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High-threshold nociceptor sensory neu-
rons in the peripheral somatosensory ner-
vous system do not act as fixed detectors
of external stimuli; instead, the sensitivity
of their peripheral terminals can be dy-
namically modulated. Excessive stimula-
tion, inflammation, and peripheral nerve
injury can reduce the threshold and in-
crease the responsiveness of nociceptors,
the phenomenon of peripheral sensitiza-
tion. Peripheral sensitization contributes
to the clinical findings of hyperalgesia,
where the response to noxious stimuli is
enhanced, and allodynia, where innocu-
ous stimuli become painful (Woolf and
Salter, 2000). In their article in The Jour-
nal of Neuroscience, Hucho et al. (http://
www.jneurosci.org/cgi/content/full/25/
26/6119) dissect out a signal transduction
cascade in nociceptor sensory neurons
that contributes to epinephrine-induced
mechanical hyperalgesia, an acute form of
mechanical pain hypersensitivity brought
on by activation of 3-adrenergic receptors
(B-ARs) that are present on primary sen-
sory neurons. Activation of one particular
protein kinase C (PKC) isomer, PKCe, is a
key element of this hyperalgesia (Khasar
et al., 1999). The downstream targets of
this kinase in nociceptors remain under
investigation but most likely include both
voltage-gated sodium channels and the
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noxious heat transducing receptor
TRPV1 (Woolf and Salter, 2000). Here,
the Levine laboratory focuses on the sig-
naling components that lie between the
activation of the B-AR and the activation
of PKCe. The authors examined the pro-
portion of adult dorsal root ganglion
(DRG) neurons in primary culture that
responded to pharmacological perturba-
tion with a translocation of PKCe to the
plasma membrane [Hucho et al. (2005),
their Fig. 1A (http://www.jneurosci.org/
cgi/content/full/25/26/6119/FIG1)]. They
then verified the effect of the same agents
on hyperalgesia in vivo.

The authors begin with the extracellu-
lar signal, then work their way down-
stream in the signal transduction cascade.
First, they determined that the 3-AR ago-
nist isoproterenol induced PKCe translo-
cation [Hucho etal. (2005), their Fig. 1 B].
The 3,-AR antagonist ICI 118,551 [(+)-
1-[2,3-(dihydro-7-methyl-1 H-inden-4-
yl)oxy]-3-[(1-methylethyl)amino]-2-bu-
tanol-hydrochloride] blocked the induc-
tion [Hucho et al. (2005), their Fig. 1C].
Next, because 3,-AR is a G-protein-cou-
pled receptor, they tested cholera toxin,
which activates the Gag subunit, and for-
skolin, which activates adenylate cyclase,
showing that both induced PKCe translo-
cation [Hucho et al. (2005), their Fig. 2C
(http://www.jneurosci.org/cgi/content/
full/25/26/6119/F1G2)]. Interestingly,
forskolin acted with more rapid kinetics
than cholera toxin to induce transloca-
tion, consistent with adenylate cyclase ly-
ing downstream of Gay activation. The ca-

nonical next step in this cascade would be
the activation of PKA by the cAMP pro-
duced by adenylate cyclase. However, the
PKA inhibitor CMIQ (4-cyano-3-meth-
ylisoquinoline) did not affect PKCe trans-
location [Hucho et al. (2005), their Fig.
2A]. The apparent lack of PKA involve-
ment in the PKCe translocation led the
authors to turn to Epac. Epac is a recently
discovered protein that acts as a CAMP-
responsive guanine nucleotide exchange
factor, capable of activating the Ras family
GTPases (Bos, 2003). Application of the
Epac activator 8-(4-chlorophenylthio)-2'-
O-methyl-cAMP (CPTOMe) to cultured
DRG neurons induced PKCe translocation
[Hucho et al. (2005), their Fig. 2C].

Because diacylglycerol activates mem-
bers of the PKC family, the authors tested
for the involvement of phospholipase D
(PLD), phosphatidylinositol (PI)-specific
phospholipase C (PLC), and phosphati-
dylcholine (PC)-specific phospholipase
C, using appropriate inhibitors. Inhibi-
tion of PI-PLC or PLD reduced the
isoproterenol-induced PKCe transloca-
tion, but inhibition of PC-PLC did not af-
fect translocation. Thus PI-PLC and PLD
act downstream of Epac. The PI-PLC in-
hibitor prevented PKCe translocation,
whereas the PLD inhibitor reduced trans-
location to 30% of normal levels. Al-
though these results may leave the inter-
vening steps between Epac and the
phospholipases somewhat up in the air,
the authors have nevertheless established
a framework for the signal transduction
pathway.
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Next, they turned to ask two critical
questions: (1) what cell types are respon-
sible for Epac signaling and (2) do the cell-
culture findings have in vivo relevance? To
answer the first, they used double staining
to demonstrate that PKCe translocation
in response to isoproterenol occurs pre-
dominantly in DRG neurons that bind
isolectin B4 (IB4), a marker for nonpepti-
dergic nociceptors. To answer the second,
they used the same pharmacological ap-
proach to perturb epinephrine-induced
hyperalgesia in vivo. First, they show that
CPTOMe, the Epac activator, produced a
degree of hyperalgesia similar to that seen
for epinephrine and that this could be
blocked with a PKCe inhibitor, eV1-2
[Hucho et al. (2005), their Fig. 5A (http://
www.jneurosci.org/cgi/content/full/25/
26/6119/FIG5)]. Second, the inhibitors of
PI-PLC and PLD, but not inactive con-
trols, completely blocked the epinephrine
and CPTOMe-induced hyperalgesia.
These findings are impressive, but it
would be interesting to know whether
these inhibitors affect other models of in-
flammatory hyperalgesia, such as those
elicited by CFA or carageenan injection,
or the formalin test. These models are less
mechanistically specific than epinephrine

injection, but they may represent more bi-
ologically plausible models for inflamma-
tory hyperalgesia and would aid in assess-
ing the generalizability of the findings.
The findings presented regarding the
IB4(+) neuron specificity of this mecha-
nism seem likely to be of particular im-
portance. IB4 binding identifies the non-
peptidergic subset of unmyelinated small-
diameter DRG neurons; IB4(+) DRG
neurons also require glial-derived neuro-
trophic factor (GDNF) for trophic sup-
port and express the GDNF receptor
c-RET. In contrast, the IB4(—) popula-
tion of unmyelinated small DRG neurons
express substance P and calcitonin gene-
related peptide (CRGP), express trkA, and
require NGF for trophic support. Surpris-
ingly, little is known about the function of
IB4(+) neurons, either in normal so-
matosensation or after inflammation.
Hucho et al. (2005) point out that PKCe,
Epac, and the 3,-AR are present in virtu-
ally all DRG neurons, ruling out this most
simple explanation for the specificity they
find. Interestingly, it was shown recently
that the IB4(+) population has a cutane-
ous innervation pattern that is anatomi-
cally distinct from that of the CGRP(+)
population: IB4(+) nerve endings termi-
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nate in the epidermal stratum granulo-
sum, whereas CGRP(+) endings termi-
nate in the stratum spinosum (Zylka et al.,
2005). Together, these findings indicate
that in addition to being distinct in terms
of molecular markers, trophic require-
ments, and innervation of the skin and
spinal cord, IB4(+) nociceptors and
CGRP(+) nociceptors may differ in the
signals that induce them to adopt a hyper-
sensitized state.
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