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Abstract

BACKGROUND: FADS1 gene encodes delta 5 desaturase, a rate-limiting enzyme in the
metabolism of n-3 and n-6 polyunsaturated fatty acids (PUFASs). Minor alleles of FADS1 locus
polymorphisms are associated with reduced FADS1 expression and intra-hepatic fat accumulation.
However, the relationship between FADS1 expression and pediatric nonalcoholic fatty liver
disease (NAFLD) risk remains to be explored.

METHODS: We analyzed FADSL transcription levels and their association with intra-hepatic fat
and histology in children, and we performed pathway enrichment analysis on transcriptomic
profiles associated with FADS1 polymorphisms. We also evaluated the weight of FADS1 alleles
on the response to combined docosahexaenoic acid, choline, and vitamin E (DHA-CHO-VE)
treatment.
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RESULTS: FADS1 mRNA level was significantly and inversely associated with intra-hepatic fat
(p =0.004), degree of steatosis (p =0.03), fibrosis (v = 0.05), and NASH (p = 0.008) among
pediatric livers. Transcriptomics demonstrated a significant enrichment of a number of pathways
strongly related to NAFLD (e.g., liver damage, fibrosis, and hepatic stellate cell activation).
Compared to children who are common allele homozygotes, children with FADS1 minor alleles
had a greater reduction in steatosis, fibrosis, and NAFLD activity score after DHA-CHO-VE.

CONCLUSION: This study suggests that decreased FADS1 expression may be associated with
NAFLD in children but an increased response to DHA-CHO-VE.

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in
children but its pathogenesis remains incompletely understood. The prevalence of pediatric
NAFLD in the U.S. was estimated to be 8-17% but up to 38% among obese children.
NAFLD is defined as a spectrum of chronic liver disorders, beginning as an accumulation of
fat in the liver without significant alcohol consumption that can gradually progress to
steatohepatitis (nonalcoholic steatohepatitis (NASH)) and even cirrhosis in children, leading
to substantial liver injury.2:3 Also, NAFLD in children is highly associated with a series of
early metabolic conditions, including obesity, insulin resistance, glucose intolerance, and
cardiovascular abnormalities,* exerting an enormous medical challenge for pediatric care.
Understanding the etiology of pediatric NAFLD and NASH is poor especially when
compared to extensive studies in adults.2:® Given the current rapid growing population of
NAFLD and its co-morbidities in children, it is an urgent need to elucidate the principle
disease etiology and develop safe and effective treatment for pediatric NAFLD.

It is well recognized that n-3 polyunsaturated fatty acid (PUFA) deficiency is associated with
many metabolic perturbations, including NAFLD.5-9 In humans, particularly due to the high
n-6/n-3 PUFA ratio in Western diet, n-3 PUFA deficiency has been associated with NAFLD
and NASH in both adults and children.19-19 Small clinical studies in children suggest that
n-3 PUFA supplementation may improve NAFLD.29 However, recent large clinical trials of
n-3 PUFA in adults with NAFLD have yielded mixed results.21-24 While inter-individual
variability has been recognized as a key factor influencing the response to n-3 PUFA
treatment,25-27 the clinical trials testing the effectiveness of n-3 PUFA in NAFLD have not
considered genetic variability in n-3 PUFA metabolism among study participants.

Both n-6 and n-3 PUFA metabolism are controlled by A5 and A6 desaturases (D5D, D6D)
encoded by FADSI and FADSZ genes, respectively. D5D is the rate-limiting enzyme in
converting a-linolenic acid, the major dietary n-3 PUFA precursor, into the bioactive forms
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Our recent studies indicated
that FADS1 is significantly involved in hepatic fat accumulation and NAFLD.28:29 Notably,
among the genes involved in this pathway, FADSI harbors genetic alleles in strong linkage
disequilibrium (LD; allele frequency ranging from 32% to 43%?30 consistently identified as
the most important determinants for FADS1 (i.e., D5D) activity and endogenous n-3 PUFA
levels in humans.30-32 |n addition, increasing evidence suggests that FADSI low-function
alleles can influence both the pharmacokinetics and pharmacodynamics of supplemented n-3
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PUFA, potentially leading to inter-patient differences in response to its intake.26:27
Unfortunately, no clinical study thus far has considered these alleles in testing the
effectiveness of n-3 PUFA in treating NAFLD. Further delineating this pharmacogenetic
mechanism may lead to a more effective n-3 PUFA treatment for NAFLD.

In this proof-of-concept study, we evaluated the relationship between FADSI expression and
liver histology in pediatric liver samples and explored the molecular pathway associated
with low-function FADSI alleles. Further, we examined the relationship between FADS?
polymorphism and clinical response to DHA supplementation combined with choline and
vitamin E (DHA-CHO-VE) in a small cohort of children with NAFLD who have completed
a randomized clinical trial registered33 at ClinicalTrials.gov (ID: NCT01934777).

METHODS AND MATERIALS

Samples

Samples used in this study as well as the data analysis plan using the samples are reported in
Fig. 1.

The liver tissue samples were described previously.28 Briefly, these are leftover tissue
samples collected from liver transplantation donors who are deceased individuals but were
willing to donate their organs for transplantation purposes. Demographic information of the
donors was demonstrated in Table 1. Transcriptomic data from 55 pediatric liver tissue
samples (aged 0-18years) were collected previously, among which only 22 were
characterized for histologic evaluation. Genotypic data of 6 FADSI single-nucleotide
polymorphisms (SNPs;rs174576, rs1535, rs174546, rs102275, rs174537, and rs174556) for
all 55 pediatric liver samples were previously collected.28

Total hepatic fat content was measured using a protocol established in our previous study.34
The degree of steatosis was visually assessed based on the hematoxylin—eosin—stained tissue
sections and the total collagen content was quantified by Sirius red staining. The presence of
NAFLD and NASH was defined based on the previously established method by NASH-
CRN.35

Study population from clinical trial

Nineteen children with NAFLD belonging to the treatment arm of DHA-CHO-VE trial were
included in the study. In particular, these children presented a liver biopsy-proven diagnosis
of NASH. Other causes of liver diseases were excluded before the enrollment in the trial.
These included: the presence of liver disease due to any of the following: Wilson disease,
hepatitis B and C, acute systemic disease, autoimmune hepatitis, hypothyroidism, cystic
fibrosis, celiac disease, and suspicion of muscular dystrophy, alpha-1-antitrypsin deficiency,
and metabolic inherited diseases. Patients were also excluded if body weight and
carbohydrate metabolism were altered by the use of parenteral nutrition, protein
malnutrition, previous gastrointestinal surgery, structural abnormalities of the
gastrointestinal tract, or neurological impairment. Finally, the use of nonsteroidal anti-
inflammatory drugs, antibiotics, probiotics, or antisecretory drugs capable of causing
achlorhydria within the 2 months preceding enrolment were considered additional exclusion
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criteria. Details of the trial have been already reported.33 However, briefly, all children in the
treatment arm received, every day for 6 months, pearls combining 250 mg of DHA, 39 Ul of
vitamin E, and 201 mg of choline (DHA-CHO-VE). Pearls were provided by DMF Dietetic
Metabolic food (Italy). Concomitantly, all patients received recommendation for hypocaloric
diet (25-30 kcal/kg/day) and twice weekly 1-h physical activity during the treatment and for
further 6 months of follow-up. Compliance to treatments and diet was monitored through
monthly visit by counting the amount of investigational product left in the bottle.

Symptoms and side effects were assessed in each visit by the investigator, who was blind to
medication assignment. Complete medical histories were recorded for all participants.
Collection of anthropometrical data, biochemical data, and second biopsy were performed at
baseline and after 12 months from trial start. Patients and investigators were blinded before
and after the assignment of the intervention. The study was registered at ClinicalTrials.gov,
with the number ID: NCT01934777 on 30 August 2013. However, we underline that the
current primary end point differs from the original protocol submitted to ClinicalTrials.gov
as well as described in the previous study.33 The Bambino Gesu Ethics Research Committee
approved the study, in accordance with the Declaration of Helsinki, and parents of the
included patients gave their written informed consent to therapies and the tests performed
for research purpose.

Anthropometrics

Anthropometric data were collected at baseline and after 12 months. Weight was measured
by a conventional scale with a precision of 100 g and height was measured by a Harpenden
stadiometer with a precision of 1 mm. Body mass index was expressed in kilograms per
square meters (kg/m?).

Laboratory parameters

Genotyping

Blood were collected at baseline and at month 12 after an overnight fasting and immediately
processed to perform the analysis of alanine aminotransferase, aspartate aminotransferase,
gamma-glutamyl-transferase, total triglycerides and cholesterol, high-density lipoprotein,
low-density lipoprotein, glucose, and uric acid by standard laboratory methods.
Demographic information of the donor individuals are reported in Table 3.

Genotyping of 17 SNPs (rs174545, rs174546, rs174547, rs174548, rs174549, rs174550,
rs174555, rs174556, rs174560, rs174561, rs174562, rs174568, rs1535, rs174574, rs174576,
rs174577, and rs174581) across the FADS locus in the NAFLD children treated with DHA-
CHO-VE were performed using with Sequenom MassARRAY iPLEX Gold assays
(Sequenom, San Diego, CA). However, given the high LD level among these 17 FADS SNPs
(pairwise LD 72 > 0.8), we chose the FADS variant rs174576 as a representative SNP for all
subsequent analyses. We chose this SNP also because it was associated with fatty acid
denaturation pathway activity, whole-body fat oxidation, and DHA/EPA index in young
individuals.36:37
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Statistical analyses

The association between six FADSI SNPs and transcriptome data of donor liver tissues (n=
55) was performed using R package Matrix eQTL.38 Each SNP in £FADSI region was
assessed for the association with liver transcriptome using multiple linear regression model,
where age, gender, and ancestry were adjusted for the association as covariates. The SNP
was coded using dominant genetic model, i.e., AA: 0, AB and BB: 1. We selected genes
significantly (p < 0.05) associated with all the six FADSZ SNPs for pathway analysis. Note
that, given the small sample size, we used a liberal nominal pvalue (0.05) as a statistical
significance cutoff for selecting genes for the pathway analysis so that critical pathways may
not be missed. Significantly (p <0.05) enriched pathways were identified using Ingenuity
Pathway Analysis (IPA®, QIAGEN, Redwood City, www.giagen.com/ingenuity).

Demographic, biochemical, and histological features of the NAFLD children (7= 19) were
compared between groups using Wilcoxon rank-sum test for continuous variables. Multiple
logistic regression model was used to test the association between FADS1 genotype and the
response to the treatment in terms of steatosis reduction. Genotypes were coded in dominant
genetic model. Age, gender, and the genotypes of PNPLA3 (rs738409)3° and TMESF2
(rs58542926)40 were adjusted for the association. Logistic regression was performed using
the package PLINK 1.07.41 All the other analyses were performed using R statistical
packages (www.r-project.org).

RESULTS

Association between FADS1 mRNA and liver histology in children We have characterized
biochemical, and histologic features of donor liver tissue samples of 22 children. As
summarized in Table 1, we found that 4 out of 22 individuals possess a =5% steatosis in
their livers, and all these 4 patients were characterized as NASH or borderline NASH. The
total fat content of all 22 livers is 0.02 = 0.0088 mg fat per mg tissue, and total collagen
content is 8.2 + 4.4%.

We aimed to understand the relationship between FADSI transcription and liver histology in
children. We found that FADSZ mRNA level was significantly and inversely associated with
total hepatic fat content (p=0.004), degree of steatosis (p = 0.03), fibrosis (v = 0.05), and
NASH (p = 0.008) among pediatric livers (Fig. 2).

Pathway enrichment of genes associated with FADS1 polymorphism

Our previous study has demonstrated that the minor alleles of FADS1 variants are associated
with decreased hepatic £FADSI transcription.?8 We hypothesized that these £FADSI low-
function alleles may lead to an altered transcriptomic profile where certain pathways
involved in nonalcoholic fatty liver disease may be affected. In order to test this hypothesis,
we performed a genome-wide analyses on the association between FADSI variant genotypes
and mRNA expression. At a nominal significance level (p < 0.05), we identified 619 genes
whose mRNA expression is significantly associated with FADS1 genotype (Supplemental
Table S1 (online)). We further conducted a pathway enrichment analysis on these genes
using the IPA package. Our analysis revealed a significant enrichment for a number of
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pathways strongly related to NAFLD: hepatic fibrosis/hepatic stellate cell Activation) (p=
0.01), protein kinase A signaling (v = 0.01), and VDR/RXR activation (p= 0.002) as well as
multiple interleukin signaling pathways (p < 0.05) (Supplemental Table S2 (online)). Given
the association between the minor alleles of FADSZ variants and the low FADSI expression
and function, we sought to explore whether the liver transcriptome profile associated with
these minor alleles is also more likely associated with NAFLD. We then performed IPA
toxicity function pathway analysis specifically for the genes whose expression is positively
associated with the FADSI minor alleles. As demonstrated in Table 2, critical toxicity
function pathways, e.g., activation of liver fibrosis (p=0.01), hepatic fibrosis (o= 0.014),
and liver damage (p = 0.02), are particularly enriched. Also, hepatic fibrosis (p = 0.006) and
increased liver damage (p = 0.044) are also top pathways significantly enriched among the
toxicity Lists. Again, triacylglycerol biosynthesis (p = 0.046) and hepatic fibrosis/hepatic
stellate cell activation (p = 0.047) are significantly enriched top canonical pathways (Table
2).

between FADS1 alleles and clinical response to n-3 lipid supplementation in

We postulated that, while the low-function FADSI alleles may increase the susceptibility to
NAFLD, supplementation n-3 lipids to NAFLD patients would lead to a better response in
improving the liver histology. We therefore genotyped the FADS1 variants among NAFLD
children who previously received DHA-CHO-VE treatment. Given the high LD level among
these variants in the study cohort (/2 > 0.8), we selected rs174576 as a representative variant
for the analyses. We then assessed the association between rs174576 minor allele and the
improvement in liver histology after the DHA-CHO-VE treatment. We found that, as
compared to the carriers of the major allele homozygotes, the minor allele carriers
(heterozygotes and minor allele homozygotes) possessed a significant reduction in steatosis,
fibrosis, ballooning, and NAFLD activity score (p < 0.02 for all tests; Table 3). As other
NAFLD-associated genetic variants, i.e., PNPLA3and TM6SF2, may confound this
association,3940 we further performed a multivariate analysis using a linear regression
model by incorporating the genotype of these two genes. We found that the rs174576 minor
allele remained to be significantly (p < 0.05) associated with more steatosis reduction after
the DHA-CHO-VE treatment (Supplemental Table S3 (online)).

DISCUSSION

Our study demonstrated that reduced hepatic FADSI transcription is associated with
increased risk to NAFLD in children. The low-function alleles of FADS are particularly
associated with alteration of molecular pathways involved in NAFLD. In addition, children
with NAFLD who are carriers of FADSI low-function alleles are the best responders to n-3
lipid supplementation. Our findings together indicate an important role of FADSL1 function
in the pathogenesis of NAFLD in children. Moreover, FADSI genetic variants may be a
useful pharmacogenetic marker capable of distinguishing the patients who are more likely to
respond to n-3 lipid supplementation as a therapeutic strategy for NAFLD/NASH in
children.
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Our results provide new evidence supporting the association between the insufficiency of
n-3 PUFA and NAFLD/NASH. While this association may be largely attributed to the
imbalanced n-3/n-6 PUFA in the current Western diet, certain genetic perturbations of fatty
acid desaturation process may exacerbate this issue. As compared to extensive dietary
research, the relationship between genetic variability in fatty acid desaturation and NAFLD/
NASH was less clear. This issue could be crucial in pediatric NAFLD since genetic factors
may play a more significant role in disease susceptibility at the earlier stage of human
development, as compared to the dietary and other environmental factors. Our previous
studies have revealed that minor alleles of multiple variants across the FADSI locus lead to
reduced hepatic transcription level of FADS1, which is further associated with reduced
desaturation flux of long chain fatty acids but increased total intra-hepatic fat accumulation
and susceptibility to liver steatosis.28:2% Accordingly, our current study demonstrated that
reduced FADS1 function in the liver is highly correlated with not only increased steatosis
but also with fibrosis and NASH. This correlation may be mediated by the altered molecular
pathways involved in lipid homeostasis, as well as in hepatic fibrogenesis, suggesting that
insufficient FADSL1 function can lead to both molecular and pathological changes in the liver
even at the early developmental stages of the disease. Besides the central function of FADS1
in the liver, the gut-liver axis derangement may also be involved in the lipid homeostasis in
the liver.#2 Gut microbiota was found to produce PUFA%3; our recent study demonstrated
that FADS1 genotype may also influence the oxidized derivatives of linoleic acid that are
associated with metabolic syndrome and adverse lipid protein profiles in children.** It is
thus possible that FADSL1 alleles play a role in multiple systems in increasing the
susceptibility to NAFLD.

Our findings also have implications in clinical management of NAFLD in children. Given
the increased understanding of the key role of n-3 PUFA in NAFLD, supplementation of n-3
PUFA to NAFLD patients has long been a potential treatment and preventive option for
NAFLD/NASH. Our study revealed a potential mechanism that leads to inter-patient
variability in response to n-3 PUFA intake. Our findings suggest that FADSI variants can be
a pharmacogenetic marker that is useful for selecting NAFLD patients who are most likely
to respond to n-3 PUFA supplementation. Our study is consistent with previous studies
where FADSI minor alleles are associated with significantly better tissue accumulation of
n-3 PUFA after supplementation.26:27 This hypothesis is also supported by the recent large
cohort study on using n-3 PUFA supplementation in pregnant women to prevent asthma in
their children where carrying FADS1 minor alleles in the pregnant women was found to be
predictive of better response in their children.4> As a particular biomarker for n-3 PUFA
treatment for NAFLD has not been established, our study warranted further validation of the
potential predictive value of FADSI variants in the treatment or prevention of NAFLD in
children and beyond, in particular via prospective clinical studies.

Our study was limited in several aspects. First, the small sample size leads to a low power in
testing the relationship between FADSI alleles, gene expression, and NAFLD histology or
drug responses in our sample sets. A post hoc power calculation indicated that the majority
of our tests is potentially under-powered (data not shown). Therefore, our findings should be
limited to the observations in our cohorts and the result should be further validated in larger-
scale sample sets. However, we have previously reported a strong association between
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FADS1 minor alleles and decreased hepatic FADSI gene expression, whereas increased total
liver fat content.28 Therefore, the findings in this study indeed validated at least in part our
previous observations. Moreover, noteworthy, in our study the consistent association
between FADS1 and clinical features as well as drug responses, albeit weak, collectively
generated a new interesting hypothesis worth further testing in the future. Second, the age
group of the donor cohort (6.1 + 4.4 years) is different from that of the clinical study (13.00
+ 2.45 years). Therefore, the biological effect observed in the former population may not
reflect that of the latter. Third, the NAFLD patients in our study were treated with a
combined choline, DHA, and VE rather than n-3 PUFA as a single agent. The result thus
could be confounded by the pharmacological effects of other compounds. It is thus
necessary to design prospective clinical studies in a large population to specifically
investigate the relationship between FADSI alleles and clinical outcomes of n-3 PUFA
supplementation. Nevertheless, our study generated interesting directions and hypotheses for
understanding the pathogenesis and developing therapeutic/preventive strategies for pediatric
NAFLD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Diagram of sample sets used in this study as well as the data analysis plan
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Table 1.

Biochemical and histological characteristics of the donor liver tissue samples (7= 22)

Male sex, 77 (%) 12 (54.5)

Age (vears)

Mean + SD 6.1+4.4
Median (IQR) 45 (2.25-9)
BMI (kg/n¥)

Mean + SD? 17.7+59
Median (IQR) 16.5 (15.5-17.6)
Race

White 17 (77.3)
Black 5(22.7)
Biochemical features

Sirius red, mean + SD (%) 82+44
Histological features

Total hepatic fat, mean + SD (mg fat/mg tissue)  0.020 + 0.0088
Steatosis (%, >5%) 4(18.2)

NASH 4(18.2)

The quantification of Sirius red staining is based on the percentage of the stained area of the liver tissue section

aSDstandard deviation, BM/body mass index, /QR interquartile range Missing information for six participants.
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