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Probabilistic category learning engages neural circuitry that includes the prefrontal cortex and caudate nucleus, two regions that show
prominent changes with normal aging. However, the specific contributions of these brain regions are uncertain, and the effects of normal
aging have not been examined previously in probabilistic category learning. In the present study, using a blood oxygenation level-
dependent functional magnetic resonance imaging block design, 18 healthy young adults (mean age, 25.5 � 2.6 years) and 15 older adults
(mean age, 67.1 � 5.3 years) were assessed on the probabilistic category learning “weather prediction” test. Whole-brain functional
images acquired using a 1.5T scanner (General Electric, Milwaukee, WI) with gradient echo, echo planar imaging (3/1 mm; repetition
time, 3000 ms; echo time, 50 ms) were analyzed using second-level random-effects procedures [SPM99 (Statistical Parametric Mapping)].
Young and older adults displayed equivalent probabilistic category learning curves, used similar strategies, and activated analogous
neural networks, including the prefrontal and parietal cortices and the caudate nucleus. However, the extent of caudate and prefrontal
activation was less and parietal activation was greater in older participants. The percentage correct and reaction time were mainly
positively correlated with caudate and prefrontal activation in young individuals but positively correlated with prefrontal and parietal
cortices in older individuals. Differential activation within a circumscribed neural network in the context of equivalent learning suggests
that some brain regions, such as the parietal cortices, may provide a compensatory mechanism for healthy older adults in the context of
deficient prefrontal cortex and caudate nuclei responses.
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Introduction
Normal aging is associated with neural and metabolic inefficiency
that may account for age-related decline in the cognitive declar-
ative mnemonic processes of working memory (Grady et al.,
1998; McIntosh et al., 1999), episodic memory (Schacter et al.,
1996; Cabeza et al., 1997; Anderson et al., 2000), and semantic
memory (Madden et al., 1996; Cabeza et al., 1997; Anderson et
al., 2000). Healthy older adults show prefrontal cortex volumetric
reductions (Raz et al., 1997) and impaired declarative memory
characterized by prefrontal cortex dysfunction (Rosen et al.,
2002). Other studies report age-associated declines in caudate
nucleus volume (Jernigan et al., 1991, 2001a,b; Raz et al., 2003)

and function (Volkow et al., 1998; Rypma et al., 2001; van Dyck et
al., 2002).

Studies of normal aging typically show a relative preservation
of nondeclarative learning (Howard and Howard, 1992, 1997; La
Voie and Light, 1994; Light et al., 1995; Maki et al., 1999). Func-
tional neuroimaging studies examining nondeclarative learning
during normal aging report similar activation patterns in young
and older adults performing word-stem completion (Backman et
al., 1997), repetition priming (Lustig and Buckner, 2004), and
serial reaction time tasks (Daselaar et al., 2003). Because there are
multiple forms of nondeclarative learning (Cohen and Squire,
1980; Squire, 1992a,b) relying on distinct neural substrates
(Knowlton et al., 1996a,b; Reber et al., 1998a,b, 2002), it is not
clear whether all nondeclarative processes will be spared by brain
aging. Furthermore, findings of preserved nondeclarative learn-
ing during normal aging do not preclude the existence of func-
tional reorganization of neural connectivity or cognitive process-
ing with advancing age.

The neural circuitry associated with age-related, nondeclara-
tive probabilistic category learning has not been reported. Prob-
abilistic category learning involves gradual learning without
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conscious appreciation of successful rules or strategies. Previous
studies of probabilistic category learning administering the “weather
prediction” task to patients with striatal dysfunction suggest that this
type of nondeclarative learning is related to striatum function
(Knowlton et al., 1994, 1996a,b). Functional neuroimaging studies
examing probabilistic category learning in healthy young adults has
reliably demonstrated activation of a neural network that includes
the caudate nucleus and the prefrontal and parietal cortices
(Poldrack et al., 1999, 2001; Aron et al., 2004). However, the role of
the prefrontal and parietal cortices in probabilistic category learning
is not understood.

The present study investigated the effect of aging on the phys-
iological mechanisms underlying probabilistic category learning
using a version of the weather prediction task demonstrated pre-
viously to elicit dorsolateral prefrontal cortex and striatal activity
in healthy young adults (Poldrack et al., 1999, 2001). Based on
age-related volumetric and functional alterations of the prefron-
tal cortex and caudate nucleus, the hypothesis for the present
study posits differential probabilistic category learning and acti-
vation patterns between healthy young and older adults. If nor-
mal dorsolateral prefrontal cortex and caudate nucleus function
is relevant to probabilistic category learning, then age-related
alterations of these brain regions should be displayed as decreased
activation and learning in otherwise healthy older adults.

Materials and Methods
Participants
Thirty-three healthy participants, 18 young adults (9 males and 9 fe-
males; mean age, 25.5 � 2.6 years) and 15 older adults (9 males and 6
females; mean age, 67.1 � 5.3 years) recruited from the National Insti-
tutes of Health (NIH) and the surrounding community through the NIH
Normal Volunteer Office participated in this study. The mean years of
education were not significantly different between young (mean, 16.7;
SD, 2.5) and older (mean, 16.8; SD, 2.2) adults (t(23) � 0.11; p � 0.91). All
participants were screened for past and present history of neurological,
psychiatric, or medical problems, as well as current medication use (ex-
cept birth control pills in young women and hormonal substitution ther-
apy in postmenopausal women). Written, informed consent was ob-
tained from each person who participated in the study, which was
approved by the Intramural Review Board of the National Institute of
Mental Health. In all participants who had visual refractive abnormali-
ties, corrections were achieved with prescription contact lenses or mag-
netic resonance imaging (MRI)-compatible plastic lenses in a plastic
frame.

Probabilistic category learning test
A version of the probabilistic category learning weather prediction task
(Poldrack et al., 1999) allowed alternation of the experimental weather
prediction task with a perceptual-motor control task. Before entering the
scanner, all participants were given instructions for both tasks. For the
weather prediction task, participants were told that they should make a
decision to predict rain or shine on the basis of four distinct cue cards that
would be presented either individually or in combinations of up to three
cards. They were also told that they should guess at first but gradually
they would improve at determining which cue card combinations predict
rain or shine. In this probabilistic category learning task, participants
learn the relationship between two equally occurring outcome variables
(rain or shine) and combinations of four cue cards, each composed of
simple geometric shapes (Fig. 1a), gradually and presumably without
conscious awareness. The relationship between cue cards and outcome
variables was predetermined on a probabilistic basis (see Table 1 for the
cue-outcome probability schedule), and presentations were randomized
with the constraint that identical cue combinations would not appear
consecutively and each outcome (rain or shine) was limited to five con-
secutive occurrences. For the perceptual-motor control task, all partici-
pants were instructed to determine whether or not two of four identical
cue cards were presented during each trial, with the cue cards being

presented either individually or in combinations of up to three cards. See
Figure 1b for the perceptual-motor control task stimuli. Presentations of
the perceptual-motor control stimuli were randomized with the con-
straint that identical spatial positions of the four cards did not appear
consecutively and each outcome (two or not two) was limited to five
consecutive occurrences. Stimuli for both tasks (weather prediction and
control) were presented via a back-projection system, and behavioral
responses, left (for “shine” or “two”) or right (for “rain” or “not two”)
button presses with the right thumb, were recorded via a fiber optic
response box (Current Designs, Philadelphia, PA). All stimuli were dis-
played on the screen for 4.5 s with an intertrial interval of 0.5 s. After each
response for both experimental and control tasks, the words “correct” or
“incorrect” appeared as feedback to the participant, and missed trials
were not included in the scoring.

Scanning procedure
Using a quadrature head coil transceiver, the functional MRI (fMRI)
study was performed on a 1.5T MR system (General Electric, Milwaukee,
WI) equipped with gradients capable of generating gradient fields of 40
mT/m with a slew-rate of 180 T/m/s. For the blood oxygenation level-
dependent (BOLD) fMRI experiment, a gradient echo, echo planar im-
aging sequence was used that acquired single-shot images with a matrix
size of 64 � 64 over a field of view of 200 � 200 mm 2, for a nominal
in-plane resolution of 3.125 � 3.125 mm 2. Thirty axial slices (3 mm
thickness, 1 mm gap) were oriented inferior to superior to cover the
entire brain. Repetition time, echo time, and flip angle were 3.0 s, 50 ms,
and 90°, respectively. The experimental paradigm consisted of a simple
box-car design with eight cycles during which 30 s blocks of probabilistic
category learning stimuli (six trials per block) alternated with 30 s blocks

Figure 1. Sample probabilistic learning (weather prediction) (a) and perceptual-motor con-
trol task (b) trials.

Table 1. Probability structure of the probabilistic learning
(weather prediction) task

Cue pattern

Cue

p (cue combination) p (outcome)1 2 3 4

1 0 0 0 1 0.133 0.150
2 0 0 1 0 0.087 0.385
3 0 0 1 1 0.080 0.083
4 0 1 0 0 0.087 0.615
5 0 1 0 1 0.067 0.200
6 0 1 1 0 0.040 0.500
7 0 1 1 1 0.047 0.143
8 1 0 0 0 0.133 0.850
9 1 0 0 1 0.067 0.500
10 1 0 1 0 0.067 0.800
11 1 0 1 1 0.033 0.400
12 1 1 0 0 0.080 0.917
13 1 1 0 1 0.033 0.600
14 1 1 1 0 0.047 0.857

For any given trial, one of the 14 possible cue pattern combinations displayed above appeared on the computer
screen with a probability indicated as p (cue combination). As shown above, the probability of the cue combinations
to predict “sunshine” (outcome 1) was set at p (outcome). Conversely, the probability of the above cue combinations
to predict “rain” (or outcome 2) was equal to 1 � p.
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of perceptual-motor control task stimuli (six trials per block). Each par-
ticipant received two runs, with each run consisting of 48 weather pre-
diction and 48 perceptual-motor control trials. One hundred sixty scans
were collected in a total scan time of 8 min per fMRI run, giving a total of
96 trials for each task. Task order (probabilistic category learning or
perceptual-motor control) was counterbalanced across participants and
gender.

Data analysis
Behavioral data. The percentage correct and reaction times were used as
measures of learning the cue– outcome associations during probabilistic
category learning. Transformed cumulative percentage correct scores
and reaction times were analyzed using separate two-way, repeated-
measures ANOVAs with young and older adults as the between-subjects
variable. Additionally, a separate independent t test was used to deter-
mine group differences with respect to trials on which no responses were
made. An identical series of analyses were applied to the perceptual-
motor control task data. Because reaction time differences were expected
between young and older adults, reaction time data were adjusted to
provide cognitive processing speed scores during probabilistic category
learning for each group by computing the weather prediction minus
control task reaction time difference score and dividing by the control
task reaction time at each quartile. These adjusted scores were entered
into a separate two-way, repeated-measures ANOVA to determine
whether cognitive processing speed differed between groups.

Strategy analyses. Because recent work (Gluck et al., 2002) suggests that
the strategy used to perform the weather prediction task may influence
performance, data from the present study were also analyzed using an
improved version of the strategy-clustering analysis originally developed
by Gluck et al. (2002). This revised analysis assigns blocks of trials from
individual participants to strategies on the basis of the response pattern
(M. Meeter, C. E. Myers, D. Shohamy, R. M. Hopkins, and M. A. Gluck,
unpublished observation). Assigned strategies were either complex
(multi-cue strategy), in which participants base their response on the
entire configuration of cards, simple (singleton strategy), in which par-
ticipants respond consistently only to one-card patterns, or intermediate
(single-cue strategy) based on the presence/absence of one card in a two-
to three-card combination. Details of the strategy classifications are ex-
plained in the study by Gluck et al. (2002). A revised version of the
algorithm of Gluck et al. (2002) was used to determine which strategy
best fit the performance data of each participant. If the response pattern
of a participant did not conform to any of the strategies described above,
the performance was categorized as “no detectable strategy.” However,
classification as such does not necessarily imply that a participant did not
use a strategy or strategies; instead they may have used idiosyncratic or
probabilistic strategies that were not identified, or they may have
switched too rapidly between strategies so that no consistent pattern
emerged. The frequency of each strategy used in both the young and
older groups was compared using a � 2 analysis to establish whether the
two groups used qualitatively different strategies to solve the probabilis-
tic category learning task.

Imaging data. These data were processed off-line on a Linux worksta-
tion, using the general linear model of SPM99 (Statistical Parametric
Mapping). Images for each participant were realigned to the eighth vol-
ume in the time series to correct for head motion, spatially normalized
into a standard stereotactic space (Montreal Neurological Institute tem-
plate) using a 12-parameter affine model, and smoothed to minimize
noise and residual differences in gyral anatomy with a Gaussian filter set
at 6 mm full-width at half-maximum. Voxel-wise signal intensities were
ratio normalized to the whole-brain global mean. Data sets were also
screened for high quality (scan stability) as demonstrated by small mo-
tion correction (�2 mm). To better evaluate the temporal dynamics of
learning-related BOLD changes, the time series data were divided into
four quartiles of 80 scans each, with 24 weather prediction and 24
perceptual-motor control trials in each quartile.

As a first level of analysis, predetermined condition effects at each
voxel were calculated using a t statistic, producing a statistical image for
the contrast of weather prediction versus perceptual-motor control tasks
for each quartile and for each participant. These individual contrast im-

ages were then used in a conservative second-level random-effects model
that accounts for both scan-to-scan and subject-to-subject variability
using one-sample t tests for main effects of condition within each quartile
( p � 0.0025). Time-by-condition interactions across quartiles were also
performed with a paired t test ( p � 0.05). The young and older adult
samples were tested for a group-by-condition interaction using a one-
way ANOVA with p � 0.05. The relationship between probabilistic
learning using percentage correct responses per quartile and activation
was assessed using simple regression analyses with p � 0.05.

An additional analysis was performed in the older adult group to ex-
plore whether group differences in activation patterns might be an arti-
fact of spatial normalization arising from group differences in brain mor-
phology (e.g., ventricular size), particularly near the caudate nuclei. In
this analysis, the realigned images of the older adults were spatially nor-
malized onto a specific older adult template (A. Janke; http://www.cmr.
uq.edu.au/�rotor/models/) using a 12-parameter affine model and
smoothed as outlined above to minimize noise and residual differences
in gyral anatomy with a Gaussian filter set at 6 mm full-width at half-
maximum. Statistical images for the contrast of weather prediction ver-
sus perceptual-motor control tasks for each quartile and for each partic-
ipant were again created as outlined above using a t statistic. These
individual contrast images were then used in a conservative second-level,
random-effects model using one-sample t tests for main effects of con-
dition within each quartile ( p � 0.0025).

Results
Probabilistic category learning
Both young and older adults displayed equivalent learning.
Results of the two-way, repeated-measures ANOVA for per-
centage correct demonstrated no significant main effect of group
(F(1,31) � 0.07; p � 0.80), a significant main effect of trial
(F(3,93) � 6.05; p � 0.001), and no significant group-by-trial
interaction (F(3,93) � 0.07; p � 0.97). Regarding reaction times, a
separate two-way, repeated-measures ANOVA displayed a
significant main effect of group (F(1,31) � 22.31; p � 0.001),
a significant main effect of trial (F(3,93) � 8.31; p � 0.001), and
no significant group-by-trial interaction (F(3,93) � 0.96; p �
0.41). A post hoc Fisher’s LSD test of the significant main effect of
group revealed that the older participants were significantly
slower than the young ( p � 0.001). See Figure 2, a and b, for the
cumulative percentage correct and reaction time across trials in
young and older adults. Results of a separate independent t test
for the number of trials on which no responses were made dis-
played a significant group difference between young (mean, 0.2;
SD, 0.7) and older (mean, 2.1; SD, 2.6) adults (t(31) � 2.85; p �
0.008). However, the total number of omissions in the older
adults was �2% of total trials.

ANOVA for percentage correct during the perceptual-motor
control task displayed a nonsignificant trend for a main effect of
group (F(1,31) � 3.29; p � 0.08), a significant main effect of trial
(F(3,93) � 9.73; p � 0.001), and no significant group-by-trial
interaction (F(3,93) � 2.09; p � 0.11). ANOVA examining the

Figure 2. Cumulative percentage correct (a) and reaction time (b) for each trial block in
young and older adults.
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reaction time during the perceptual-motor control task demon-
strated a significant main effect of group (F(1,31) � 6.08; p �
0.02), a significant main effect of trial (F(3,93) � 4.27; p � 0.01),
and no significant group-by-trial interaction (F(3,93) � 1.86; p �
0.14) (see Table 2 for the mean reaction time and SE at each
quartile during the perceptual-motor control task). A post hoc
Fisher’s LSD test of the significant main effect of group revealed
that the older participants were significantly slower than the
younger ones ( p � 0.02). Results of a separate independent t test
for the number of trials on which no responses were made during
the perceptual-motor control task displayed no significant group
difference between young (mean, 0.1; SD, 0.5) and older (mean,
3.5; SD, 12.1) adults (t(31) � 1.18; p � 0.25). ANOVA of the
mean-adjusted reaction time (representing cognitive processing
speed) displayed no significant main effect of group (F(1,31) �
0.96; p � 0.34), no significant main effect of quartile (F(3,93) �
1.12; p � 0.35), and no significant group-by-quartile interaction
(F(3,93) � 0.74; p � 0.53) (see Table 2 for probabilistic category
learning cognitive processing means for healthy young and older
adults).

Results from the strategy analyses over the last 48 trials re-
vealed that there was no significant difference between strategy
use of young and older adults (with nine young and six older
adults fitting a one-cue strategy, seven young and nine older
adults fitting no detectable strategy use, and two young adults
fitting a singleton strategy). Thus, a 2 � 2 (young/older adults,
one-cue/no detectable strategy) � 2 analysis demonstrated no sig-
nificant difference between groups with respect to the strategy
used [� 2 (1; n � 31) � 0.82; p � 0.37]. Using t tests to compare
the groups on other strategy variables revealed no significant dif-
ferences between young and older adults with respect to the
number of strategies used (young: mean, 1.4; SD, 1.0; older
adult: mean, 1.1; SD, 0.9; t(31) � 1.15; p � 0.26) and no signif-
icant difference on a measure of consistent/reliable strategy
use (current strategy use relative to the strategy applied over
the last 20 trials) (young: mean, 0.5; SD, 0.4; older adult: mean,
0.5; SD, 0.3; t(31) � 0.03; p � 0.98).

Imaging
Consistent with previous studies (Poldrack et al., 1999, 2001), the
spatial distribution of the task-related responses involved the bi-
lateral prefrontal cortex [Brodmann’s area (BA) 9/10, 44 – 46, and
47), supplementary motor area, premotor cortices (BA 6/8), pos-
terior cingulate, parietal cortices (BA 40), bilateral caudate nu-
cleus, and thalamus, although both cortical and subcortical struc-
tures showed substantially different responses over time (see
Table 3 for Talairach coordinates and Z scores). At the group
level, the main effect of condition during the four quartiles
mapped onto similar locales in each group. However, there were
significant differences in the activation of different brain regions
between the two groups. Group differences were most striking in

the group-by-condition interaction analy-
ses: the BOLD response was much greater
bilaterally at the level of the prefrontal cor-
tex (ventrolateral and dorsolateral), cau-
date, and cingulate in young adults
throughout the entire experimental ses-
sion (Fig. 3a,b). In contrast, the older
adults showed a greater BOLD response of
parietal cortices bilaterally over the four
quartiles during probabilistic category
learning (Fig. 3b).

See Figure 4 for representative slices
showing the correlation of the BOLD response with percentage
correct and reaction time during the weather prediction test. The
patterns of correlations shown in Table 4 suggest performance-
related activation that includes, but is not restricted to, frontos-
triatal circuitry in healthy young adults and frontoparietal cir-
cuitry in healthy older adults during probabilistic category
learning. In the young adults, the percentage correct was posi-
tively correlated with activation of the dorsolateral prefrontal
cortex (quartiles 2– 4), inferior prefrontal cortex (quartiles 1– 4),
caudate nucleus, parietal cortex (quartiles 1 and 2), Broca’s area
(quartile 3), and thalamus (quartiles 1, 2, and 4). In the older
adults, the percentage correct was positively correlated with acti-
vation of the prefrontal cortex (quartiles 2 and 4), dorsolateral
prefrontal cortex (quartile 1), caudate nucleus, presupplemen-
tary motor area (quartile 2), and parietal cortex (quartiles 1– 4).
Reaction times were positively correlated with activation of the
prefrontal cortex, premotor cortex (quartile 4), medial frontal
cortex (quartiles 1 and 4), cingulate cortex (quartiles 1 and 2),
caudate nucleus, occipital cortex (quartiles 1– 4), parietal cortex,
and thalamus (quartiles 3 and 4) in young adults. In older adults,
reaction times were positively correlated with activation of pre-
frontal cortex, parietal cortex (quartiles 1– 4), thalamus (quartiles
1 and 3), and occipital cortex (quartile 4).

Discussion
Similar to previous imaging studies of probabilistic category
learning using the weather prediction task in healthy young par-
ticipants (Poldrack et al., 1999, 2001), the current study obtained
activation of the bilateral dorsolateral and inferior prefrontal cor-
tices, medial prefrontal cortex, bilateral anterior prefrontal cor-
tex, bilateral occipital cortex, posterior cingulate, parietal cortices
(BA 40), and critically, bilateral caudate nucleus. In addition,
activation was also noted in the supplementary motor area, pre-
motor cortex (BA 6/8), and thalamus in healthy young adults.

Whereas healthy older adults activate a neural network during
probabilistic category learning that is similar to the network ac-
tivated by healthy young adults, healthy older adults appear to
activate the brain regions in the network to a differential degree
relative to healthy young adults. This differential activation of a
similar neural network combined with equivalent learning and
performance during probabilistic category learning would sug-
gest that some brain regions, such as the parietal cortices, display-
ing greater activation in older adults relative to younger adults
may provide a compensatory mechanism in older adults. Consis-
tent with previous studies demonstrating preserved nondeclara-
tive learning and memory in older adults (Howard and Howard,
1992; La Voie and Light, 1994; Light et al., 1995; Gabrieli, 1996),
the current study did not demonstrate nondeclarative probabi-
listic category learning or performance deficits in older adults,
despite their overall slower response times. This similarity in
probabilistic category learning between young and older adults

Table 2. Mean reaction time (in milliseconds) during the perceptual-motor control task and cognitive processing
speed (in milliseconds) during the probabilistic category learning in healthy young and older adults

Quartile 1 Quartile 2 Quartile 3 Quartile 4

Perceptual-motor control
Older adults 1599.5 (153.0) 1481.0 (165.8) 1184.2 (82.2) 1150.0 (84.4)
Young adults 1094.6 (139.6) 1038.8 (151.3) 1003.3 (75.0) 987.0 (77.1)

Cognitive processing speed
Older adults 0.60 (0.11) 0.59 (0.12) 0.66 (0.06) 0.77 (0.09)
Young adults 0.54 (0.11) 0.56 (0.10) 0.49 (0.09) 0.58 (0.09)

SE values are in parentheses. Cognitive processing speed during probabilistic category learning was determined by subtracting perceptual-motor control task
reaction time (RT) from probabilistic category learning RT and dividing by perceptual-motor control task RT.
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argues against task difficulty as being a po-
tential confound that is responsible for the
observed differences in activation between
young and older adults.

A compensatory interpretation is con-
sistent with imaging studies of declarative
learning showing the ability of intact cir-
cuits to compensate for age-related alter-
ations in task-specific canonical brain re-
gions (for review, see Della-Maggiore et
al., 2002; Buckner, 2004). In a previous
study of declarative learning using a test of
working memory, young adults displayed
greater dorsolateral prefrontal cortex acti-
vation than older adults, whereas older
adults performing at the same level display
greater rostral prefrontal cortex activation
than young adults (Rypma et al., 2001).
Similarly, during recall of recently studied
words, low-performing older adults ineffi-
ciently recruited a network similar to
young adults; however, high-performing
older adults used bilateral regions of the
prefrontal cortex (Cabeza et al., 2002;
Rosen et al., 2002). Thus, even before there
is evidence of decline in performance, re-
gionally specific loss of function can lead
to a functional reorganization of neural
connectivity providing a corresponding
preservation of performance. Results from
the current study of probabilistic category
learning support this view and suggest that
healthy older adults use the same neural
network as young adults, albeit to differen-
tial degrees to attain equivalent learning and performance.

Non-human primate studies have shown the prefrontal and
posterior parietal cortices to be densely and reciprocally con-
nected (Barbas and Mesulam, 1981; Petrides and Pandya, 1984;
Schwartz and Goldman-Rakic, 1984; Andersen et al., 1985, 1990;
Barbas, 1988; Cavada and Goldman-Rakic, 1989; Schall et al.,
1995; Stanton et al., 1995) and that projections from the dorso-

lateral prefrontal and parietal cortices converge on the neostria-
tum (Selemon and Goldman-Rakic, 1985, 1988). Previous non-
human primate studies have found that when the parietal and
prefrontal cortices are recruited in a common task, there is a
duplication of neuronal receptive fields and other aspects of task-
related activity (Chafee and Goldman-Rakic, 1998) in addition to
a symmetrical exchange of neuronal signaling (Chafee and

Table 3. Significant BOLD fMRI responses for interactions between groups during the four quartiles

Comparisons

Quartile 1 Quartile 2 Quartile 3 Quartile 4

Talairach
coordinates (x, y, z) Z score

Talairach
coordinates (x, y, z) Z score

Talairach
coordinates (x, y, z) Z score

Talairach
coordinates (x, y, z) Z score

Young � older adults
BA 10 �26, 47, 14 3.38 �30, 47, 14 3.15 �28, 49, 14 3.63
BA 9 and 46 �55, 22, 24 3.12 �36, 25, 28 3.23 �32, 10, 42 3.93 �28, 23, 34 3.31
BA 44 51, 18, 10 2.24 53, 9, 27 2.79 �48, 1, 24 2.91
BA 47 �30, 24, �14 2.53 �40, 21, �1 4.20 40, 15, �11 3.85
BA 6 and 8 �2, 35, 35 5.30 �12, 33, 42 2.77 32, 7, 58 3.36 0, 31, 35 3.24
Caudate �16, 8, 14 3.15 �14, 6, 12 3.76 �10, 10, 8 4.18 �14, 16, 5 2.97
BA 32 and 24 �10, 32, 26 4.05 �12, 27, 28 4.14 �12, 32, 28 3.64 8, 30, 24 2.88

Older � young adults
BA 10 32, 55, 21 2.30
BA 9 and 46 44, 32, 30 2.89 �47, 40, 22 3.10
BA 44 36, 11, 29 2.38
BA 47 48, 20, �6 3.16
BA 6 and 8 42, �2, 35 2.41 57, �21, 38 3.06
BA 40 and 19 �22, 70, 33 2.51 �32, �80, 39 3.08 �32, �80, 39 2.90 �26, �77, 42 3.13
Caudate 12, �5, 8 1.90
Thalamus �6, �6, 4 2.48 �12, �2, 7 2.51

Figure 3. Statistical parametrical maps illustrating a significantly greater BOLD response in the caudate nucleus (a) of the
young relative to older adults ( p�0.05 uncorrected) and anterior and posterior cingulate gyri and bilateral prefrontal cortices (b)
in the young relative to older adults ( p � 0.05 uncorrected). Conversely, there is significantly greater BOLD response of the
bilateral parietal regions in the older compared with the young adults.
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Goldman-Rakic, 2000). Thus, it is anatomically conceivable that
the parietal cortex is in a position to compensate for a compro-
mised prefrontal cortex during the maintenance and application
of learned probabilistic associations in older adults.

However, the role of the prefrontal cortex in probabilistic
category learning remains unclear. If the prefrontal cortex is en-
gaged in declarative processing during probabilistic category
learning, rendering it irrelevant to the processing necessary to
perform well on this nondeclarative learning task, then a reduc-
tion in prefrontal cortex activation as observed in the healthy
older adults would not detract from learning. In fact, Knowlton et
al. (1996a) found that probabilistic category learning in frontal
lobe patients was equivalent to the learning of healthy age-
matched participants. If prefrontal cortex processing is unneces-
sary to produce normal probabilistic category learning, then pa-
rietostriatal circuitry may be more crucial to obtain normal
learning on this task. Although the parietal-caudate circuitry may
be inefficient in healthy older adults, recruitment of the adjacent
parietal cortex by healthy older adults may be compensatory in
nature. Future studies will be needed to differentiate the role of
the prefrontal and parietal cortices during probabilistic category
learning.

Updating of the probabilistic associations was believed to oc-
cur primarily in the caudate nucleus because patients with Par-
kinson’s and Huntington’s diseases failed to display normal
learning during early trials of the task (Knowlton et al., 1996a,b).
Additionally, in an fMRI study, Moody et al. (2004) showed less
caudate nucleus activation in patients with Parkinson’s disease

relative to healthy age-matched adults.
Correlation of the learning measures of the
percentage correct and reaction time with
posterior parietal regions in lieu of corre-
lations of learning with the caudate nu-
cleus in the older adults would support the
view that the parietal cortices function in a
compensatory manner for a deficient cau-
date response in older adults, which en-
ables equivalent performance to young
adults. As a somatosensory association
area, the parietal cortex may be in a unique
position to learn the probabilistic associa-
tions in the context of age-related caudate
nucleus dysfunction.

An alternate interpretation of these re-
sults may suggest that older adults could
use a different encoding strategy that
would account for the obtained differ-
ences in correlation between caudate/pari-
etal activation and learning in the young
and older adult groups. A comparison of
the different strategies used between
groups demonstrated that strategy differ-
ences did not account for the different ac-
tivation patterns. Results from the present
study indicate that one-cue responding
was the most prevalent strategy used by
young and older adults. Although 80% of
the participants from the study of Gluck et
al. (2002) initially used a singleton strat-
egy, there was a tendency to use the more
efficient multi-cue strategy over time.
However, across all training blocks, 50 –
60% of their participants also used a one-

cue strategy during the final trial blocks (Gluck et al., 2002),
which corresponds well to the use of the one-cue strategy in the
present study. Therefore, the present finding of equivalent pro-
portions of young and older participants using similar strategies
to solve the probabilistic category learning task further supports
the interpretation of differential activation of a similar neural
network in young and older adults, representing a
neurophysiological- rather than a purely cognitive-driven com-
pensatory mechanism on behalf of the older participants. This
finding also supports the previous work of Rypma et al. (2005)
showing minimal differences between healthy young and
older adults in relation to prefrontal neural correlates of cog-
nitive strategy use during a working memory test.

The percentage correct and reaction time learning curves did
not differ between young and older adults; however, as expected,
the older adults displayed age-related slower reaction times over-
all during both the probabilistic category learning and
perceptual-motor control tasks. Results of the ANOVA on ad-
justed reaction time difference scores representing cognitive pro-
cessing speed did not display any significant differences between
groups. Although there was a significant difference between the
young and older adults with respect to the number of “no re-
sponses” during probabilistic category learning, as mentioned
previously, the mean number of no responses produced by the
older adults was very low and comprised �2% of the total num-
ber of trials.

Decreases in brain volume, cerebral metabolism, and blood
flow have been found to occur with aging (Leenders et al., 1990;

Figure 4. Representative slices showing a positive correlation of the BOLD response with the percentage correct (a) and
reaction time (b) ( p � 0.05 uncorrected).
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Marchal et al., 1992; D’Esposito et al., 1999; Buckner et al., 2000;
Trollor and Valenzuela, 2001). However, it is highly unlikely that
such age-related changes would systematically result in group
differences that are regionally dissociated (e.g., decreased activa-
tion in the caudate and prefrontal cortex along with increased

parietal activation in older adults relative to younger adults).
Thus, our finding of increased parietal activation in the older
adults would not be expected on the basis of hemodynamic or
other global changes associated with aging.

In summary, results from the present neuroimaging study

Table 4. Positive correlations of percentage correct and reaction time with the BOLD response during the probabilistic category learning test

Regions

Quartile 1 Quartile 2 Quartile 3 Quartile 4

Talairach
coordinates (x, y, z) Z score

Talairach
coordinates (x, y, z) Z score

Talairach
coordinates (x, y, z) Z score

Talairach
coordinates (x, y, z) Z score

Young adultsa

PFC
Medial frontal cortex
Dorsolateral PFC �30, 42, 16 3.41 (BA 46) �36, 46, 16 1.87 (BA 46) �32, 50, 16 2.68 (BA 46)
Inferior frontal cortex �44, 22, 0 3.30 (BA 47) �38, 24, �6 3.05 (BA 47) 40, 24, �4 2.88 (BA 47) �38, 26, �10 2.93 (BA 47)
Cingulate cortex
Broca’s area �52, 12, 20 1.87 (BA 44)
Insula
Caudate nucleus �6, 2, 14 2.78 16, 14, 4 2.00
Parietal cortex �40, �44, 40 2.21 (BA 40) 42, �40, 32 2.45 (BA 40)
Thalamus �10, �18, 16 2.25 10, �4, 4 3.98 �8, �16, 12 2.69
Pre-SMA
Premotor cortex
Occipital cortex

Older adultsa

PFC 34, 60, 6 1.98 (BA 10) 32, 50, 4 3.12 (BA 10)
Medial frontal cortex
Dorsolateral PFC 48, 36, 14 1.82 (BA 46)
Inferior frontal cortex
Cingulate cortex
Broca’s area
Insula
Caudate nucleus 16, 0, 16 2.29
Parietal cortex 48, �40, 34 1.98 (BA 40) 54, �50, 36 1.90 (BA 40) 52, �52, 48 2.86 (BA 40) 52, �50, 44 2.25 (BA 40)
Thalamus
Pre-SMA 6, 6, 58 2.74 (BA 6)
Premotor cortex
Occipital cortex

Young adultsb

PFC �34, 46, 12 3.28 (BA 10)
Medial frontal cortex 12, 30, 42 2.62 (BA 8) 12, 32, 42 3.36 (BA 8)
Dorsolateral PFC
Inferior frontal cortex
Cingulate cortex �4, 38, 24 1.85 (BA 32) 4, 34, 28 2.14 (BA 32)
Broca’s area
Insula
Caudate nucleus 10, 14, 6 2.06 �16, 10, 14 2.76 �12, 12, 14 2.17 �18, 0, 16 3.58
Parietal cortex 48, �42, 34 2.32 (BA 40) 46, �42, 32 2.76 (BA 40)
Thalamus 10, �20, 16 1.73 �10, �18, 16 1.96
Pre-SMA
Premotor cortex 32, �2, 58 3.04 (BA 6)
Occipital cortex 26, �90, �10 3.13 (BA 18) 32, �76, �8 4.52 (BA 19) 18, �96, 0 3.14 (BA 18) 32, �78, 36 2.42 (BA 19)

Older adultsb

PFC 36, 58, 4 2.62 (BA 10) 32, 60, 6 1.79 (BA 10) 30, 62, 4 1.91 (BA 10) �30, 48, 4 2.67 (BA 10)
Medial frontal cortex
Dorsolateral PFC
Inferior frontal cortex
Cingulate cortex
Broca’s area
Insula
Caudate nucleus
Parietal cortex 52, �40, 42 2.73 (BA 40) �30, �50, 32 2.14 (BA 40) 28, �56, 38 2.26 (BA 40) �54, �54, 42 2.18 (BA 40)
Thalamus 10, �10, 10 2.97 �6, �4, 10 2.38
Pre-SMA
Premotor cortex
Occipital cortex �38, �90, 4 2.28 (BA 19)

PFC, Prefrontal cortex; SMA, supplementary motor area.
aRegions that showed a significant correlation between an increase in BOLD response and percentage correct.
bRegions that showed a significant correlation between an increase in BOLD response and reaction time.
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suggest that equivalent nondeclarative probabilistic category
learning in healthy young and older adults elicits differential ac-
tivation of a similar neural network, involving the dorsolateral
prefrontal cortex, caudate nucleus, and posterior parietal cortex.
We found greater prefrontal cortex and caudate activation in
healthy young adults and greater parietal cortex activation in
healthy older adults. Thus, in the presence of decreased prefron-
tal and caudate activity during normal aging, older adults seem to
be able to recruit additional resources within the parietal cortex
that enables them to learn the probabilistic associations as well as
young adults. These differential activation patterns within the
same neural circuitry of healthy young and older adults in con-
junction with equivalent learning suggests that some brain re-
gions, such as the parietal cortex, may act in a compensatory
manner for inefficient or functionally compromised areas, such
as prefrontal– caudate circuitry in older adults during non-
declarative, probabilistic category learning.
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