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Neurobiology of Disease

Chronic Wasting Disease of Elk: Transmissibility to Humans
Examined by Transgenic Mouse Models
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Chronic wasting disease (CWD), a prion disease affecting free-ranging and captive cervids (deer and elk), is widespread in the United
States and parts of Canada. The large cervid population, the popularity of venison consumption, and the apparent spread of the CWD
epidemic are likely resulting in increased human exposure to CWD in the United States. Whether CWD is transmissible to humans, as has
been shown for bovine spongiform encephalopathy (the prion disease of cattle), is unknown. We generated transgenic mice expressing
the elk or human prion protein (PrP) in a PrP-null background. After intracerebral inoculation with elk CWD prion, two lines of
“humanized” transgenic mice that are susceptible to human prions failed to develop the hallmarks of prion diseases after >657 and >756
d, respectively, whereas the “cervidized” transgenic mice became infected after 118 -142 d. These data indicate that there is a substantial

species barrier for transmission of elk CWD to humans.
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Introduction
Prion diseases are neurodegenerative diseases that affect humans
and animals, including cattle, sheep, cervids (deer and elk), and
mink (Sigurdson and Miller, 2003; Jeffrey and Gonzalez, 2004;
Kong et al., 2004). They pose a serious threat to public health
because they can be transmitted between humans and from ani-
mals to humans. Animal to human transmission was dramati-
cally exemplified by the sudden appearance of a new form of
prion disease, identified as variant Creutzfeldt-Jakob disease
(vCID), in the United Kingdom, after the emergence of a large
outbreak of bovine spongiform encephalopathy (BSE) (Will,
2003). Compelling evidence indicates that vCJD is acquired after
the consumption of beef or beef products from BSE-infected
cattle (Scott et al., 1999; Will, 2003). To date, five cases of indig-
enous BSE, but no case of locally acquired vC]D, have been re-
ported in North America.

Chronic wasting disease (CWD) is the prion disease that af-
fects free-ranging and captive cervids, including white-tail deer,
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mule deer, and Rocky Mountain elk (Miller and Williams, 2004).
First reported in 1967, CWD was once considered a rare and
geographically contained disease; however, recent data support
the presence of CWD among free-ranging and captive cervids in
at least 13 states in the United States and 2 provinces in Canada,
with a prevalence of up to 20% in some endemic areas (Miller and
Williams, 2003; Miller et al., 2004; Prusiner et al., 2004). These
findings, along with other considerations such as the high cervid
population in the United States (estimated at 22 million), the
several million deer and elk hunters, and the widespread con-
sumption of elk and deer meat, underscore the likely increasing
risk of human exposure to CWD. These considerations, along
with the recognition that the outbreak of BSE led to the emer-
gence of vC]D, have heightened concerns about possible direct-
contact and food-borne CWD transmission to humans. In fact,
many people are known to have consumed venison from con-
firmed CWD-affected cervids. Twenty-seven patients with CJD
who regularly consumed elk and deer meat were reported to the
National Prion Disease Pathology Surveillance Center at Case
Western Reserve University, but none of these cases appeared to
have a novel form of prion disease (Belay et al., 2001, 2003, 2004;
P. Gambetti, unpublished observation); however, human disease
acquired from CWD might have an unusual phenotype or a phe-
notype that is difficult to distinguish from that of sporadic CJD
(sCJD). This uncertainty is a serious public health concern in the
United States.

To assess the transmissibility of CWD to humans, we gener-
ated transgenic (Tg) Friend leukemia virus B (FVB) mice express-
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ing either the human prion protein (PrP) or Rocky Mountain elk
PrP in a PrP-null background. Here we show that, after intrace-
rebral inoculation with elk CWD prion, the two lines of “human-
ized” Tg mice failed to develop the hallmarks of prion diseases
after >657 and >756 d, respectively, whereas the “cervidized” Tg
mice became infected after 118—142 d. These data indicate that
there is a substantial species barrier for the transmission of elk
CWD to humans.

Materials and Methods

Construction of transgenes expressing human PrP-129M or elk PrP-132M.
The transgene constructs are based on the murine half-genomic PrP
clone in plasmid pHGPRP (Fischer et al., 1996). The HuPrP-129M open
reading frame (ORF) was amplified from the human genomic DNA PAC
(P1-derived artificial chromosome) clone RP5-1068H6 (obtained from
the Sanger Center, Cambridge, UK) with primers HRM-F (TATGTG-
GACTGATGTCGGCCTCTGCAAGAAGCGC) and HRM-R (CCACCT-
CAATTGAAAGGGCTGCAGGTGGATAC). The PCR product was di-
gested with PshAl and Mfel and used to replace the cor-
responding 0.97 kb PshAI-Mfel fragment in pHGPRP to create
pHGHuPrP-129M. In the resulting pHGHuPrP-129M clones, the
signal-peptide sequence is still from mouse, but the rest of the PrP ORF
and the first 76 bp after the stop codon are from human PRNP (prion
protein) genomic DNA. The inserted 0.97 kb PshAI-Mfel fragment in
pHGHuPrP-129M was then sequenced with the primers HRM-R,
HRM-F, and HP306R (CATGTTGGTTTTTGGCTTACTC). One error-
free clone was chosen for the creation of transgenic mice. To create the
transgene construct expressing elk PrP-132M, the mouse PrP ORF in
pHGPRP was first replaced with the restriction sites for Clal and Nrul by
using conventional recombinant DNA techniques to create pHGD3. The
EIPrP-132M ORF (eGMSE allele) was selected to make cervidized trans-
genic mice because it was reported that all CWD-affected elk and some
deer carried this allele (Raymond et al., 2000). The EIPrP-132M ORF was
amplified from the genomic DNA of an American elk with primers
DePrP-F (CAGTCTAGACCGCGGCATGGTGAAAAGCCACATAGG)
and DePrP-R (ACCTCTAGACCTATCCTACTATGAGAAAAATGAG),
and cloned into pSTBlue 1 (Novagen, Madison, WI). The 0.78 kb EIPrP
ORF thus cloned was released by Sacll-Xbal double digestion, blunted
with T4 DNA polymerase, and inserted into the Nrul site of pHGD3 to
create pHGDePrP-132M. The final pHGEIPrP-132M construct was con-
firmed by sequencing. One error-free clone was chosen for the creation
of transgenic mice.

Generation, screening, and characterization of transgenic Tg(HuPrP-
129M)Prnp®™° and Tg(EIPrP-132M)Prnp®° mice. The 12.2 kb HuPrP-
129M and elk PrP-132M transgene constructs were microinjected into
fertilized FVB/NJ eggs, and planted into the oviducts of pseudopregnant
CD-1 mice at the transgenic mouse facility of Albert Einstein College of
Medicine (Bronx, NY). Founder pups were screened by tail DNA PCR.
All founder mice that carry the transgene were bred with FVB/Prnp”?
mice (Fischer et al., 1996) (kindly provided by the Prusiner laboratory,
University of California, San Francisco) to obtain Tg mice in PrP-null
background. Transgenic PrP expression in the brain and other tissues of
the Tg mice were examined by Western blot analysis with monoclonal
antibodies (mAbs) 3F4 and 8H4 for humanized and cervidized Tg mice,
respectively. All animal experiments in this study were approved by the
Institutional Animal Use and Care Committee and the Institutional Bio-
safety Committee, and the use of human brain tissues was authorized by
the Institutional Review Board.

Western blot analysis. Mouse tissues were homogenized in 10 vol of
lysis buffer (10 mm Tris, 150 mm NaCl, 1% Nonidet P-40, 0.5% deoxy-
cholate, 5 mm EDTA, pH 8.0) with or without 1 mm phenylmethylsulfo-
nyl fluoride (PMSEF). The immunoblotting was performed as described
previously (Pan etal., 2001), with minor modifications. The homogenate
was cleared at 12,000 rpm for 10 min, and the supernatant was then
stored at —80°C. To detect Proteinase K (PK)-resistant PrP fragments
(PrP %), brain extracts without PMSF were incubated with 100 pg/ml PK
for 1 hat 37°C, and PMSF was added to a final concentration of 3 mm to
terminate the digestion. The extracts were mixed with PAGE loading
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buffer (160 mm Tris, 4% SDS, 4% 2-ME, 20% glycerol, 0.04% bromo-
phenol blue, pH 6.8), loaded onto 12% Tris-glycine SDS-PAGE or 10—
20% Tris-tricine SDS-PAGE gels, transferred to polyvinylidene difluo-
ride membrane, and probed with 8H4 or 3F4 in conjunction with
horseradish peroxidase-conjugated goat anti-mouse IgG Fc antibody.

Inoculation of transgenic mice. Brain tissues from humans with sCJD or
from elk with CWD were homogenized and inoculated into the brains of
Tg(HuPrP-129M)Prnp®° or Tg(EIPrP-132M) Prnp®° mice. Brain tissues
were homogenized in cold PBS, and the homogenate was centrifuged at
1000 X gfor 10 min at 4°C. The supernatant was diluted to 10-fold of the
brain tissue volume in cold PBS to obtain 10% brain homogenate, frozen
at —80°C for storage, and diluted to 1% with PBS just before inoculation.
After anesthetization with isoflurane, 30 ul of the 1% brain homogenate
was injected into each mouse brain with a 26 gauge needle inserted to a
depth of ~2 mm at the left parietal region of the cranium.

Monitoring of symptoms and examination of PrP*. After intracerebral
inoculations, the animals were visually examined daily for symptoms
such as coarse coat, waddling gait, tail plasticity, and bradykinesia.
Within 2-3 d after the appearance of these symptoms or at death, the
brain was removed; one-half was frozen for biochemical studies, and the
other half was stored in formalin for histology and immunohistochem-
istry analysis as described previously (Taraboulos et al., 1992). Total PrP
as well as PrP*¢ (PK-resistant PrP) were examined by Western blotting in
Tris-glycine and/or Tris-Tricine SDS-PAGE gels, as described above. So-
dium phosphotungstate precipitation of PrP¢ was performed as de-
scribed previously (Safar et al., 1998).

Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick
end labeling assay. Terminal deoxynucleotidyl transferase-mediated bio-
tinylated UTP nick end labeling (TUNEL) staining of paraffin-embedded
brain sections was performed as described previously (Shi et al., 1990)
with the In Situ Cell Death Detection Kit-peroxidase (POD) (Roche Ap-
plied Science, Indianapolis, IN) according to the manufacturer’s instruc-
tions. Paraffin-embedded sections were dried at 60°C. After the paraffin
was removed with xylene, tissues were rehydrated in serial solutions of
ethanol (100, 95, and 75%), washed in PBS, and subjected to microwave
treatment for 20 min in 60 mm HCL. The slides were then air dried at
room temperature, treated with 5% Triton X-100 at room temperature,
washed in PBS several times, and incubated with TUNEL reagent for 2 h
at 37°C in a humid chamber. The slides were then washed in PBS, incu-
bated with converter-POD for 30 min at 37°C, developed with diamino-
benzidine substrate according to the manufacturer’s protocol, counter-
stained with hematoxylin QS (Vector Laboratories, Burlingame, CA),
and mounted. The TUNEL-positive cells were stained brown.

Results

We used two lines of humanized Tg mice, Tg40 and Tg1, and one
line of cervidized Tg mice, Tgl2, that express the transgene PrP in
brain approximately onefold, twofold, and twofold, respectively,
the level of brain PrP in wild-type FVB mice. Both humanized
and cervidized Tg mice were inoculated intracerebrally with
brain homogenates from two CWD-affected elk. The humanized
Tgl and Tg40 mice were also similarly inoculated with brain
homogenates from human subjects with a type of sporadic CJD
identified as sCJDMM1 (Parchi et al., 1996).

Thirteen of 14 cervidized Tgl2 mice inoculated intracere-
brally with CWD elk 1 brain homogenates developed ataxia after
anaverage of 118 = 6 d postinoculation (dpi) (range, 83142 dpi)
(Table 1, Fig. 1). All seven cervidized Tgl2 mice inoculated intra-
cerebrally with CWD elk 2 brain homogenates developed ataxia
after an average of 142 = 7 dpi (range, 124—178 dpi) (Table 1, Fig.
1). Histologically, all ataxic mice contained severe and wide-
spread spongiform degeneration throughout the cerebral cortex
and basal ganglia, as well as neuronal loss in the hippocampus
and granule cell layer of the cerebellum (Fig. 2a,b). Neuronal
apoptosis was detected by TUNEL staining in the hippocampus
(Fig. 2f), other cortical regions, and the cerebellum (data not
shown). Amyloid plaques were not present; however, immuno-
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histochemical staining for PrP revealed

Table 1. Prion transmission in transgenic mice
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spotted, round PrP deposits, the so-called Incubation Transmission

plaque-like PrP deposits, similar to those  Prioninoculum Mice PrP (level) time (SEM) rate”

found in CWD-affected elk, in the cerebral (elk1) Tgl2 EIk PrP-132M (2X) 118 + 6d 1314

cortex (Fig. 2d) and the molecular layer of ¢y (elk2) Tg12 Elk PrP-132M (2X) 142 +7d 777

the cerebellum (Fig. 2e). Symptomatic  cwp(1g12) Tg12 Elk PrP-132M (2X) 125 + 4d 5/5

mice also accumulated large amounts of (WD (elk 1/2) Tg40 HuPrP-129M (1) >756d 0/29

PK-resistant PrP with gel mobility and gly- (WD (elk 1/2) Tg1 HuPrP-129M (2) >657d 0/22

coform ratios matching those of the origi-  sUDMM1 Tg40 HuPrP-129M (1X) 263 *13d 9/10

nal CWD inoculum (Fig. 3); therefore, the ~ SUDMMI Tq1 HuPrP-129M (2X) 226 = 5d 7

cervidized Tgl2 mice replicated the main  “Number of affected/total inoculated animals.

features of the elk CWD PrP>¢, Further-

more, secondary transmission of the elk 1 CWD prion passaged 100 s + .

once in Tglz mice required an incubation period Of 125 = 4 d S’ -1 O Tg12/CWD (elk 1) (13/14)

(range, 115-138 d) (Table 1), indicating that there is no species @ g0 = Tg12/CWD (Tg12-elk 1) (5/5)

barrier for elk CWD transmission to the Tgl2 mice. % | g Ig:éf(\:,ggl\(n?\lnkf()g(/zg )
Brain homogenates from the two CWD-affected elk used for 8 0 » Tg40/CWD (elk 1/2) (0*129)

the cervidized mice were also inoculated intracerebrally into 29 *g 0 Tg1/sCJDMM1 (7/7)

Tg40 humanized mice and 22 Tgl humanized mice. None of the & ¥ Tg1/CWD (elk 1/2) (0/22)

29 Tg40 mice or the 22 Tgl mice showed signs of prion diseases ‘5 407

after >756 and >657 dpi, respectively. Three Tg40 mice ap- 8

peared to be mildly ataxic before being killed at 420-509 dpi. A g 20

total of 18 Tg40 mice and 12 Tgl mice died naturally of old age or g

were killed because of other illnesses; however, none of the Tgd0 £ 0 S NI | | || EII

and Tgl mice examined, including the three ataxic Tg40 mice,
had PK-resistant PrP* as detected by immunoblotting of PrP -
enriched preparations after precipitation with sodium phospho-
tungstate (Fig. 4). Histopathological and PrP immunohisto-
chemical examinations also were negative (data not shown).
Furthermore, the PrP immunoprecipitates obtained from the
three ataxic mice with the mAb OCD4, which immunoreacts
with both PK-resistant and PK-sensitive abnormal PrP present in
human and animal prion diseases but not with normal PrP®
(Zou et al., 2004), were not different from the corresponding
immunoprecipitates obtained from other elk CWD-inoculated
or noninoculated Tg40 mice. Therefore, all CWD-inoculated hu-
manized mice appeared to be free of detectable prion, and the
cause of the mild ataxia in these three Tg40 mice did not appear to
be related to prion disease.

As positive controls, 10 Tg40 and 7 Tg1 humanized mice were
also inoculated intracerebrally with brain homogenate from a
human subject with sCJDMM 1. Nine of the 10 Tg40 mice and all
7 Tgl mice became symptomatic, with an average incubation
time of 263 * 13 d (range, 213-315 d) for the Tg40 mice and
226 * 5d (range, 213-244 d) for the Tgl mice. The affected mice
revealed fine spongiform degeneration in the cerebral cortex (Fig.
5a) but not in the cerebellum (Fig. 5b), and the vacuoles were
different in size and distribution from those of the cervidized
mice inoculated with elk CWD prion. Apoptosis of neuronal cells
was present but was less prominent than in the CWD-affected
Tgl2 cervidized mice (data not shown). After immunohisto-
chemical staining, fine PrP deposits mimicking the “synaptic”
pattern of sSCJDMMI1 were found in the cerebral cortex (Fig. 5¢)
and cerebellum (Fig. 5d) of the CJD-affected humanized mice,
whereas the plaque-like deposits observed in the elk CWD-
inoculated cervidized mice were not present. Abundant PK-
resistant PrP > with gel mobility matching that of the sSCJ/DMM1
inoculum was shown in the brain of the infected mice (Fig. 6a).
The glycoform ratio also was similar to that of sSCJDMM]1, with
underrepresentation of the diglycosylated PK-resistant PrP*
fragment (Fig. 6b), but it was quite different from that of CWD.

T T T T
0 100 200 300 400 500 600 700
Incubation Period (days)

Figure 1. Survival curves of humanized and cervidized transgenic mice. Six- to eight-week-
old cervidized Tg12 and humanized Tg1and Tg40 mice were inoculated intracerebrally with 30
I of 1% brain homogenate from two CWD-affected elk or a subject with SCIDMM1. The Tg12
mice were also inoculated with brain homogenates from elk 1 CWD-affected Tg12 mice to
evaluate the species barrier of elk CWD transmission to the Tg12 mice. The average incubation
times wereas follows: 118 == 6d for elk 1 CWD-inoculated Tg12 mice (open squares); 125 = 4d
for secondary transmission of elk 1 CWD in Tg12 mice (filled squares); 142 = 7 d for elk 2
(WD-inoculated Tg12 mice (open rectangles); 263 == 13 d for the SCIDMM1-inoculated Tg40
mice (open circles); and 226 = 5 d for the SCDMM1-inoculated Tg1 mice (open ovals). None of
the 29 CWD-inoculated Tg40 mice (filled circle) or the 22 CWD-inoculated Tg1 mice (filled oval)
had detectable PK-resistant PrP*° or substantial histopathology after >756 and >657 dpi,
respectively. The asterisk indicates that three Tg40 mice became ataxic between 420 and 509
dpi but were free of prion infection. Parentheses indicate prion-positive mice per total inocu-
lated mice.

Discussion

We have shown that CWD of elk can be transmitted to Tgl2
cervidized mice with a relatively short average incubation time of
118 = 6 d for elk 1 and 142 = 7 d for elk 2. The PK-resistant PrP >
of the elk CWD-inoculated Tg12 mice has the same gel mobility
and glycoform ratio as the PK-treated PrP > of the CWD-affected
elk. The pattern of PrP immunostaining is also similar in the two
conditions. In addition, the secondary transmission of elk 1
CWD passaged in Tg 12 mice to naive Tgl2 mice required an
incubation time of 125 * 4 d, which is not substantially different
from that of the primary transmissions. Furthermore, it is asso-
ciated with a histopathology and a PrP immunostaining pattern
that is similar to that of the primary infection. These data argue
that there is no species barrier in the transmission of elk CWD to
the Tgl2 mice and that CWD-inoculated Tgl12 mice reproduced
major strain characteristics of the PrP° associated with elk
CWD. Recently, Browning et al. (2004) inoculated both hemizy-
gous and homozygous cervidized Tg(CerPrP) mice that express
mule deer PrP (S2 allele) with brain homogenates from CWD-
affected mule deer and elk. The inoculated mice developed a
disease with histopathological and PrP immunohistochemical
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Figure2. Histopathology, PrP immunohistochemistry, and apoptosis examination in CWD-
affected Tg12-cervidized mice. Prominent spongiform degeneration was presentin the cerebral
cortex (a) along with marked neuronal loss in the granule cell layer of the cerebellum (b) when
compared with age-matched control Tg12 mice (c) (hematoxylin and eosin staining; 20X
magpnification). PrP deposits formed a fine granular pattern interspersed with plaque-like de-
posits (arrow) in the cerebral cortex (d) and in the granule cell layer of the cerebellum (e) (mAb
8H4; 20X magnification). Neuronal apoptosis (arrow) was present in the granule cells of the
hippocampus () and in other brain regions (TUNEL; 40X magnification).

characteristics that appear overall to mimic the histopathology
and PrP immunohistochemistry observed in our elk CWD-
inoculated Tgl12 mice. The gel mobility of the PK-resistant frag-
ments of PrP>° recovered from the Tg(CerPrP) mice also is ap-
parently similar to that observed in our Tgl2 mice; however,
Browning et al. (2004) reported a difference in the glycoform
ratio between the PK-resistant PrP>° fragments recovered from
the Tg(CerPrP) mice and that of the original elk and deer inocula.
At variance with this finding, the PrP*° glycoform ratio of our
affected Tgl2 mice reproduced precisely that of the elk CWD
inoculum (Fig. 3b). The incubation time of the CWD-inoculated
Tg(CerPrP) mice varied between 220 and 270 d for the hemizy-
gous mice and was 160 = 3 d for the homozygous mice despite
the 3- to 5-fold and 6- to 10-fold PrP expression of the hemizy-
gous and homozygous mice, respectively. The difference in incu-
bation time between the Tg(CerPrP) mice and the Tgl2 mice
could be caused by the polymorphism of codon 226 [226Q for the
S2 allele used in Tg(CerPrP) mice and 226E for the eGMSE allele
used in Tgl2 mice], the PrP genotype difference in the cervid
CWD samples, or the difference in transgene vectors. The short
incubation time combined with the only slightly elevated PrP
expression make the Tg12 mice suitable for bioassay and other
studies on CWD. The short incubation time for elk CWD prion
in Tg12 mice also compares favorably with the incubation time of
238 d reported for BSE transmission to the Tg mice expressing
bovine PrP (Scott et al., 1999).

In contrast to the efficient CWD transmission in the cer-
vidized Tg12 mice, the same CWD inocula failed to infect the
humanized Tg40 and Tgl mice after >756 and >657 dpi, respec-
tively, the approximate lifespan of these mice, which were ~2
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Figure3. Characterization of PK-resistant PrP from the donor CWD-affected elk and CWD-
affected Tg12 mice. @, Immunoblot of PrP. Lanes Tand 2, PK-untreated (lane 1) and PK-treated
(Iane 2) PrP from one of the donor elks with CWD. Lanes 3—14, PK-untreated (lane 3) and
PK-treated (lanes 4—14) PrP from 11 CWD-affected Tg12 mice. b, Glycoform ratio analysis of
PK-resistant PrP . The blots were probed with mAb 8H4. Error bars are based on quantitative
analyses of digital chemiluminescence images of triplicate Western blots of brain homogenates
froman elk with CWD (the inoculum) and duplicate Western blots of 11Tg12 mice infected with
elk CWD. kD, Kilodalton.
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Figure 4.  Absence of PK-resistant PrP* in elk CWD-inoculated humanized Tg mice. Brain
homogenates were subjected to sodium phosphotungstate treatment to precipitate PrP*,
digested with 20 wug/ml PK for 30 min, and analyzed by Western blotting with the mAb 3F4.
Lane 1, An uninoculated Tg40 mouse; lane 2, an SCUDMM1-infected Tg40 mouse; lanes 3-5,
three ataxic C(WD-inoculated Tg40 mice; lanes 68, three CWD-inoculated Tg40 mice killed
because of other aging-related illnesses. Lanes 1, 3-8, Forty microliters of 10% brain homog-
enates were loaded; lane 2, a total of 2 .l was loaded. kD, Kilodalton.

months old at the time of inoculation; however, sCJD was trans-
mitted to these humanized mice with average incubation times of
263 and 226 d, respectively. At variance with CWD, BSE has been
transmitted to a similar humanized Tg mouse model that, like
our humanized Tg mice, expressed human PrP-129M at a level
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a

Figure 5. Histopathology and PrP* deposition in the brains of SCIDMM1-infected Tg40
mice. In the brains of sSCIDMM1-infected Tg40 mice, hematoxylin and eosin staining revealed
moderate spongiform degeneration with fine vacuoles in the cerebral cortex (a) accompanied
by even milder spongiosisin other brainareas (20X magnification), but the granule cell layer of
the cerebellum (b) appears mostly intact (40} magnification). Immunohistochemistry for
PrP*“ with 3F4 revealed fine PrP * deposits in the cerebral cortex (c), with more intense PrP ¢
deposits in the cerebellum (d) (20X magnification).
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Figure6.  Immunoblots and glycoform ratios of PK-resistant PrP > from the SCDMM1 donor
and sCDMM1-inoculated Tg1 mice. a, Immunoblot of PrP. PK-untreated (lane 1) PrP and PK-
treated (lane 2) PrP were obtained from the sSCJDMM1 donor; PK-untreated (lane 3) PrP and
PK-treated (lanes 4—10) PrP were obtained from the seven sC/DMM1-inoculated Tg1 mice. b,
Glycoform ratio analysis of PK-resistant PrP*, PK-untreated and PK-treated brain homoge-
nates were processed as in Figure 2, but blots were probed with 3F4. Error bars are based on
quantitative analyses of digital chemiluminescence images of triplicate Western blots of brain
homogenates from a subject with SDMM1 (the inoculum) and duplicate Western blots of the
seven Tg1 mice infected with SUDMM?1. kD, Kilodalton.
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two times that of pooled normal human brain (Asante et al.,
2002). The total attack rate was 14 of 49; of the 14 infected mice,
6 had clinical signs, and the other 8 had subclinical infection only,
but all had PrP*®in the brain. The incubation times were 414 d on
average (range, 338 —492 d) but as short as ~340 d in several mice
(Asante et al., 2002). Combined, these findings point to the pres-
ence of a robust species barrier for elk CWD transmission to
humans, which is much more effective than that for BSE trans-
mission to humans. Because the most likely route of CWD trans-
mission to humans is through oral consumption of CWD-
contaminated meat and the intracerebral route is much more
effective than the oral route (Prusiner et al., 1985), the failure to
detect elk CWD transmission in the humanized Tg mice after
intracerebral inoculations suggests an even lower risk of elk CWD
transmission to humans. This conclusion is consistent with the
lack of evidence of CWD transmission to CJD patients investi-
gated for a possible causal link of their illness with CWD and with
the low efficiency of an in vitro conversion of human PrP by
cervid PrP>¢ (Raymond et al., 2000). Secondary transmission ex-
periments in naive humanized Tg mice are underway to deter-
mine whether the primary CWD-inoculated humanized Tg mice
are asymptomatic carriers of prion infectivity, although PrP*° is
undetectable in any of these primary mice on Western blot even
after sodium phosphotungstate precipitation or immunoprecipi-
tation with the mAb OCD4 that selectively recognizes abnormal
PrP associated with prion diseases (Safar et al., 1998; Zou et al.,
2004). Because the CWD prions from deer and elk appear to be
indistinguishable (Williams and Young, 1992; Spraker et al.,
2002) and there have been no reports of different CWD prion
strains, it is likely that CWD prions from mule deer and white-tail
deer are, as reported here for CWD prion from elk, of low or no
transmissibility in humans.
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