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Estrogen Influences Cocaine-Induced Blood Oxygen Level-
Dependent Signal Changes in Female Rats
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We investigated the effect of estrogen on cocaine-induced brain activity using blood oxygen level-dependent (BOLD) magnetic resonance
imaging. Ovariectomized (Ovx) rats without estrogen and Ovx rats with estrogen (Ovx�E) were given a single saline or cocaine injection
(15 mg/kg, i.p.) for 5 d. After 7 d of withdrawal from injections, rats were challenged with cocaine during functional imaging. Acute
cocaine administration produced positive BOLD activation in the prefrontal cortex, nucleus accumbens, striatum, ventral tegmental area,
and hippocampus, among other brain regions. Positive BOLD signal changes were lower in Ovx�E than in Ovx rats. With repeated
cocaine administration, Ovx�E rats showed enhanced BOLD signal changes in the nucleus accumbens, ventral tegmental area, and
hippocampus compared with acutely treated animals. Our results indicate that estrogen influences the effects of acute and repeated
cocaine administration on BOLD signal changes. The data suggest that in females with estrogen, cocaine-induced neuronal activity is
enhanced after repeated cocaine administration. It is possible that the actions of estrogen within the aforementioned brain regions
potentiate the behavioral response to cocaine observed in female rats.
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Introduction
Female rats display greater behavioral sensitization to cocaine
than do males (Sircar and Kim, 1999; Chin et al., 2002; Hu and
Becker, 2003). Estrogen, the main female gonadal hormone, ap-
pears to be the critical chemical signal altering the behavioral
response to cocaine (Becker, 1999). Estrogen has been shown to
enhance behavioral sensitization to cocaine (Chin et al., 2002; Hu
and Becker, 2003) and cocaine self-administration in females
(Lynch et al., 2001). The current evidence indicates that this sex
steroid interacts with many neurotransmitter systems that are
also affected by repeated cocaine administration. These include
dopamine (Febo et al., 2003), opioid (Febo et al., 2002), serotonin
(Chang and Chang, 1999), GABA (Lagrange et al., 1996; Febo and
Segarra, 2004), and glutamate (Woolley et al., 1997) systems. The
modulatory actions of estrogen extend beyond the mesolimbic
dopamine system into brain areas that play crucial roles in behav-
ioral sensitization, such as the hippocampus and prefrontal cor-
tex (Woolley et al., 1997; Shansky et al., 2003; Tang et al., 2004).
Therefore, estrogen can affect neuronal activity across many re-

gions of the CNS of females, possibly leading to a greater neuro-
nal and behavioral response to cocaine. To assess this possibility,
we used functional magnetic resonance imaging (MRI) to inves-
tigate the effect of estrogen treatment on cocaine-induced brain
activation in the female rat. We report that estrogen enhanced the
blood oxygen level-dependent (BOLD) response to cocaine
within the hippocampus, ventral tegmental area (VTA), and nu-
cleus accumbens after repeated administration. By itself, estrogen
altered the BOLD response to hypercapnia, suggesting that this
hormone may have effects on cerebrovascular reactivity. The
present results could help understand the gender differences in
cocaine addiction that have been reported in humans (Kosten et
al., 1996; Magura et al., 1998; Elman et al., 2001).

Materials and Methods
Adult female Sprague Dawley rats (180 –250 g) were purchased from
Charles River Laboratories (Charles River, MA). Animals were housed in
groups of two in a temperature- and humidity-controlled room under a
12 h light/dark cycle (lights off at 6 P.M.). Water and Purina rat chow
(Nestlé Purina, St. Louis, MO) were provided ad libitum. All animals
were acquired and cared for in accordance with the guidelines published
in the Guide for the Care and Use of Laboratory Animals [National Insti-
tutes of Health (NIH) Publication 85-23, revised 1985] and in adherence
to NIH and the American Association for Laboratory Animal Science
guidelines.

SILASTIC implant preparation. SILASTIC tubing implants (inner di-
ameter, 1.47 mm; outer diameter, 1.97 mm; 0.23 mm wall thickness)
(Dow Corning 508-006; VWR Scientific, Bridgeport, NJ) were prepared
according to Febo et al. (2002). Briefly, 5-mm-long sections of tubing
were sealed on one end with SILASTIC silicone sealant (Dow Corning
732; VWR) and allowed to dry for 30 min. Once dry, implants were either
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filled with crystalline 17-�-estradiol (Sigma-Aldrich, St. Louis, MO) or
left empty; the other end was sealed off with additional sealant. Implants
were air dried and incubated in 0.9% sterile saline for at least 12–16 h.
This allows the initial surge of high estradiol levels to be released from
implants before use (Legan et al., 1975). SILASTIC implants achieve
stable levels of plasma hormones that last well over 30 d. The release rate
depends on the length and wall thickness of the implant; for a 5-mm-long
section with similar dimensions, the release rate has been estimated to be
�75–100 pg/ml per 24 h (Dziuk and Cook, 1966; Bridges, 1984). Previ-
ously, we have reported total plasma 17-�-estradiol concentrations of
141.4 � 17.0 pg/ml (range, 94 –192 pg/ml) 15 d after initial subcutaneous
placement in ovariectomized (Ovx) females (Febo et al., 2002). Ovx fe-
males with empty implants show nondetectable levels of estrogen (�3
pg/ml) (Febo et al., 2002).

Ovariectomy and estrogen administration. Rats were bilaterally ovari-
ectomized under 2% isoflurane gas anesthetic. Implants were placed
subcutaneously in the midscapular region during surgery. One-half of
the animals received empty implants (Ovx); the other half received im-
plants packed with crystalline �-estradiol [Ovx plus estrogen (Ovx�E)].
Rats were given a 7 d recovery period to stabilize plasma estradiol con-
centrations before the start of experiments.

Cocaine administration. Cocaine administration and all experimental
procedures were conducted during the light phase of the light/dark cycle.
Ovx and Ovx�E females were given a daily injection of cocaine (15
mg/kg, i.p.) for 5 consecutive days in their home cages. Control animals
received an injection of 0.9% sterile saline (0.1 cc/100 g, i.p.). Animals
remained injection free for 7 additional days. After the injection-free
period, all animals were given an intracerebroventricular cocaine injec-
tion during functional imaging. Previously, we have reported greater
behavioral sensitization and estrogen-dependent alterations in the dopa-
minergic (Febo et al., 2003), opioidergic (Febo et al., 2002), and GABAer-
gic (Febo and Segarra, 2004) systems of Ovx�E females using this co-
caine administration regimen. In summary, treatment groups were as
follows: (1) Ovx rats given a single cocaine injection (n � 5), (2) Ovx rats
given repeated cocaine injections (n � 5), (3) Ovx�E rats given a single
cocaine injection (n � 4), and (4) Ovx�E rats given repeated cocaine
injections (n � 5).

MRI procedures. Details of the imaging procedures are given by Febo et
al. (2004). Briefly, studies were performed with a dual-coil rat restrainer
(Insight NeuroImaging Systems, Worcester, MA). Animals were accli-
mated to the restrainer and the imaging protocol before experiments. To
reduce discomfort, a topical anesthetic (2% lidocaine gel) was applied to
skin and soft tissue in the ear canal and over the bridge of the nose.
Experiments were conducted in a Bruker Biospec 4.7-T/40 cm horizontal
magnet (Oxford Instrument, Oxford, UK) equipped with a (Bruker, Bil-
lerica, MA) Biospec console. Challenge cocaine injections (20 �g in 10 �l
of artificial CSF) were made via the intracerebroventricular route while
the animal was inside the magnet. This injection route and dose signifi-
cantly reduce cardiac and respiratory alterations associated with periph-
eral psychostimulant administration (Febo et al., 2004). Immediately
before imaging, rats were anesthetized under 2% isoflurane, the skull
surface was exposed, and the landmark suture bregma was located. A
cannula of polyethylene tubing (inner diameter, 0.28 mm; outer diame-
ter, 0.61 mm) was implanted into the lateral cerebral ventricle (1 mm
caudal to bregma, 2 mm lateral to the midsagittal sinus, and 4 mm ventral
to dura) and secured to the skull with surgical glue. Rats recovered for
45– 60 min before cocaine administration and functional imaging. Intra-
cerebroventricular cocaine injections were made via a plastic syringe
connected at the end of the tubing. Cannula placement was verified
before cocaine imaging with a short anatomical magnetic resonance
scan. Only animals with correct placement were included in the study.

Twenty-five minutes before intracerebroventricular cocaine injec-
tions, a group of Ovx and Ovx�E rats was exposed to a 1 min 5% CO2

pulse during a short functional scan (3 min) to assess cerebrovascular
reactivity (Sicard et al., 2003). After this, high-resolution anatomical
scans were collected using a fast spin echo pulse sequence [echo time
(TE), 48 ms; repetition time (TR), 2500 ms; field of view (FOV), 3 cm; 1.2
mm slice thickness; 256 � 256 data matrix; 16 RareFactor]. Functional
images were then obtained with a spin echo echoplanar imaging pulse

sequence (FOV, 30 mm; 12 slices; 1.2 mm thick; 64 � 64 data matrix; TE,
55 ms; TR, 2000 ms). Images were continuously acquired during 15 min;
that included a 5 min baseline and a 10 min period after intracerebro-
ventricular cocaine injection.

Data analysis. Statistical analysis was performed using Stimulate soft-
ware (Strupp, 1996). Movies of functional scans were generated and
carefully examined to detect gross movements (i.e., frequent voxel dis-
placements during time series), and the raw data time series were ana-
lyzed for course spikes. Regions of interest (ROIs) were drawn according
to the atlas of the rat brain (Paxinos and Watson, 1997) and are shown in
Figure 1. The ROIs included the nucleus accumbens, dorsal striatum,
medial prefrontal cortex, hippocampus, and VTA. Selection of these
ROIs was based on previous work showing effects of estrogen and co-
caine within these areas (Woolley et al., 1997; Becker, 1999; Febo et al.,
2003; Shansky et al., 2003; Febo and Segarra, 2004; Tang et al., 2004). It
was hypothesized that the sensitization-enhancing effects of estrogen in
the female would reflect changes in cocaine-induced neuronal activity
within the selected ROI. Other brain areas that showed BOLD signal
changes were not analyzed in this study. Before tracing the ROI, func-
tional scans were aligned to a reference anatomical scan using the MRI
analysis software ImageJ from Karl Schmidt (University of Massachu-
setts Medical School, Worcester, MA) (http://www.quickvol.com).

For each subject, signal intensity values for all pixels per ROI were
normalized to their time series baseline (expressed as percentage change
from baseline). The raw data were averaged during the first 5 min after
cocaine injection to make intragroup (fixed-effects) statistical compari-
sons. A t test was used to compare drug naive and cocaine-pretreated rats
(95% confidence level). Signal changes in response to cocaine were pri-
marily increases (positive BOLD) and not decreases (negative BOLD);
thus the data presented in Results are for positive signal changes. To
generate positive BOLD activation maps, the composite functional maps
were subjected to a pixel-by-pixel t test comparing signal intensity during
the 5 min preinjection baseline period and 5 min immediately after in-
tracerebroventricular cocaine injection. Pixels for which the BOLD per-
centage change relative to the baseline period was significantly different
at a 95% confidence level were overlaid onto the reference anatomical
data set.

Results
Estrogen modulates the BOLD response to cocaine
A single cocaine injection increased BOLD activity in the pre-
frontal cortex, nucleus accumbens, striatum, VTA, and hip-
pocampus (Fig. 2). Interestingly, cocaine-induced brain activity
was dependent on estrogen treatment. Ovariectomized females,
which have negligible plasma levels of estrogen [2.7 � 1.2 pg/ml
as reported by Febo et al. (2002)], showed greater BOLD percent-
age changes in response to cocaine than did Ovx�E rats (Fig. 2).

Figure 1. ROIs analyzed for BOLD signal changes in response to cocaine. HIPPO, Hippocam-
pus; NAC, nucleus accumbens; PFC, prefrontal cortex; STR, striatum.
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This was observed throughout all ROIs. No significant differ-
ences in negative BOLD were observed within the ROIs studied.

Estrogen modulates the BOLD response to hypercapnia
Hypercapnia produced positive BOLD signal changes in both
Ovx and Ovx�E animals (Fig. 2). The percentages of BOLD sig-
nal changes were greater in Ovx than in Ovx�E rats, as was the
number of positive BOLD pixels.

Effect of repeated cocaine administration on the BOLD
response to cocaine: enhancement by estrogen
Repeated cocaine administration enhanced BOLD signal changes
in the nucleus accumbens, striatum, hippocampus, and VTA of
Ovx�E rats compared with rats given acute cocaine (Fig. 3).
Ovx�E rats given repeated cocaine injections also showed a
greater response in the nucleus accumbens, VTA, and hippocam-
pus than did their Ovx counterparts (Fig. 3). As mentioned
above, no significant differences in negative BOLD were observed
within the ROIs studied.

Discussion
In female rats, estrogen enhances the psychomotor stimulant
(Chin et al., 2002; Febo et al., 2003; Hu and Becker, 2003) and
reinforcing effects of cocaine (Lynch et al., 2001). Substantial
data support actions of estrogen through the mesolimbic dopa-
mine system of female rats (Sakamoto et al., 1993; Thompson and
Moss, 1994; Bosse et al., 1997; Becker, 1999; Febo et al., 2003,
2004). Our present data support effects of estrogen in other brain
regions as well. In the present study, we
observed that estrogen treatment was as-
sociated with a curtailed BOLD response
to acute cocaine and with enhanced BOLD
activation after repeated cocaine adminis-
tration. The greater BOLD responses in
chronically treated animals were observed
within the nucleus accumbens, dorsal stri-
atum, VTA, and hippocampus. The influ-
ential role of estrogen within these brain
areas suggests that they may be involved in
mediating the greater behavioral sensitiza-
tion to cocaine reported in females (Chin
et al., 2002; Febo et al., 2003; Hu and
Becker, 2003).

The effects of estrogen treatment on
acute cocaine-induced BOLD activity may
arise from actions of estrogen on cerebral
blood flow (CBF) as well as direct effects
on neuronal activity and metabolism. In
rats, cerebral metabolic rates for glucose
(CMRglu), as measured by quantitative
2-[ 14C]deoxyglucose (2-DG) in vitro au-
toradiography, differ between males and
females and vary throughout the stages of
the estrous cycle (Nehlig et al., 1985). High
rates of CMRglu were observed in the nu-
cleus accumbens, hippocampus, hypo-
thalamus, and superior colliculus during
proestrous (Nehlig et al., 1985), a stage of
the rat estrous cycle characterized by high-
est estrogen levels in plasma (Neill et al.,
1971). Similarly, estrogen treatment has
been reported to increase CBF in post-
menopausal women (Smith and Zubieta,

Figure 2. BOLD signal changes in response to acute cocaine or hypercapnia in Ovx and
Ovx�E rats. A, Cocaine-induced BOLD signal changes. Ovx�E females showed a lower per-
centage change in BOLD response to cocaine than did Ovx females (*t7 � 2.0; p � 0.05 for all
brain areas shown). B, Hypercapnia-induced BOLD signal changes. The percentages of BOLD
signal changes were lower in Ovx�E than in Ovx rats (‡t10 � 2.2; p � 0.02). C, Number of
positive BOLD pixels in response to hypercapnia. The number of positive BOLD pixels was lower
in Ovx�E than in Ovx rats (†t10 � 4.3; p � 0.0007). The numbers above the bar graphs indicate
the range of BOLD percentage changes and pixel numbers that were sampled from individual
rats. Samples were taken from three contiguous rostral brain slices. All data are expressed as
mean � SEM. HIPPO, Hippocampus; NAC, nucleus accumbens; PFC, prefrontal cortex; STR,
striatum.

Figure 3. BOLD signal changes after repeated cocaine administration in Ovx and Ovx�E rats. A, In Ovx rats, there was a
reduced BOLD response in the hippocampus after repeated cocaine administration (†t8 � 1.8; p � 0.01). B, Ovx�E females given
repeated cocaine injections showed the greatest BOLD percentage changes in the nucleus accumbens, striatum, VTA, and hip-
pocampus compared with those given a single cocaine injection (*t7 � 1.9; p � 0.05). Data are expressed as mean � SEM. C,
Activation maps of cocaine-induced BOLD activity. Maps correspond to composite images of Ovx and Ovx�E rats. Colored pixels
represent brain areas that showed signal intensity values significantly different from baseline (scale bar hue indicates percentage
change value). Statistical significance was determined using pixel-by-pixel t test analysis comparing baseline with a cocaine
injection period (� � 0.05). Ovx�E rats showed a greater number of activated voxels in response to cocaine than did Ovx and
intact rats.
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2001; Slopien et al., 2003). Increased CMRglu and CBF are likely
associated, in part, with increased basal neuronal activity with
estrogen treatment (Woolley et al., 1997). Indeed, states of in-
creased basal neuronal activity reduce the magnitude of the
BOLD response to sensory stimuli (Hyder et al., 2002). This is
attributable to the fact that the magnitude of the BOLD signal
response is determined, to a large extent, by basal CBF (Cohen et
al., 2002). Greater basal neuronal activity and/or CBF might have
caused lower positive BOLD signal changes in response to co-
caine and hypercapnia in Ovx�E rats. Evidence of enhanced
basal neuronal activity with estrogen treatment comes from elec-
trophysiological experiments showing increased frequency of
spontaneous neuronal firing in hypothalamic and hippocampal
slices associated with suppressed GABA-mediated inhibitory
neurotransmission (Murphy et al., 1998; Parducz et al., 2002).
We have reported recently that estrogen reduces GABAB

receptor-mediated G-protein activation in the VTA of female rats
(Febo and Segarra, 2004). This would suggest a reduction in
GABAB-mediated inhibition within this region, possibly result-
ing in increased basal dopamine neuron firing. This remains,
however, in the realm of speculation. Finally, one cannot rule out
the possibility that high and chronic levels of estrogen in plasma
directly affect the cerebrovasculature and thereby alter BOLD
signal changes in response to acute cocaine administration. This
is partly supported by data showing reduced BOLD signal
changes in response to 5% CO2 in Ovx�E rats.

Repeated cocaine administration in Ovx�E rats resulted in
enhanced BOLD activity within mesocorticolimbic brain re-
gions. This did not occur in Ovx rats without steroid replace-
ment, suggesting that the effect of repeated cocaine administra-
tion on neuronal activity in these areas is hormonally modulated.
In male rats, it is well documented that repeated cocaine admin-
istration alters CMRglu; this effect varies according to the dura-
tion of the abstinence period. For instance, positron emission
tomography studies using [ 18F]fluorodeoxyglucose show that
metabolic activity in the frontal cortex increases with �1 week of
abstinence but decreases with longer periods (Volkow et al., 1991,
1992). This has also been supported by 2-DG autoradiography in
males (Hammer et al., 1993). Thus, these data show that the basal
metabolism in the brain diminishes with chronic cocaine admin-
istration, as a function of abstinence duration. It is possible that
in Ovx�E females treated repeatedly with cocaine, basal meta-
bolic activity was reduced after a 7 d abstinence period, and this
could partially explain the greater magnitude change in BOLD
signal intensity. Repeated cocaine administration induces long-
term adaptations within mesocorticolimbic circuits, such as
changes in c-fos expression (Hiroi et al., 1997; Canales and Gray-
biel, 2000; Todtenkopf et al., 2002) and dendritic spine density
(Robinson and Kolb, 1999) that consequently affect synaptic
transmission (Thomas et al., 2001; Beurrier and Malenka, 2002).
These changes have also been reported in the female after estro-
gen administration (Segarra and McEwen, 1991; Woolley et al.,
1997; Priest and Roberts, 2000).

A caveat in the present experimental design involves variation
of the environment in which cocaine was administered and the
route of administration. Both conditions surrounding psycho-
stimulant administration and the route of administration can
affect the behavioral response to these drugs (Browman et al.,
1998) and perhaps neuronal activity (Porrino, 1993). Thus, ex-
ternal stimuli, such as a needle prick after intraperitoneal admin-
istration and the cage environment in which cocaine pretreat-
ment was given, are not expected to significantly contribute to
evoking neuronal activity in the present study.

Our present data suggest that repeated cocaine administration
in Ovx�E rats leads to adaptations in mesolimbic and hippocam-
pal neurons that enhance the magnitude of BOLD activation.
One important action of estrogen in the hippocampus of females
is to promote neuronal growth and remodeling, as observed by
spine formation and dendritic sprouting (Kadish and Van Groen,
2002; Sakamoto et al., 2003; Li et al., 2004; Tang et al., 2004).
Thus, cocaine-induced changes in synaptic plasticity observed in
mesolimbic neurons of males (Kolb et al., 2003) could possibly be
facilitated by the presence of estrogen in females (Segarra and
McEwen, 1991). Additional studies will be needed to confirm this
possibility. The present findings have important implications
with regard to the issue of gender differences in cocaine addiction
and other neuropsychiatric disorders. These findings also urge
continued investigation of the role of gonadal steroids in deter-
mining the chronic effects of drugs of abuse on neuronal function
in the CNS of both male and females.
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