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Abstract

There are thousands of rare human disorders caused by a single deleterious, protein-coding genetic 

variant1. However, patients with the same genetic defect can have different clinical 

presentations2–4, and some individuals carrying known disease-causing variants can appear 
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unaffected5. What explains these differences? Here, we study a cohort of 6,987 children assessed 

by clinical geneticists to have severe neurodevelopmental disorders, such as global developmental 

delay and autism, often with abnormalities of other organ systems. While the genetic causes of 

these neurodevelopmental disorders are expected to be almost entirely monogenic, we show that 

7.7% of variance in risk is attributable to inherited common genetic variation. We replicated this 

genome wide common variant burden by showing that it is over-transmitted from parents to 

children with neurodevelopmental disorders in an independent sample of 728 trios from the same 

cohort. Our common variant signal is significantly positively correlated with genetic 

predisposition to fewer years of schooling, decreased intelligence, and risk of schizophrenia. We 

found that common variant risk was not significantly different between individuals with and 

without a known protein-coding diagnostic variant, suggesting that common variant risk is not 

confined to patients without a monogenic diagnosis. In addition, previously published common 

variant scores for autism, height, birth weight, and intracranial volume were all correlated with 

those traits within our cohort, suggesting that phenotypic expression in individuals with 

monogenic disorders is affected by the same variants as the general population. Our results 

demonstrate that common genetic variation affects both overall risk and clinical presentation in 

neurodevelopmental disorders typically considered to be monogenic.

We carried out a genome-wide association study (GWAS) in 6,987 patients with severe 

neurodevelopmental disorders and 9,270 ancestry-matched controls, using common variants 

with a minor allele frequency ≥5% (Figure 1, Extended Data Figure 1, Supplementary 

Tables 1-2 and Methods). The patients were recruited by senior clinical geneticists in the UK 

and Ireland as part of the Deciphering Developmental Disorders (DDD) study6,7. They all 

had at least one abnormality affecting the central nervous system morphology or physiology, 

and to be recruited to the study their clinical features were sufficiently severe that their 

disorder was thought likely to be monogenic. In addition to neurodevelopmental defects (e.g. 
global developmental delay, intellectual disability, cognitive impairment or learning 

disabilities in 86%, autism spectrum disorders in 16%, Figure 2a), 88% also had 

abnormalities in at least one other organ system (Figure 2b and Extended Data Table 1).

We did not find any single variant associations at genome-wide significance (Extended Data 

Figure 2a), which was unsurprising given the heterogeneity of our clinical phenotype and the 

presumption that these disorders are monogenic. We did, however, observe a modest 

inflation in the test statistics (λ=1.097, Extended Data Figure 2b), which could indicate 

either residual bias between cases and controls, or evidence of a polygenic contribution of 

common variants to disease risk. We therefore estimated common variant heritability using 

LD score regression8, which can differentiate between these two possibilities, and found that 

7.7% (SE=2.1%) of variance in risk (on the liability scale) for neurodevelopmental disorders 

in our sample was attributable to common genetic variants, when assuming a population 

prevalence of 1% (Methods). This common variant heritability estimate (h2) is similar to 

what has been reported for common disorders such as autism (h2=11.8%, SE=1.0%)9 and 

major depressive disorder (h2=8.9%, SE=0.4%)10. To replicate this signal we analysed an 

independent set of 728 parent-child trios recruited as part of the same study, but who were 

not in the initial GWAS. We calculated polygenic scores for each individual by summing the 

genetic effects across all independent variants from our discovery GWAS (Figure 1 and 
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Methods). We then performed a polygenic transmission disequilibrium test11, which 

compares the mean parental polygenic scores to those of the affected children. We found that 

our neurodevelopmental disorder risk score was over-transmitted in these trios (P=0.0035, 

t=2.48, df=727, one-sided t-test), confirming that common variants contribute to risk of 

disorders widely presumed to be monogenic.

Previous studies have shown that risk of more common neuropsychiatric disorders (e.g. 

schizophrenia and bipolar disorder12,13) and variation in other brain-related traits, including 

educational attainment13, is driven in part by shared common genetic effects. We therefore 

used the LD score method14 to test for genetic correlation between our neurodevelopmental 

disorder GWAS and available GWAS data for common neuropsychiatric disorders, cognitive 

and educational traits, anthropometric traits, and negative control diseases that have well 

powered GWAS but are not related to neurodevelopment. We found that genetic risk for 

neurodevelopmental disorders was significantly negatively correlated with genetic 

predisposition to higher educational attainment15 (rg = -0.49, SE = 0.08, P = 5.3x10-10) and 

intelligence16 (as measured by Spearman’s g) (rg = -0.44, SE = 0.10, P = 2.2x10-5), and 

positively correlated with genetic risk of schizophrenia (rg = 0.28, SE = 0.07, P = 2.7x10-5) 

(Figure 3 and Extended Data Table 2). None of the anthropometric traits, nor the negative 

control traits, were significantly genetically correlated with our data, after accounting for 

multiple testing. We also used partitioned LD score regression17 to show that heritability of 

neurodevelopmental disorders was nominally significantly enriched in cells of the central 

nervous system (P = 0.02), and in mammalian constrained regions18 (P = 0.009) 

(Supplementary Table 2), consistent with similar analyses for other neuropsychiatric and 

cognitive traits. Together, these results suggest that thousands of common variants have 

individually small effects on brain development or function, which in turn influences 

neuropsychiatric disease risk, cognitive traits, and risk for severe neurodevelopmental 

disorders.

We next investigated how general our genetic correlation findings were, by attempting to 

replicate them in another neurodevelopmental disorder cohort (Figure 1). We obtained 

GWAS data for 1,270 neurodevelopmental disorder cases from Australia and 1,688 ancestry-

matched Australian controls. This sample size is too small to do direct genetic discovery or 

to reliably apply LD score regression, so we tested common variant polygenic scores using 

summary statistics from our discovery GWAS and published GWAS, including educational 

attainment15 and intelligence16. This approach requires specification of P-value thresholds, 

and is less robust to population structure and cryptic relatedness, but it produced similar 

results to LD score in our discovery GWAS, so we believe it is well suited to a replication 

analysis. We replicated our observation of lower polygenic scores for educational attainment 

and intelligence in the Australian neurodevelopmental disorder cases compared to controls 

(P = 1.0x10-8 and P = 7.6x10-4 respectively), and found that cases had a nominally 

significantly increased score for schizophrenia (P = 0.014) (Methods and Extended Data 

Table 3). We did not see a significant difference between Australian cases and controls for 

the score constructed from our own discovery GWAS. We should have had 95% power 

(Methods) to detect a difference if the two cohorts had identical phenotypes, suggesting that 

differential phenotypic ascertainment between the British and Australian cohorts diluted our 

ability to quantify their shared genetics.
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These findings could mean that common variants entirely explain a subset of patients with 

neurodevelopmental disorders, and are not relevant in the remainder, or that all patients’ 

disorders have both rare and common variant contributions (Figure 1). We have exome 

sequenced our cohort of patients, as well as their parents, and have previously reported a 

variety of both de novo and inherited diagnostic variants19,20. We therefore compared 

polygenic scores for cognitive traits and neuropsychiatric disorders between patients for 

whom we had identified diagnostic or probably diagnostic variants in a known 

developmental disorder gene21 (N=1,127) and those who had no candidate diagnostic variant 

(N=2,479), but we found no significant differences for any polygenic score we tested after 

controlling for multiple testing (Extended Data Table 4 and Methods). We showed by 

simulations that if the “diagnosed” cases had the same distribution of the educational 

attainment polygenic score as controls, we would have had sufficient power to detect a 

difference between them and the undiagnosed cases (Methods). This is consistent with a 

previous study in autism11 that similarly found no evidence for a difference in polygenic risk 

scores between autism cases with a de novo diagnostic mutation compared to those without. 

This suggests that both common and rare variants are contributing in many 

neurodevelopmental disorder patients. However, as the DDD project continues to identify 

new diagnoses, we anticipate that the increase in power may show that monogenic and 

polygenic contributions are not purely additive.

In addition to showing that common variation affects overall risk of severe 

neurodevelopmental disorders, we sought to determine if it can also affect individual 

presentation of symptoms. We identified four phenotypes measured in our 

neurodevelopmental disorder cohort for which independent GWAS data are available: autism 

(16% of cohort), birth weight, height, and intracranial volume. On average, our 

neurodevelopmental patients had a head circumference 1.20 standard deviations (SD) 

smaller, they were 0.72 SD shorter than, and weighed 0.15 SD less than the age and sex-

adjusted population average. We constructed common variant polygenic scores for the four 

phenotypes as described above, and tested for association between the relevant score and 

phenotype in our cohort. In all four cases, there was significant association (Table 1 and 

Extended Data Table 5), demonstrating that common variation contributes to the expression 

of these traits in our study. Consistent with previous reports9 we also found that individuals 

with autism in our cohort had higher polygenic scores for educational attainment compared 

to those without autism. We next tested for association between the educational attainment 

polygenic score and severity of overall neurodevelopmental phenotype. We found that 

patients with severe intellectual disability or developmental delay (N=911, Methods) had 

higher scores (i.e. greater educational attainment, proxy for higher cognitive function, 

P=0.004, Table 1) than those with mild or moderate disability or delay (N=1,902). This 

finding, which might seem initially counter-intuitive, is consistent with epidemiological 

studies22 which found that the siblings of patients with severe intellectual disability showed 

a normal distribution of IQ, whereas siblings of patients with milder intellectual disability 

had lower IQ than average, implying that mild intellectual disability represents the tail-end 

of the distribution of polygenic effects on intelligence and severe intellectual disability has a 

different etiology.
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The study of human disease genetics has often been segregated into rare, single gene 

disorders, and common complex disorders. There is abundant evidence that rare variants in 

individual genes can cause phenotypes seen much more commonly in individuals without a 

monogenic cause, including genes for maturity onset diabetes of the young23 and familial 

Parkinson’s disease24.There is also emerging evidence that the cumulative effect of common 

variants can modify the penetrance of rare variants in complex phenotypes like educational 

attainment25, schizophrenia26 and breast cancer27. Here we have shown that the same 

interplay between rare and common variation exists even in severe neurodevelopmental 

disorders typically presumed to be monogenic. Previous studies have shown that the 

penetrance and expression of these disorders are affected by which specific missense variant 

is carried28 and the presence of mutations in secondary modifier genes29. Here, we have 

demonstrated that they are also modified by common variants that influence 

neurodevelopmental traits in the general population. We analysed individuals of European 

ancestry (as, alas, do the vast majority of published GWAS) and since the genetic 

architecture of neurodevelopmental disorders may differ between populations30 further 

studies will be required to generalise our findings. Altogether, our findings suggest that fully 

understanding the genetic architecture of neurodevelopmental disorders will require 

considering the full spectrum of alleles from those unique to an individual to those shared 

across continents.

Methods

DDD cohort phenotypes

Recruitment and phenotyping of DDD patients is described in detail elsewhere6,7. The DDD 

study has UK Research Ethics Committee approval (10/H0305/83, granted by the 

Cambridge South Research Ethics Committee and GEN/284/12, granted by the Republic of 

Ireland Research Ethics Committee). Families gave informed consent for participation. 

Briefly, the DDD study recruited patients with a previously undiagnosed developmental 

disorder, in the UK and Ireland. Patient phenotypes were systematically recorded by clinical 

geneticists using Human Phenotype Ontology (HPO) terms in a central database, 

DECIPHER21.

The DDD cohort is very heterogeneous in terms of patient phenotypes, and so we narrowed 

our analyses to singleton patients and trios where the proband had at least one of the 

following HPO terms or daughter terms of: abnormal metabolic brain imaging by MRS (HP:

0012705), abnormal brain positron emission tomography (HP:0012657), abnormal synaptic 

transmission (HP:0012535), abnormal nervous system electrophysiology (HP:0001311), 

behavioural abnormality (HP:0000708), seizures (HP:0001250), encephalopathy (HP:

001298), abnormality of higher mental function (HP:0011446), neurodevelopmental 

abnormality (HP:0012759), abnormality of the nervous system morphology (HP:0012639). 

This “neurodevelopmental” subset included both individuals who have since recruitment to 

the DDD study been found to carry diagnostic exome mutations in protein-coding 

genes6,19,20,31, and individuals who are awaiting diagnosis. We therefore define our main 

phenotype, “neurodevelopmental disorder risk”, as the risk of having a previously 

undiagnosed developmental disorder and being included in the DDD study, and having at 
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least one neurodevelopmental HPO. In addition to HPOs, some DDD patients also had a 

clinical record of growth measurements such as height, birth weight and head circumference.

We counted the proportion of DDD patients with particular medically relevant HPOs, 

displayed in Figure 2a. Individuals with the HPO were counted using a word search of the 

particular HPO and its daughter nodes. When counting the number of distinct organ systems 

affected in each DDD patient (Figure 2b), we faced the issue that some HPOs fell under 

multiple organ systems, as for example, microcephaly which is a common term in the cohort 

falls under three categories: "nervous system", "head or neck" and "skeletal system". In 

order to assign each HPO into only one organ system, we first ranked organ systems based 

on the number of raw counts of individuals with at least one term under that system 

(Extended Data Table 1) in the full DDD cohort. We then looked for individuals with at least 

one HPO under the organ system ranked most commonly affected, and assigned these 

individuals an organ system count of one. We then removed these HPOs from the patients’ 

lists, before continuing to identify individuals with at least one HPO in the organ system 

ranked second most prevalently affected. We continued to count organs and remove HPOs 

until we had assigned all individuals a count of organs systems affected out of 19 non-

overlapping systems.

Australian developmental disorder cohort phenotypes

We obtained a replication cohort of 1,270 developmental disorder cases from South 

Australia, originally genotyped (using the Illumina Infinium CytoSNP-850k BeadChip) as 

part of routine clinical care to ascertain pathogenic copy number variants. The majority 

(>95%) were under 18 years old. 50-60% were recruited through clinical genetics units, and 

the rest through neurologists, neonatologists, paediatricians and cardiologists. Based on 

reviewing information on the request forms, the majority of patients had developmental 

delay/intellectual disability and malformations involving at least one organ (e.g. brain, heart, 

and kidney). 15-20% were recruited as neonates with multiple malformations involving 

brain, heart and/or other organs, and were too young to be diagnosed with developmental 

delay/intellectual disability.

Datasets and Quality Control

We genotyped 11,304 patients and 930 full trios recruited to the DDD study, on Illumina 

HumanCoreExome and HumanOmniExpress chips, respectively. Genotyping was carried 

out by the Wellcome Trust Sanger Institute genotyping facility. As controls for the discovery 

GWAS, we used genotype data for 10,484 individuals from the UK-based Understanding 

Society (UKHLS)32,33. Recruitment to this study was carried out through UK-wide 

household longitudinal survey. For replication, we obtained GWAS data from a cohort of 

neurodevelopmental disorder cases from South Australia and population-matched controls 

from the Brisbane Longitudinal Twin Study (Queensland Institute of Medical 

Research34,35). All data were on GRCh37, and detailed information of genotyping chips is 

shown in Supplementary Table 1.

We performed variant and sample quality control for each dataset separately. We removed 

samples whose reported sex was inconsistent with the genotype data, who had high sample 
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missingness (≥3% of MAF≥10% variants), samples with high or low heterozygosity (±3 

standard deviations from the mean, using MAF≥10% variants) to control for admixture and 

inbreeding, and sample duplicates (alleles identical by descent ≥98%, using MAF>10% 

variants). We removed one individual from pairs of related individuals (alleles identical by 

descent >12%, using PLINK) from the case-control cohorts. Individuals in the discovery 

cohort were not related to the independent DDD trios. We also removed trios with a high 

number of Mendel errors (>2,000 errors). For variant quality control, we removed variants if 

they had high genotype missingness (≥3%), Hardy Weinberg Equilibrium test p<1×10-5, no 

strand information, if they were duplicates, if the alleles were discordant between case and 

control datasets, or if alleles and their frequency in Europeans were discordant with HRC 

v1.1 imputation reference panel. We only included variants on chr1-22. For the 

HumanCoreExome data and the Australian data, we removed rare variants MAF≤0.5% 

before imputation. Post imputation, we removed imputed variants with INFO≤0.9 or high 

missingness (≥5%).

We defined sample ancestry based on a projection principal component (PCA) analysis 

using PLINK with 1000 Genomes Phase 3 populations, using SNPs that overlapped between 

the datasets (DDD+UKHLS and Australian cases+controls separately) and the reference 

populations. For this, we used SNPs with a minor allele frequency (MAF) of ≥10%, 

excluded A/T G/C SNPs, removed regions of extended linkage disequilibrium (including the 

HLA region), and thinned the SNPs by pruning those with pairwise r2>0.2 in batches of 50 

SNPs with sliding windows of 5 (“--indep-pairwise 50 5 0.2” in PLINK). This left 52,836 

SNPs for the projection PCA with the DDD/UKHLS data and 40,626 SNPs with the 

Australian data. For analyses described in this paper, we carried forward individuals of 

European ancestry, defined by selecting samples clustering around the 1000 Genomes Great 

British (GBR) samples in the PCA (Extended Data Figures 1 and 3). The distribution of 

ancestries was different between cases and controls, likely due to marked differences in 

ascertainment (e.g. individuals from ancestries with high levels of consanguinity are more 

likely to be recruited to studies of rare genetic disorders). Because we tightly filtered based 

on PCA these differences do not affect our results.

Phasing and imputation

After sample and variant quality control, we imputed European samples from all datasets in 

order to boost the coverage of the genome for association testing and to increase overlap of 

datasets genotyped on different chips. We used reference-based haplotype phasing and 

imputation. The discovery GWAS cohorts genotyped on the HumanCoreExome backbone 

were phased and imputed together using variants that intersected between the different 

versions of the chip. Trios were phased and imputed in a second batch because they were 

genotyped on a different chip. We phased and imputed the Australian GWAS data in a third 

batch, using variants that intersected between the CytoSNP-850K chip and the Illumina 

610K chip. None of the analyses in our paper were directly across batches, so there is no 

bias introduced by this approach. We used the Sanger Institute Imputation Service36 to carry 

out phasing and imputation on the DDD discovery dataset, DDD trios dataset and Australian 

dataset, using Eagle2 (v2.0.5)37 and PBWT38 respectively, selecting the Haplotype 

Reference Consortium as the reference panel (release 1.1, chr1-22, X) 36.
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Discovery GWAS of neurodevelopmental disorder risk

We carried out genome-wide association study for neurodevelopmental disorder risk in the 

discovery neurodevelopmental set of 6,987 cases and 9,270 controls of European ancestry-

only, using BOLT linear mixed models39 with sex as a covariate. We included in our analysis 

genotyped variants or high-confidence imputed variants (INFO≥0.9) with a MAF of ≥5%.

SNP heritability

From the discovery GWAS summary statistics, we removed the MHC region (chromosome 6 

region 26-34MB), and estimated trait heritability using LDSC8 in LD Hub40. Given the 

ascertainment of the DDD neurodevelopmental cases in this study, estimating the true 

population prevalence was not feasible. We therefore estimated single nucleotide 

polymorphism (SNP) heritability for our discovery GWAS on the liability scale for a range 

of prevalences between 0.2% and 2%, and found that SNP heritability varies from 5.5% 

(SE=1.5%) to 9.1% (SE=2.5%). We report heritability assuming a prevalence of 1% in the 

population. Heritability on the observed scale in our discovery GWAS was 13.8% 

(SE=3.7%).

Polygenic transmission disequilibrium test

We used the pTDT method, described in11, to investigate transmission disequilibrium of 

effect alleles for traits within DDD trios, using imputed genotype data. Briefly, the test 

compares the means of two polygenic score distributions: one comprising of scores of the 

probands, and the other of the average parent-pair scores. The test is equivalent to a one-

sample t-test, assessing whether the mean of score distribution in probands deviates from the 

mean of parent-pair score average. We report a one-sided p-value for over-transmission.

Genetic correlation

We carried out genetic correlation of the neurodevelopmental disorder risk discovery GWAS 

against multiple published traits using bivariate LDSC14. For traits included in LD Hub we 

used the online server, and for traits not included in LD Hub we used the LDSC software. 

For genetic correlation with neurodevelopmental disorder risk, we pre-selected a range of 

different types of traits and diseases: traits relating to cognitive performance, education, 

psychiatric traits and diseases, anthropometric traits and non-brain related traits and 

diseases. Ninety-five percent confidence intervals in Figure 3 are shown before correction 

for multiple testing. We set the significance threshold to p<0.0026 (0.05/19 tests).

Partitioned heritability

We used partitioned LDSC17 to look for enrichment of heritability in cell type groups and 

functional genomic categories. To do this we used the baseline model LD scores and 

regression weights available online. For cell type groups and functional categories we set the 

significance threshold to P<0.005 (0.05/10 tests) and P<9.6x10-4 (0.05/52 tests), 

respectively.
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Polygenic scores

We constructed polygenic scores using summary statistics from our neurodevelopmental 

disorder risk GWAS and seven published GWAS (educational attainment15, intelligence16, 

schizophrenia41, autism9, intracranial volume42, height43 and birth weight44). For all traits, 

we included only variants that had a MAF≥5% and were directly genotyped or imputed with 

high confidence (INFO≥0.9) in the respective study cohort (discovery case-control, trios or 

Australians). To construct the polygenic scores for individuals, we then multiplied the 

variant effects (betas) with the individual’s allele counts. For imputed variants, we used 

genotype probabilities rather than hard-called allele counts. To find independent variants for 

our scores, we pruned variants intersecting the original study summary statistics and our 

GWAS data using PLINK, by taking the top variant and removing variants within 500kb and 

that have r2≥0.1 with the top variant. We then repeated the process until no variant had a P-

value below a pre-defined threshold, which we based on prior knowledge of variance in the 

phenotype explained. For the neurodevelopmental disorder risk score, we tested seven P-

value thresholds (P<1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001) and chose the one which resulted in 

a score that explained the most variance (Nagelkerke’s R2) in case/control status in an 

independent subset of DDD patients. Specifically, we repeated our neurodevelopmental 

disorder risk GWAS having removed a random subset of 20% of cases and controls, then 

calculated a score in this leave-out subset, and performed a logistic regression to assess 

association of case-control status with the score. The threshold P<1 performed best in ten 

independent permutations, and we used this threshold to construct scores in pTDT and 

Australian case-control analyses. We additionally tested all seven thresholds when 

constructing scores in the Australians, however varying the threshold did not change our 

results. When deciding the P-value thresholds for published GWAS, we used the threshold 

that had been found to explain the most variation in other published studies for the trait 

(years in education P<145, intelligence16, schizophrenia P<0.0541, autism P<0.111). For 

traits which we had phenotype data for in the DDD, we used thresholds that explained the 

most variation in DDD cases (intracranial volume P<1, birth weight P<0.01, height 

P<0.005). Thresholds and the number of variants used for each score are shown in Extended 

Data Tables 3-5. All scores were normalised to a mean of 0 and variance of 1. To test for 

association between trait and score, we used R (version 1.90b3) to perform logistic 

regression for binary traits and linear regression for quantitative traits, including the first ten 

principal components from the ancestry PCA to control for possible population stratification.

In order to assess power for detecting differences in scores between diagnosed and 

undiagnosed patients, we tested the hypothesis that diagnosed patients were effectively a 

random sample of controls with respect to their polygenic scores. Specifically, we randomly 

sampled 1,127 controls (i.e. the same number as we had diagnosed patients) and compared 

the polygenic scores between them and the undiagnosed patients using logistic regression. 

We repeated this 10,000 times and determined the proportion of times we detected a 

significant difference P<0.007 (P<0.05/7 correcting for seven polygenic scores) as proxy for 

power. For educational attainment, this was 99.1% of simulations, 93.6% for schizophrenia, 

and 61.2% for intelligence.
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We used AVENGEME46 to calculate power to find significant association (at P<0.05) 

between our polygenic score for neurodevelopmental disorders and case/control status in the 

Australian dataset. We assumed that the SNP heritability is the same (7.7%) in both the 

Australian and British cohorts, and that the genetic correlation between them was 1.

The schizophrenia PGC-CLOZUK study included some controls from the Australian cohort 

used in our study, and therefore we ran polygenic score analyses in the Australians using 

summary statistics from PGC-CLOZUK (obtained through personal communication from A. 

Pardinas) after these samples had been removed.

Subsetting the DDD cohort

We defined a set of patients with an exonic diagnosis and a set with no likely diagnostic 

variants. This was based on the clinical filtering procedure described in6, which focuses on 

identifying rare, damaging variants in a set of genes known to cause developmental disorders 

(https://www.ebi.ac.uk/gene2phenotype/), that fit an appropriate inheritance mode. Variants 

that pass clinical filtering are uploaded to DECIPHER, where the patients’ clinicians classify 

them as “definitely pathogenic”, “likely pathogenic”, “uncertain”, “likely benign” or 

“benign”. This process of clinical classification is necessarily dynamic as new disorders are 

identified and patients manifest new phenotypes. Our “diagnosed” set consists of 1,127 

patients who fulfilled one of these criteria: a) amongst the diagnosed set in a recent 

reanalysis of the first 1,133 trios47, or b) had at least one variant (or pair of compound 

heterozygous variants) rated as “definitely pathogenic” or “likely pathogenic” by a clinician, 

or c) had at least one variant (or pair of compound heterozygous variants) in a class with a 

high positive predictive value that passed clinical filtering but had not yet been rated by 

clinicians. We considered de novo or compound heterozygous loss-of-function (LoF) 

variants to have high positive predictive value, since of the ones that had been rated 

clinicians, 100% of compound heterozygous LoFs and 94.% of de novo LoFs had been 

classed as “definitely” or “likely pathogenic”. Our “undiagnosed” set consists of 2,479 

patients who had no variants that passed our clinical filtering, or in whom the variants that 

had passed clinical filtering had all been rated as “likely benign” or “benign” by clinicians, 

or who were amongst the “undiagnosed” set in the first 1,133 trios that have previously been 

extensively clinically reviewed6. Note that our diagnosed versus undiagnosed analysis 

excludes 3,375 patients who had one or more variants that passed clinical filtering in a class 

with a relatively low positive predictive value, but that have not yet been rated by clinicians.

We defined patients to present with autistic behaviours if their phenotype included autistic 

behaviour (HP:0000729) or any of its daughter nodes. We defined patients as having “mild/

moderate intellectual disability or delay” if their HPO phenotypes included borderline, mild 

or moderate intellectual disability (HP:0006889, HP:0001256, HP:0002342) and/or mild or 

moderate global developmental delay (HP:0011342, HP:0011343). Patients were included in 

the “severe ID or delay” set if they had severe or profound intellectual disability (HP:

0010864, HP:0002187) and/or severe or profound global developmental delay (HP:0011344, 

HP:0012736). We excluded patients with ID or global developmental delay of undefined 

severity.
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Extended Data
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Extended Data Figure 1. Ancestry principal components analysis of UK and Australian samples.
Reference samples (N=2,504) from 1000 Genomes Phase 3, coloured by the five super 

populations, used for a projection PCA of (a) UK cohorts (DDD and UKHLS), or (b) 

Australian cohorts c, All DDD cases (discovery N=11,304 and from trios N=930), and d, all 

Australian cases (N=2,283) from their respective projection PCA with 1000 Genomes. Case 

samples with European ancestry are plotted in red and non-Europeans in grey. e, All 

UKHLS controls (N=10,396) and f, all Australian controls (N=4,274) from their respective 

projection PCA with 1000 Genomes. Control samples with European ancestry are plotted in 
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blue and non-Europeans in grey. All cases and controls coloured in grey (panels c, d, e and f) 

were excluded from analysis due to non-European ancestry. UK cohorts are plotted after 

removal of samples that failed quality control, and Australian cohorts before removal of 

samples failing quality control.
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Extended Data Figure 2. Discovery GWAS of neurodevelopmental disorder risk.
a. Manhattan plot of neurodevelopmental disorder discovery GWAS, with 6,987 DDD cases 

and 9,270 ancestry-matched UKHLS controls (both European ancestry), using 4,134,438 

variants MAF≥5% chr1-22. P-values were from a two-tailed chi squared distribution. Red 

line = threshold for genome-wide significance (P=5x10-8). b. Quantile-quantile plot of 

neurodevelopmental disorder discovery GWAS. Red line = expected values under the null.
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Extended Data Figure 3. Ancestry principal components analysis of UK and Australian samples 
(PCs 2-5).
Reference samples (N=2,504) from 1000 Genomes Phase 3, colored by the five super 

populations, are plotted on the left hand side, from projection PCAs with UK cohorts. 

Middle panels show the PCs plotted for DDD cases (discovery N=10,556 and from trios 

N=911) (UK samples) and Australian cases (N=2,283). Red=European ancestry case 

samples, grey=non-European samples, which were excluded from analyses. Right hand 

panels show PCs for UKHLS controls (N=10,396) (UK samples) and Australian controls 

(N=4,274). Blue=European ancestry control samples, grey=non-European samples, which 
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were excluded from analyses. UK cohorts are plotted after removal of samples that failed 

quality control, and Australian cohorts before removal of samples that failed quality control.

Extended Data Table 1
Proportions of neurodevelopmental disorder patients 
who have at least one HPO term belonging to a 
particular organ system category.

Organ system % All DDD patients (N=13,558) % unrelated DDD patients, GBR ancestry 
(N=6,987)

Nervous system 87 100

Head or neck 68.9 71.2

Skeletal system 61.7 61.8

Limbs 35.1 35.3

Eye 34.9 35.3

Integument 31.2 31.9

Ear 20.1 19.7

Digestive system 20 19.1

Musculature 19.9 18.7

Cardiovascular system 15.1 13.5

Genitourinary system 12.4 11.4

Respiratory system 8.1 7.3

Connective tissue 7.4 6.3

Immune system 6.8 6.5

Endocrine system 4.1 4.1

Metabolism homeostasis 4.1 4

Breast 3.7 3.7

Blood and blood forming tissues 2.1 2.1

Voice 1.1 1.1

The HPO tree descends from “phenotypic abnormality”, through different organ systems, down to specific terms describing 
particular phenotypes. Each HPO term used by clinicians to describe patients was traced up the tree to the organ system 
level. However, some HPOs may belong to more than one organ system category: for example, microcephaly will be 
counted under "nervous system", "head or neck" and "skeletal system" in the HPO tree, whilst global developmental delay 
will only appear under "nervous system".
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Extended Data Table 3
Polygenic score analyses comparing 1,266 Australian 
neurodevelopmental cases and 1,688 controls.

Polygenic score parameters Results
a

  Polygenic score r2 for SNP 
pruning

P-value 
threshold for 
SNP pruning

Number of 
SNPs in 

score
Beta Standard 

error P-value

Educational attainment 
(SSGAC, 2018) 0.1 1 92,091 -0.218 0.038 9.97x10-9

Height (Wood et al., 2014) 0.1 0.005 9,809 -0.155 0.04 8.84x10-5

Intelligence (Sniekers et al., 
2017) 0.1 0.05 21,551 -0.126 0.038 7.61x10-4

Schizophrenia (QIMR 
removed) (Pardinas et al., 
2018)

0.1 0.05 23,878 0.092 0.038 0.014

Intracranial volume (Adams 
et al., 2016) 0.1 1 90,928 -0.078 0.038 0.041

Autism (Grove et al., 2017) 0.1 0.1 26,846 0.07 0.038 0.063

Birth weight (Horikoshi et 
al., 2016) 0.1 0.01 6,828 -0.062 0.038 0.098

Developmental disorder risk 
(discovery GWAS) 0.1 1 67,001 -0.047 0.038 0.212

a
Logistic regression of case/control status on polygenic score using 10 ancestry principal components as covariates. P-

values are uncorrected, two-sided, and from z-score distribution.

Extended Data Table 4
Polygenic score analyses comparing DDD patients with 
an exome diagnosis (N=1,127) against undiagnosed 
patients (N=2,479).

Parameters Results
a

Polygenic score 
trait

r2 for SNP 
pruning

P-value 
threshold for 
SNP pruning

Number of 
SNPs in score Beta Standard 

error P-value

Educational 
attainment 0.1 1 79,292 0.08 0.037 0.028

Intelligence 0.1 0.05 19,387 0.063 0.036 0.08

Schizophrenia 0.1 0.05 21,321 0.017 0.036 0.644

Autism 0.1 0.1 23,648 -0.077 0.036 0.032

Intracranial volume 0.1 1 76,788 4.98x10-3 0.036 0.891

Birth weight 0.1 0.01 6,212 1.54x10-3 0.036 0.966

Height 0.1 0.005 9,019 1.34x10-3 0.036 0.971

a
Logistic regression of diagnosed/undiagnosed status on polygenic score using 10 ancestry principal components as 

covariates. P-values are uncorrected, two-sided, and from z-score distribution.
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Extended Data Table 5
Polygenic score analyses in DDD patients for measured 
traits.

Score parameters Results
a

Measured trait Polygenic 
score

r2 for 
SNP 

pruning

P-value 
threshold 
for SNP 
pruning

Number 
of SNPs 
in score

Beta Standard 
error P-value R2

Birth weight 
(N=6,496) Birth weight 0.1 0.01 6,212 0.187 0.017 2.55x10-28 0.02

Height 
(N=5,465) Height 0.1 0.005 9,019 0.408 0.033 1.18x10-35 0.033

Head 
circumference 
(N=6,074)

Intracranial 
volume 0.1 1 76,788 0.132 0.031 1.79x10-5 0.004

Autistic 
behavior: 
affected 
(N=1,121), 
unaffected 
(N=5,866)

Autism 0.1 0.1 23,648 0.12 0.033 2.53x10-4 0.006
c

Developmental 
delay or 
intellectual 
disability: severe 
(N=911), mild/
moderate 
(N=1,902)

b

Educational 
attainment 0.1 1 79,292 0.116 0.04 0.004 0.008

c

a
Linear or logistic regression on polygenic score using 10 ancestry principal components as covariates. P-values are 

uncorrected, two-sided, and from t-distribution (linear) and z-score distribution (logistic).
b
Severe cases were labelled as 1 in the logistic regression.

c
Nagelkerke R2.
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Figure 1. Outline of analysis exploring the contribution of common variants to risk of severe 
neurodevelopmental disorders.
We first conducted a discovery GWAS in a large dataset of neurodevelopmental disorder 

patients, and replicated the common variant contribution by analysing polygenic 

transmission in independent trios from the same cohort. Next, we looked for overlap of 

common variant effects between neurodevelopmental disorder risk and other published 

GWAS, and replicated these findings in an independent Australian cohort. Finally, we 

explored how polygenic effects were distributed within our discovery patient cohort, and 

whether common variants contributed to expressivity of specific phenotypes.
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Figure 2. Patients recruited to the DDD study have diverse phenotypes.
A. Examples of specific phenotypes affecting different organ systems, observed in the full 

DDD cohort and the neurodevelopmental subset of patients. B. Distribution of the number of 

distinct organ systems affected in the set of 6,987 patients with neurodevelopmental 

abnormalities (Methods).
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Figure 3. Genetic correlations between neurodevelopmental disorder risk (6,987 cases and 9,270 
controls) against nineteen other traits.
Cognitive/psychiatric (purple), anthropometric (orange) and negative control traits (green), 

with SNP heritability (h2) displayed for the trait. SNP heritability for dichotomous traits is 

displayed on the liability scale. Genetic correlation was calculated using bivariate LD score 

correlation14, with the bars representing 95% confidence intervals (using standard error) 

before correction for multiple testing. Uncorrected P-values are from a two-sided z-score, 

and are only shown if they pass Bonferroni correction for 19 traits. Sample sizes for 19 other 

GWAS are shown in Extended Data Table 2.
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Table 1
Polygenic score analyses in the DDD Study.

Results
a

Measured trait     Polygenic score Beta Standard error P-value R2

Birth weight (N=6,496) Birth weight 0.187 0.017 2.55x10-28 0.02

Height (N=5,465) Height 0.408 0.033 1.18x10-35 0.033

Head circumference (N=6,074) Intracranial volume 0.132 0.031 1.79x10-5 0.004

Autistic behavior: affected (N=1,121), unaffected (N=5,866) Autism spectrum disorder 0.12 0.033 2.53x10-4
0.006 

c

Developmental delay or intellectual disability: severe 

(N=911), mild/moderate (N=1,902) 
b Educational attainment 0.116 0.04 0.004 0.008 

c

a
Linear or logistic regression of measured traits in the DDD Study against the respective polygenic score, including ten ancestry principal 

components as covariates. P-values are two-sided, from t-distribution (linear) and z-score distribution (logistic).

b
Severe cases were labelled as 1 in the logistic regression.

c
Nagelkerke R2
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