the degeneracy of inactive ion
channel states into the neuron model, allowing to address directly
the question of how the multiple time scales on the molecular
level scale up to the neuron level and reflect in neural activity and
response (Lowen et al., 1999).

Figure 4 illustrates the results of typical model simulations.
The variables stimulus, excitability and activity, are shown as a
function of time for two stimulus types, a periodic pulse train
(Fig. 4a) and a random stimulus (Fig. 4b). After neural activity,
channels tend to inactivate and thereafter undergo voltage-
independent transitions among the pool of inactive states. How-
ever, because activity depends on a sufficient degree of excitabil-




6484 - ). Neurosci., July 13,2005 - 25(28):6479 — 6489

ity, if too many channels have inactivated, (a)
there is no activity even in the presence of 1
stimulus, and some channels will recover. g
This is seen in the behavior of the dynamic 05
variables with time during the stimulation )
period: after a first strong decrease, excit-
ability (Fig. 4, middle) fluctuates around 0
the activity threshold. This stability of the 1
excitability variable induces an effective X
separation of time scales in the neural re-

sponse. On short time scales, neural activ- 0.5
ity (Fig. 4, bottom) is determined by the
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(b)

nonlinear input/output function with the
steady-state value of excitability. Over 1
long time scales, the cumulative effect of a
past history is in fact registered in a hidden 05
degree of freedom, the distribution of ’
channels among their inactive states,

which is manifested only on long time dy- 0
namics. In the following sections, we ex-
plore some dynamic properties of this
neuron model under different stimulation
protocols.

Figure 4.

timd ()

2
0.5
2 10 1 2
0.5
0
2 0 2

timd (s)

Stimulus, excitability, and neural response. A stimulus (s; top) is delivered to the model neuron. Activity (a; bottom)
is elicited in response to the stimulus, according to a nonlinear response function (see Fig. 3a), which depends on the internal

excitability variable (X; middle). a, Periodic unit pulses of width 10 ms and period 40 ms. b, Random stimulus, uniformly distrib-

History-dependent recovery:
scaling relationship

We now address the question of how neuronal excitability recov-
ers back to its maximal value after different stimulations; in par-
ticular, we would like to characterize the time course of this re-
covery. In analogy to the experimental protocols on the ensemble
of ions in a membrane patch (Toib et al., 1998), we simulate a
period of stimulation, then stop the stimulation and follow the
dynamics of relaxation.

After stimulation has stopped, there is no force driving the
channels to inactivation, the active state becomes absorbing, and
excitability increases monotonically with a time course displayed
in Figure 5, which is clearly nonexponential. The same simulation
is repeated for various durations of the stimulating period, with
all other stimulus properties unchanged. The resulting recovery
curves, starting from the time at which stimulation ends, are
depicted in Figure 5. We quantify these dynamics by an arbitrary
recovery threshold (6;) on the excitability, defining a recovery
time t. Figure 5 shows that the recovery time depends on the
history of stimulation and activity, although the excitability starts
from the same steady-state value at the end of stimulation. Thus,
the characteristic time scale for recovery (not just a recovery
time) is history dependent. This implies that observing neuronal
excitability alone, it may appear there is no Markov property to
the system: the future dynamics is not determined solely by the
current value of excitability. In fact, the hidden degrees of free-
dom of channel inactivation induce this apparent history
dependence.

In their experiments on ion channels, Toib et al. (1998) have
shown that the characteristic time for recovery of channels from
inactivation scales as a power law with the duration of stimula-
tion. Following these authors’ suggestion, we have shown that
this property is captured by the structure of ion channel states at
the level of channel recovery (Millhauser et al., 1988; Toib et al.,
1998). Figure 6 demonstrates that our model neuron displays a
similar scaling behavior in the relaxation of its excitability after
stimulation. Both for a periodic stimulus (Fig. 6a) and for a ran-
dom stimulus (Fig. 6b), the time scale of recovery from inactiva-

utedin [0,1]. Parameters: ay = 3 = 20Hz; 0 = 0.1;¢, = 1/2.

tr
0.4 : : ' - - '
0 50 100 150 200 250 300
time from stimulation end (s)
Figure 5.  Recovery of excitability after a stimulation period. After stopping the stimulation,

neuronal excitability slowly recovers back to its maximal value. Recovery is shown after stimu-
lation of duration 10, 30, and 100 s. Note that recovery is nonexponential, and that although
excitability starts from the same value, the time course is different depending on the history.
Defining a typical time for recovery by a fixed threshold, this time t, depends on history of
stimulation and activity. Parameters: oy ;) = B = 20 Hz; o = 0.1; ¢, = 1/2; stimulus
frequency, 30 Hz.

tion t; shows a power-law scaling with stimulation duration (¢,),
which can be expressed as follows:

tR =c t5y> (8)

where ¢ and vy are constants. Because an arbitrary threshold was
involved in the definition of the recovery time, the value of this
time depends on the choice of threshold, as shown by the differ-
ent curves in Figure 6, a and b. However, the functional behavior
is seen to be similar, and the choice of recovery threshold affects
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fraction of the active channels are re-
turned back into the inactive pool. The
boundary switches between these two
types of behavior according to the distri-
bution of channels itself, which makes the
problem nonlinear. Solutions of the diffu-
sion equation on the half-line that start
near the origin generally have a mean that
grows as the square root of time. Figure 8a
shows the mean calculated in the model,
together with a fit of the form (j) = C, V1.
Allowing for an arbitrary fitting parameter
C,, this semiquantitative prediction of dif-
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Figure 6.  Scaling of recovery time with stimulation duration. Following the definitions of Figure 5, the time scale of recovery

from inactivation shows a power-law scaling with stimulation duration t,~(t;)?. Results for different choices of the recovery
threshold are shown for a periodic train of stimulus pulses (a) and for a random Poisson pulse train with the same mean rate (b)
averaged over realizations. The best it for yin the scaling function is shown for the two stimulus typesin cand is between 0.8 and

1.05. Parameters: oty = 5 = 10 Hz; o = 0.001; ¢, = 1/2.

the constant ¢ and only weakly the scaling power vy, which is
found to be between 0.75 and 1.05, as shown in Figure 6¢. Chang-
ing the inactivation constant in the model, «, and the stimulus
frequency result in a similar scaling behavior with a scaling power
v depending only weakly on these parameters. Direct experimen-
tal measurements of recovery time scales at the level of the single
neurons and their history dependence have not been performed.
Therefore, these values can be compared with those measured for
ion channels in a membrane patch (Toib et al., 1998) and are
found to be of similar magnitude. We note that the main non-
trivial result here is the existence of the scaling behavior between
stimulus duration and recovery time; standard models of activity
dependent neurons have a well defined relaxation time, which
does not depend on the history of the system. It is not expected
that a simple model as that presented here should predict pre-
cisely the power or account for the fine differences between dif-
ferent ion channel types. On the other hand, as discussed below,
the simplicity of the model suggests that the appearance of
activity-dependent multiple time scales in recovery will be rather
general.

History-dependent recovery: underlying channel dynamics
The dynamics of the ion channels within their degenerate inactive
state space underlie the history-dependent multiple time scales
that emerge in the dynamics of the neural model. We now con-
sider these dynamics in some detail. Figure 7 shows the time
evolution of the channel distribution during stimulation for var-
ious lengths of the stimulus history. As stimulation duration in-
creases, the channel distribution broadens and develops a tail that
decays as a Gaussian with the distance from the active state. The
mean of the distribution of channels among states, (j), increases
monotonically with time (Fig. 8a). It is important to recall that,
although the inactive channels drift away from the active state in
the mean, the portion of channels in the active state remains
around the activity threshold and fluctuates in its vicinity.

We turn once again to the diffusion approximation to explain
the dynamics of the channel distribution. In the neuron model,
deviations from diffusive dynamics occur near the boundary (the
active state), where the transition rates change as a function of
time depending on activity. At times when there is no stimulus, or
when excitability is too low to generate activity, the active state
acts as an absorbing boundary. At times after activity, only a

fusive dynamics captures well this prop-
erty of the distribution among channel
states during stimulation.

Consider now the behavior of the
model neuron in the recovery period, after
stimulation has ended. Intuitively, it is
clear that the longer was the stimulation
period, the more channels have been
pushed toward the deeply inactive states, and then the longer it
will take for the system to recover. In fact, one can view the
distribution of channels at the end of stimulation as a represen-
tation of past activity, which will determine the dynamics from
here on; past temporal information has been transformed to in-
formation in the space of channel states. Because of the mark-
ovian nature of the model, this information determines com-
pletely the dynamics of recovery after the end of stimulation. In
the absence of stimulation, the active state is absorbing at all
times, and so the problem reduces to a diffusion equation with an
absorbing boundary condition, which is exactly solvable in terms
of the distribution at the end of the stimulation period. Neuronal
excitability X(#) is equal to the cumulative probability to return to
the active state over time. Figure 8b shows the analytic approxi-
mation derived in this way (solid lines) together with the model
simulation (circles). For this analytic expression, the distribution
at the end of stimulation was approximated by the solution of the
diffusion equation with a reflecting boundary condition, allow-
ing for an effective diffusion coefficient determined by the em-
pirical measurement of (j) = C,V/t; (Fig. 8a). From this approx-
imation, one can find the scaling of the recovery time with the
stimulation time; given a fixed recovery threshold (6y), excitabil-
ity reaches the threshold at recovery time f; determined by the
following equation:

X(tgtg) = O 9)
This calculation results in the same linear scaling as found for the
ensemble of channels, namely fg = ¢ t, where ¢ depends on the
effective diffusion coefficient and on the initial value of excitabil-
ity (see Materials and Methods for additional details and
formulas).

History-dependent temporal patterns in responsiveness

We now consider the manifestation of multiple-time-scale dy-
namics in neural responsiveness. Neurons are often categorized
by the temporal activity patterns they produce in response to
stimulation: tonic, bursting, etc. These responses reflect the in-
terplay between external stimulation and internal neuronal char-
acteristic time scales determined, for example, by ion channel
content. Modeling studies have shown that internal neuronal
mechanisms on different time scales can generate a wide range of
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Figure 7.  Distribution of the channels among the inactive states after different stimulus
durations. The distribution becomes broader as the stimulation duration increases. The popu-
lation at the origin itselfis stable at a value of ~0.5 (data not shown). Parameters: oty = B8 =
20Hz; 0 =10.1;¢, = 1/2.

responsiveness patterns (LeMasson et al., 1993; Mainen and Se-
jnowski, 1996). If the neuron has potentially a wide range of
internal time scales that are evoked as a function of history, then
a rich repertoire of activity patterns can be expected, which will
also emerge as a function of history. Indeed, experiments reveal
features such as the modulation of typical response frequency
over long durations of stimulation (Tal et al., 2001). To illustrate
similar effects in our model, we compare the response patterns of
the neuron to the same stimulation but with different histories,
see Figure 9. One finds, in some parameter regimens, mode lock-
ing and modulations of the typical response time over long du-
rations of stimulation. The temporal activity patterns are illus-
trated in the regimen of strong inactivation and slow channel
diffusion. Figure 9a shows the response to a periodic stimulus of
low frequency; neural activity starts by a one-to-one response,
then after some time starts to “miss” every fourth or fifth pulse as
a result of slow cumulative inactivation, and finally settles on an
ordered 1:2 response, namely, activity is evoked only every sec-
ond stimulus pulse. Figure 9b shows the response to a higher
frequency of stimulation; here, the neuron is able to respond only
once every several pulses from the start. This frequency of re-
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Figure 8. Diffusion approximation to channel dynamics. a, Mean of channel distribution

among states, (), as a function of stimulation time (circles). Although channel kinetics deviate
from simple diffusion near the active state, the mean follows closely a diffusion-like behavior,
MH=q \/E where t.is the stimulation time (dashed line). b, Excitability as a function of time
in the recovery phase, starting from the end of stimulation. Shown for comparison are the
results of the numerical simulation (circles) and an analytic estimate based on the diffusion
equation (dashed line; see Materials and Methods for details). Parameters: 8 = a, = 10Hz; o
=0.0T;¢,=1/2.

sponse slowly decreases with time, although it is slow enough
such that over the observed window the frequency seems con-
stant. At even longer times, the periodicity of the response breaks
down, and the neuron responds at random times and with vari-
able response amplitude.

The different patterns of activity that emerge during persistent
stimulation are related to slow changes in the balance between
active and inactive channels and the distribution of the latter in
their state space. Because this change is very slow, and because
excitability is locally stable, observing the response in an
intermediate-sized time window one may characterize the re-
sponse by local properties that appear to be temporally stable. We
next consider the functional form of this slow nonstationarity of
response, which is especially significant in the case of adaptation
to stimulus onset.

History-dependent adaptation to a step stimulus

Spike frequency adaptation is a widespread phenomenon in neu-
ral systems, which may be a tool in modulating the neural re-
sponse and allow complex temporal processing. Nonexponential
adaptation and relaxation have been measured in several systems
(Thorson and Biederman-Thorson, 1974; Xu et al., 1996); it has
also been reported in the dynamics of synapses (Lowen et al.,
1997) as well as in memory functions at the cognitive level
(Wixted and Ebbesen, 1991; Anderson, 1995). At the level of the
neuron, channel inactivation plays a role in spike frequency ad-
aptation to step stimuli (Fleidervish et al., 1996), and in this con-
text, we would like to understand how the model presented here,
which is based on channel inactivation to modulate neural excit-
ability, responds to the classic step stimulus experiment. There
are two issues to consider here: the functional form of the decay in
activity and its dependence on history.

Figure 10a shows the response of the model neuron to a con-
stant stimulus, starting from stimulus onset over a long time.
There are two distinct decay regimens; the tail of the adaptation
curve in this case follows approximately a power law of 1/Vt
(dashed line; best-fit power is —0.455).

Although nonexponential relaxation indicates the possibility
of memory, it does not necessarily imply it. For example, it can
arise from the superposition of several spatially separated expo-
nential relaxation processes (Thorson and Biederman-Thorson,
1974). To explicitly demonstrate activity-dependent or memory
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Figure9.  Example of history dependence in the temporal pattern of response to stimuli. A periodic train of stimulus pulsesis ~ (Fairhall et al., 2001). However it is not

ongoing for along time, and windows of response are chosen along the way for illustration. Model parameters here are: 8 = 1Hz;
oy = 30Hz; 0= 0.001; ¢, = 1/5.In this regimen, inactivation s strong and diffusive motion in the space of inactive states is very
slow; the neural response is characterized by a hard threshold. a, Response to low frequency (5 Hz) starts by a one-to-one response
(top), goes through an intermediate disordered response (middle), and then locks on a 1:2 response (bottom). b, In response to a
high frequency of 25 Hz, the neuron responds only once every several pulses (top). The response frequency decreases at later times

(middle) until the periodicity of the response breaks down completely (bottom).

0
10
a
-2
19 2 0 2 0
10 10 10° 0 05 1
time from onset (s) time from step (s)
Figure 10.  History-dependent multiple time scales in adaptation. a, Activity in the model

neuron is plotted as a function of time from stimulus onset. Two regimens are seen; the tail
decays approximately as t %4 (1/\/shown for comparison by a dashed line). b, Activity as a
function of time since an abrupt change in stimulus strength from 0.6 to 1. For each line plotted,
this time point in time was preceded by a different duration of the conditioning stimulus (1, 4,
325s). Atthe switch to a higher stimulus, t = 0, the neuron responds with an increase in activity
and then adapts nonexponentially with parameters that depend on the history. Inset, Time
scale of decay, measured by threshold crossing for two values of the threshold, as a function of
preceding stimulus duration. Here, 8 = «y = 10Hz; 0 =0.1;¢, = 1/2.

effects in dynamics, a dependence of the time course of relaxation
on history should be shown. We found that our model neuron
exhibits a dependence of the adaptation time scale on the dura-
tion of the conditioning stimulus. Conditioning stimuli of
strength 0.6 and different durations were applied to the model
neuron, after which the stimulus strength was abruptly stepped
up to 1. The neuron responded with a rise in activity followed by
aslow adaptation, similar to the one described above for stimulus
onset. Figure 100 shows different adaptation traces superim-
posed as a function of time from the step stimulus, corresponding
to different length of conditioning stimulus. The time course of
adaptation differs according to history: the initial transient decay
becomes faster as the conditioning stimulus becomes longer,
while the slower tails follow approximately the same power law.

known whether this is a single-cell or a
network property. Previous work on the
same system had found a dependence of
decay times on conditioning stimulus pa-
rameters in a slightly different protocol
(de Ruyter van Steveninck et al., 1986).
These authors could not localize the effect
to a particular area in the visual system (Zaagman et al., 1983),
leaving as a possibility that it is a collective network effect. Our
results here show that, in principle, there could be a contribution
from the single-cell level to such behavior. Additional experi-
mental work is required to compare different stimulus protocols
and to tease apart the mechanisms at work on different levels;
most likely, several of those contribute simultaneously to the
effect observed in vivo.

Discussion

In this work, we have constructed a model of neuronal respon-
siveness and activity, which has an underlying molecular struc-
ture in the spirit of ion channel kinetics. Rather than taking a
detailed modeling approach that includes the structure of states
for a specific channel, we have used an abstracted version that
captures the internal degeneracy of the inactive voltage-
independent part of this space (Millhauser et al., 1988). Because
of their complex structure and multiplicity of conformations, a
large space of internal nearly degenerate states are expected to be
a rather general property of ion channels (Frauenfelder et al.,
1991). A key ingredient in the model is closing the loop between
neuronal activity and channel kinetics. The concept of neuronal
excitability, a phenomenological dynamic variable at the neuro-
nal level that reflects underlying channel dynamics, was used to
close this loop: the fraction of available channels determines neu-
ronal excitability, which determines neuronal activity; activity, in
turn, affects the availability of channels by affecting the probabil-
ity of inactivation. This step enables scaling up the diffusion-like
kinetics of the ion channels to the level of a neuron. Several ver-
sions of the quantitative dependencies among these variables
were tested. For example, excitability can enter through the
threshold of the neuronal input/output function or through the
maximal level of activity; inactivation can be a continuous or
discrete function of activity. The results, presented in this work
for one version of the model, are robust as long as the qualitative
relationships between these variables are maintained.
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Several interesting properties of the model neuron were found
using simulations of different experimental protocols. First, after
a period of stimulation, the internal excitability recovers back to
its maximal value with a nonexponential relaxation curve, the
characteristic time scale of which depends on the duration of the
preceding stimulation. This history-dependent recovery dynam-
ics results from the registering of the history in the distribution of
channels among their multitude of degenerate states, providing
an effective internal memory device. Second, during exposure to
long persistent inputs, the response decays nonexponentially
with power-law tails. This decay is so slow that over intermediate
stretches of time, the response seems stationary; however, the
local response properties vary slowly in their temporal patterns in
response to the same stimulus. Thus, observing the neuron over
intermediate time stretches, one finds a variety of temporal pat-
terns that are determined by history of stimulation and activity.
Finally, adaptation to an abrupt change in stimulus properties is
also nonexponential, with a time course that depends on the
duration of the preceding (conditioning) stimulus. These prop-
erties connect to the central experimental results in the literature
reporting activity-dependent multiple-time-scale dynamics on
several levels of organization (de Ruyter van Steveninck et al.,
1986; Toib et al., 1998; Ellerkmann et al., 2001; Fairhall et al.,
2001; Tal et al., 2001).

It is noted that in the same model neuron, different quantita-
tive forms of multiple-time-scale dynamics emerge under differ-
ent stimulation protocols. In particular, recovery after stimula-
tion depends strongly on the duration of the conditioning
stimulus, with a power of ~1 (Fig. 6), whereas the time scale
typical of adaptation to a step change in stimulus depends only
weakly on the duration of the conditioning stimulus (Fig. 10).
Intuitively, this is because the recovery of neuronal excitability
reflects the recovery of channels form the multiple inactive states,
whereas adaptation reflects the entry of channels into inactiva-
tion and is only indirectly related to the previous distribution of
channels among the inactive states. This suggests the possibility
that for experiments on neurons, different scaling behaviors of
history dependence may be found for different experimental pro-
tocols. More detailed experiments at the level of the single neuron
are required to test these predictions in detail.

Our model shows that the degeneracy of the functionally in-
active state of ion channels is enough to endow the neuron model
with multiple-time-scale, history-dependent behavior in respon-
siveness, adaptation, and recovery; no specific combination of
rate constants is required. Models with specific configurations of
transition rates among degenerate channel states were shown to
result in power-law distributions of dwell time (Liebovitch et al.,
1987). However, it is theoretically a robust result that escape from
a cluster of states follows a nonexponential distribution of dwell
times, independent of the detailed structure of state space and to
some degree even of dimensionality (Nadler and Stein, 1996;
Nadler et al., 1996). In the general case, a combination of power
laws, stretched exponentials, or other nonexponential relaxation
functions may appear. Such behaviors may be difficult to distin-
guish from a pure power law over a finite range of measurements,
and moreover, a pure power law is not required for history de-
pendence or for multiple time scales in response and recovery. It
is intuitive that the dynamic properties of the neuron model pre-
sented here are related to the nonexponential dwell time distri-
butions of the channels in the presence of internal degeneracy.
Thus, we conjecture that history-dependent multiple-time-scale
dynamics will be a general property of neurons with a similar
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internal degeneracy, although the nonexponential functional
forms of relaxation may vary depending on the details.

In this work, we have described neuronal excitability by a
single variable, representing the ratio between exciting and re-
storing types of channels in the Hodgkin-Huxley tradition. The
underlying kinetics was attributed to the sodium channels, the
excitatory force. Experiments have shown that the scaling of re-
covery with stimulation is not a universal property of ion chan-
nels, and that if present, the quantitative properties of this scaling
depends on channel type (Toib et al., 1998). It is a challenging
theoretical task to understand how a combination of excitatory
and restoring forces, each with its own temporal scaling behavior,
affects the properties of the dynamical system that describes a
neuron.

Although this work has focused on models of a single neuron,
it is acknowledged that multiple-time-scale dynamics are abun-
dant at other levels of neural systems, for example, in single syn-
apses (Lowen et al., 1997; Drew and Abbott, 2003; Fusi et al.,
2005) or in networks of connected neurons. Computational or
learning abilities will be significantly affected by the combination
of all these levels in a way that is currently not understood. This
places an important role for subsequent theoretical studies in
anticipating these abilities. Models such as the one presented here
can be further investigated in terms of their computational, adap-
tive, and learning properties. Several such model neurons can be
integrated into a network, with or without multiple-time-scale
behavior at the synapses. A comparison between systems with
multiple time scales and those with a limited range of time scales,
and an understanding of the functional role of these phenomena,
is expected to stem out of such theoretical studies.
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