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Abstract

Background: There is substantial variation in breast cancer survival rates, even among patients 

with similar clinical and genomic profiles. New biomarkers are needed to improve risk 

stratification and inform treatment options. Our aim was to identify novel miRNAs associated with 

breast cancer survival, and quantify their prognostic value after adjusting for established clinical 

factors and genomic markers.

Methods: Using the Women’s Healthy Eating and Living (WHEL) breast cancer cohort with > 

15-years of follow-up and archived tumor specimens, we assayed PAM50 mRNAs and 25 

miRNAs using the Nanostring nCounter platform.

Results: We obtained high quality reads on 1253 samples (75% of available specimens), and 

used an existing research-use algorithm to ascertain PAM50 subtypes and risk scores (ROR-PT). 

We identified miRNAs significantly associated with breast cancer outcomes, and then tested these 

in independent TCGA samples. MiRNAs that were also prognostic in TCGA samples were further 
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evaluated in multiple regression Cox models. We also used penalized regression for unbiased 

discovery.

Conclusions: Two miRNAs, 210 and 29c, were associated with breast cancer outcomes in the 

WHEL and TCGA studies, and further improved risk stratification within PAM50 risk groups: 10-

year survival was 62% in the node-negative high miRNA210-high ROR-PT group versus 75% in 

the low miRNA 210 -high ROR-PT group. Similar results were obtained for miRNA 29c. We 

identified three additional miRNAs, 187–3p, 143–3p, and 205–5p via penalized regression.

Impact: Our findings suggest that miRNAs might be prognostic for long-term breast cancer 

survival, and might improve risk stratification. Further research to incorporate miRNAs into 

existing clinico-genomic signatures is needed.
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INTRODUCTION

MicroRNAs (miRNA) are small non-coding RNAs that post-transcriptionally regulate the 

expression of their target genes (1). MiRNAs are involved in cell differentiation, regulation, 

and apoptosis, and miRNA dysregulation impacts development and progression of many 

cancers, including breast cancer (2–9). MiRNAs can have tumor suppressing or tumor 

promoting roles, and these functions may differ depending on tumor histopathology (8, 9).

In recent years, the potential of dozens of miRNAs for diagnosis, treatment response 

prediction, and prognosis of breast cancer have been studied (5, 8, 10–14); however, few 

have been examined in cohorts with long term follow-up. Currently, there are several well-

established clinical prognostic factors for breast cancer survival, such as tumor size, nodal 

status, grade and histopathology (15), and a few genomic signatures e.g., Oncotype DX, 

Mammaprint (16–19), ProSigna (20, 21), and the research-based PAM50 signature (22–24). 

However, even with the existing clinico-genomic tools, an estimated 25–35% of breast 

cancer patients are classified as intermediate risk (20, 21, 25–27), and for these patients, the 

long-term risk of relapse remains uncertain. Thus, identifying novel biomarkers such as 

miRNAs that independently predict breast cancer outcomes could lead to better risk 

stratification and possibly improve treatment management strategies, potentially sparing 

aggressive chemotherapy for some, while offering targeted therapies for others.

In this study, we used >1200 archived tumor samples from the Women’s Healthy Eating and 

Living (WHEL) breast cancer cohort with 15+ years of follow-up (28), to investigate 25 

miRNA predictors of long-term disease-free survival and breast cancer mortality. We 

developed models which included standard clinical factors and a research-use published 

PAM50 signature (29), as well as new miRNA features. We adopted two statistically 

rigorous complementary paradigms. First, we used an external validation approach in which 

we tested the prognostic value of the 25 miRNAs using the publicly available TCGA 

database (30); miRNAs that were prognostic in the WHEL samples and independently 

prognostic in TCGA database were considered hits, and evaluated for prognostic value over 
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and above clinical factors and PAM50 subtypes. Second, we implemented an unbiased 
approach via penalized regression to select the most prognostic features from among clinical 

factors, PAM50 subtypes, and 25 individual mRNAs. In summary, the first approach is 

similar to the usual model building methods to evaluate the incremental effects of new 

candidate predictors, after adjusting for known prognosticators. However, we imposed 

stringent criteria for inclusion in multivariate models, namely requiring independent 

validation via TCGA. The second penalized regression method, by including all variables 

simultaneously rather than incrementally, has the potential to discover new features but 

avoids overfitting via a penalty term.

MATERIALS and METHODS

Study Sample

The Women’s Healthy Eating and Living (WHEL) Study was a randomized-controlled 

dietary secondary prevention trial of 3088 early stage breast cancer survivors (28, 31). 

Women were recruited between 1995 and 2000, and were eligible provided they were within 

four years of diagnosis of their primary operable invasive Stage I (≥ 1 cm), Stage II or Stage 

III breast carcinoma (28), were aged 18 to 70 years at diagnosis, and had completed primary 

treatment for breast cancer. Details on inclusion and exclusion criteria are provided in Pierce 

et al. (2002) (28).

An archival, formalin-fixed, paraffin-embedded (FFPE) block of breast tumor tissue was 

solicited from local hospitals for each WHEL participant. Blocks were sent to the WHEL 

Study Coordinating Center, where the Histology Core Lab at the UC San Diego Cancer 

Center cut ten unstained slides (5μm each) and one hematoxylin and eosin (H and E)-stained 

slide. Each unstained slide was dipped in paraffin for preservation before storage. The study 

pathologist reviewed each pathology report with the accompanying H and E slide to confirm 

that invasive tumor was present on the slide that corresponded to the tumor described in the 

participant’s pathology report. On occasion, the block sent to the coordinating center did not 

contain invasive tumor. In such cases, the unsuitable block was returned, the pathology 

report was reviewed and another block was requested. FFPE tissue from the primary tumor 

were available for 56% (n = 1723) of the WHEL cohort. The final analysis for this 

investigation was based on 1253 participants. As the dietary intervention produced no 

treatment effect (31), we treated the study population as a single cohort. We obtained IRB 

approval from participating institutions, and written informed consent from all participants, 

that included consent for genomic analysis.

Study Endpoints

In the current study, we evaluated two primary outcomes (i) a breast cancer event 

(locoregional recurrence, metastasis, or contralateral), and (ii) death from breast cancer. We 

also considered overall survival, i.e., death from any cause, as a secondary endpoint. Events 

were independently adjudicated by two breast oncologists. Carcinoma in situ was not 

counted as a breast cancer event. The WHEL study ceased active surveillance for cancer 

events in 2010, since then, deaths were ascertained via annual searches of the National 

Death Index. Time from diagnosis to a second breast cancer event defined the disease-free 
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survival outcome; time from diagnosis to breast cancer death defined the breast-cancer-

survival outcome. Time-to-event was censored at death (from non-breast-cancer causes), last 

contact, or end-of-follow up (2010 for breast cancer events, 2015 for death).

Nucleic Acid Extraction

The H and E stained slide was used for histopathological review and to guide tumor 

macrodissection of sections from four unstained slides. The unstained slides from samples 

with ≥ 40% tumor cellularity were incubated at 65 °C for 30 minutes and deparaffinized 

using Citrisolv (Fisher Scientific, Pittsburgh, PA) followed by ethanol wash. Tumor tissues 

were macrodissected from the slides into RNAse-free microfuge tubes, and nucleic acids 

isolated using the Qiagen AllPrep FFPE kit (#80234). Manufacturer’s instructions were 

followed with the exception that the proteinase K digestion step was extended to an 

overnight incubation for the DNA isolation. Total RNA and DNA were quantified using the 

Invitrogen Qubit and corresponding quantification kits. Total RNA was used for the miRGE 

assay (see below). DNA pellets were stored at −80° C for future use.

mRNA and miRNA quantification

Transcript expression was quantified with 250 ng of total RNA using the NanoString 

nCounter analysis system with a custom miRGE CodeSet which included probes for 55 

PAM50 genes (including 5 housekeepers) and 25 miRNA targets (Table S1). The choice of 

miRNA targets was based on a review of the literature for promising targets at the time of 

initiation of the WHEL-genomic substudy. In particular, 25 miRNAs (Table S1) were 

identified as prognostic for breast cancer in studies with moderate-to-large sample-sizes 

from published reports (1, 2, 12, 32–34). Probe selection (miRNA) for the custom miRGE 

Codeset was determined through screening a set of well-characterized breast cancer tumor 

samples using the Nanostring Human miRNA assay V2.1 panel that included 800 targets. 

Positive and negative controls were also included, and assay reactions were assembled per 

manufacturer’s specifications (NanoString Technologies, INC Seattle, WA).

Statistical approach

Normalization and data processing—MiRNA expression values were normalized 

using geometric means of the two miRNA positive controls to eliminate assay technical 

variation, and then subtracting the maximum value of eight mRNA negative controls to 

eliminate background effect. Expression values were log2 transformed to reduce skewness 

and quantile normalized to reduce batch effects. As sensitivity analysis, normalization was 

also conducted using three different sets of housekeepers: the five mRNA housekeepers used 

to normalize the mRNA values, five most highly expressed miRNAs, and also three putative 

housekeeper miRNAs with very high expression values and low standard deviations; results 

were consistent across normalization methods (35, 36).

Expression of the 50 PAM50 mRNAs were normalized to negative and positive controls, and 

standardized to five housekeepers, per standard practice (29). The published PAM50 

algorithm (29) was used to classify each subject into an intrinsic subtype: Luminal A, 

Luminal B, basal-like, Her2-enriched, normal-like. Prior to implementing this algorithm, 
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mRNA values were platform-adjusted (37). Risk-of-recurrence (ROR-PT) scores were 

calculated (29) and categorized into low, medium and high risk strata.

Individual miRNA and breast cancer outcomes—Associations between individual 

miRNAs and breast cancer outcomes were investigated in Cox models with and without 

adjustment for tumor characteristics (i.e., tumor stage, tumor grade, and age at diagnosis). 

Cox models with delayed entry were used to account for varying times from cancer 

diagnosis to study entry. Hazard ratios and 95% confidence interval were computed, and 

correspond to the increase in (log)-hazard per 1-unit change in log2 of the miRNA value or 

equivalently the change in (log)-hazard for doubling of the miRNA level. Proportional 

hazards assumptions were assessed using scaled Schoenfeld residuals. We also used 

Bonferroni correction for multiple comparisons when evaluating 25 miRNAs, and present 

the corrected and uncorrected results.

External validation of prognostic miRNA—To assess reproducibility of WHEL 

miRNAs findings, we downloaded TCGA miRNA data for patients with primary breast 

cancer through bioconductor TCGA Biolinks (30). Similar to WHEL samples, TCGA 

miRNAs were log2 transformed and normalized; delayed entry Cox models were used to 

assess the association between miRNAs and disease- free survival, time to breast cancer 

related death or time to overall survival within the TCGA samples.

Additional prognostic value of TCGA-validated miRNAs in clinico-genomic 
models—After adjusting for standard clinical features (i.e., tumor stage, tumor grade, and 

age at diagnosis), we identified miRNAs that were prognostic in both the WHEL and TCGA 

analysis. These miRNAs were then added to models that included PAM50 subtypes and 

standard clinical features in the WHEL cohort. To assess potential clinical utility, Kaplan-

Meier curves and score tests were used to examine if these miRNAs further delineated 

PAM50 ROR-PT risk categories, using the median miRNA values to further divide the ROR-

PT risk strata. Thus, rather than adjustment for multiple comparisons and the attendant loss 

in power, we implemented a rigorous external validation framework for testing predictive 

value of the miRNAs over and above PAM50 subtypes.

Unbiased selection and internal validation—To examine all the prognostic factors on 

an equal footing and implement unbiased variable selection, we used penalized regression. 

We included all variables: clinical factors, PAM50 subtypes, and 25 individual miRNAs in 

the initial model and used a lasso method for variable selection within the Cox regression 

(38). The tuning parameter λ was chosen by 10-fold cross-validation to minimize model 

deviance.

In summary, given the moderately large set of miRNAs, we used two complementary 

methodological approaches for selecting miRNAs for further multivariate analysis. The first 

method used external validation, and only those miRNAs that were also prognostic in TCGA 

samples, were evaluated for their incremental prognostic value, after adjusting for clinical 

features and PAM50 subtypes. The second approach used penalized regression (lasso) with 

all variables included in the model and used cross-validation for feature selection, thus 

implementing stringent variable selection within the WHEL cohort. Furthermore, the 
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penalized approach examines all predictors simultaneously and could potentially discover 

new features.

RESULTS

FFPE Samples

Of the 1723 FFPE samples, 25% had low tumor cellularity or low RNA content prohibiting 

further analysis. Gene expression was obtained on 1291 samples; of these, 38 were 

eliminated due to outliers or poor quality reads, resulting in a final sample of N = 1253 for 

statistical analysis.

Clinical and Demographic characteristics

The distribution of demographic and clinical characteristics in the WHEL genomic substudy 

were similar to those in the parent study (N = 3088) (31). Women in the substudy were 

median 50 years at cancer diagnosis, 85% were White, 36% had Stage I and 46% Stage II 

tumors, three-quarters had ER+ histopathology, and 16% had triple negative histopathology 

(Table 1). There were 303 breast cancer events (locoregional recurrence, metastasis, or 

contralateral breast cancer), 219 deaths due to breast cancer, and 316 total deaths

Prognostic value of individual miRNAs for disease-free survival, breast cancer survival 
and overall survival

We examined associations between each of the 25 miRNAs and outcomes, after adjusting for 

stage, grade, and age at diagnosis (Table 2). The statistically significant results with HR 

(95% CI) were as follows: three miRNAs were significantly associated with disease-free 

survival, namely, miRNA 27b-3p: 1.13 (1.01, 1.27), miRNA 210–3p: 1.1 (1.01, 1.2), and 

miRNA 143–3p: 1.23 (1.08, 1.41); six miRNAs were associated with breast cancer free 

survival, namely, miRNA 150–5p: 0.91 (0.84, 0.99), miRNA 16–5p: 1.18 (1.02, 1.37), 

miRNA 205–5p: 0.93 (0.88, 0.99), miRNA 29c-3p: 1.2 (1.05, 1.37), miRNA 27b-3p: 1.2 

(1.04, 1.38), miRNA 143–3p: 1.28 (1.1, 1.51); and four miRNAs were associated with 

overall survival, namely, miRNA 150–5p: 0.93 (0.87, 0.99), miRNA 29c-3p: 1.19 (1.07, 

1.33), miRNA 187–3p: 1.09 (1.01, 1.17), miRNA 143–3p: 1.14 (1, 1.3)). Of these, the 

associations of miRNA 143–3p with disease-free and breast cancer survival, and miRNA 

29c-3p with overall survival were still significant after Bonferroni correction for 25 miRNA 

tests. Unadjusted associations between each of the 25 miRNAs and each breast cancer 

outcome were similar to the adjusted analysis and are displayed in Figure S1.

External validation with TCGA

We next evaluated the prognostic value of each of the 25 miRNAs for each breast cancer 

outcome using TCGA database (30). To ensure comparability with WHEL samples, we only 

included early stage (I, II, III) TCGA breast cancer samples, resulting in a total TCGA 

sample-size of 1034. The median age at diagnosis of TCGA participants was 58 (range: 26–

90) years; 76.4% had stages I and II, 73.8% were ER+, 64% were PR+, 14.9% were Her2+ 

and 10.4% were triple negative. These characteristics were comparable to the WHEL 

genomics substudy (Table 1). In TCGA samples, there were 171 breast cancer recurrences, 

and 123 deaths with 63 known breast cancer specific deaths.
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In TCGA analysis, after adjustment for age and stage, four miRNAs, namely 1246, 135a.2, 

210, and 29c, were significantly associated with the three survival outcomes, and miRNA 

342 was associated with breast-cancer- and overall-mortality at the 5% significance level 

(Table S2). Of these, miRNA 210 and miRNA 29c were also significantly prognostic in the 

WHEL cohort (Table 2). Complete results for all miRNAs are presented in Table S2 and 

Figure S1.

Added Prognostic value of TCGA-validated miRNAs in the WHEL Study

Using the WHEL cohort, we next examined TCGA-validated miRNAs, 210 and 29c, in 

multiple regression Cox models, after adjusting for clinical factors, and PAM50 subtypes; 

separate multiple regression models were fit for miRNA 210 and miRNA 29c (Table 3). As 

expected tumor stage was strongly associated with survival outcomes with hazard ratios 

increasing from 1.26 to 6.26 as stage increased. After adjusting for stage, grade, and age at 

diagnosis, the luminal B subtype remained a significant prognostic factor with hazard ratio > 

1.5 in all models. The hazard ratio (95% CI) for miRNA 210 was 1.09 ((1, 1.2), p = 0.05) for 

disease-free survival, 1.07 ((0.96, 1.19), p=0.22) for breast cancer survival, and 1.04 ((0.95, 

1.13), p=0.4) for overall survival after adjusting for clinical variables and PAM50 subtypes. 

The hazard ratio (95% CI) for miRNA 29c was 1.08 ((0.95, 1.22), p = 0.22) for disease-free 

survival, 1.17 ((1.01, 1.37), p=0.04) for breast cancer survival and 1.16 ((1.02, 1.31), 

p=0.02) for overall survival after adjusting for clinical variables and PAM50 subtypes. Thus 

even if not consistently significant at the 5% level, the hazard ratios for these miRNAs were 

similar to their hazard ratios in the models that did not include PAM50 subtypes (Table 2), 

suggesting that these miRNAs are likely independent predictors of breast cancer outcomes.

ROR-PT categories, externally validated miRNA, and survival

To assess potential clinical utility, we tested if TCGA-validated miRNAs could further 

discriminate PAM50 ROR-PT risk categories. For this analysis, we dichotomized each 

miRNA at the median value, and used Kaplan Meier curves and score statistics to compare 

survival rates in the ROR-PT by miRNA categories. Based on the model results (Table 3), 

we evaluated miRNA 210 for disease-free survival, and miRNA 29c for breast cancer 

survival. Figure 1 gives the Kaplan-Meier curves for ROR-PT*miRNA categories stratified 

by nodal status. In the node-negative stratum (Figure 1 top), miRNA 210*ROR-PT groups 

had significantly different survival rates (p < 0.001): women with high miRNA 210 levels 

and high ROR-PT scores had notably worse disease-free survival (10-year rate 62%) 

compared to those with low miRNA 210 levels and high ROR-PT scores (10-year survival 

75%). Similar results were observed for the node-positive group (Fig 1b), although survival 

differences across ROR-PT*miRNA 210 strata were marginally significant (p = 0.06). 

Interestingly, in the node-positive group, the ROR-PT-high + miRNA 210-low subgroup had 

similar survival to the ROR-PT medium risk group. Thus, miRNA 210 expression delineated 

risk for the ROR-PT high risk category, identifying a subgroup with very poor prognosis.

ROR-PT*miRNA 29c categories were significantly associated with breast cancer survival 

for node-negative (p < 0.001) and node-positive strata (p = 0.006). For the node-negative 

high ROR-PT group (Figure 1 bottom), low levels of miRNA 29c were associated with 

higher survival rates compared to those with high miRNA 29c levels (10-year survival rate 
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91% versus 72%). Interestingly, for the node-positive ROR-PT medium risk group, those 

with low miRNA29c levels had similar survival rates to the node-positive low-ROR-PT risk 

group, suggesting that miRNA 29c was able to identify a low-risk phenotype within the 

ROR-PT medium risk category.

Unbiased selection with internal validation Results

Variable selection models were built via lasso penalized regression to predict disease-free 

survival, breast cancer related survival and overall survival. Candidate predictors included 

age at diagnosis, tumor stage, tumor grade, PAM50 subtypes and 25 miRNAs. Tumor stage 

and PAM50 subtypes were consistently selected across the outcomes. No miRNAs were 

selected for disease free survival. For breast cancer survival the selected miRNAs with HR 

(95% CI) after adjusting for stage, grade, and PAM50 subtype were: miRNA 143 1.31 (1.12, 

1.54), p < 0.001, and miRNA 205 0.95 (0.89, 1.01), p=0.09. For overall survival, miRNA 

29c 1.16 (1.02, 1.32) p=0.02, and miRNA 187 1.09 (1.01, 1.17) p=0.02 were selected. We 

note that the 95% CIs do not account for the variable selection and should be interpreted 

with caution. The estimated HRs, however, do accurately reflect the predictive ability of the 

miRNA for breast cancer outcomes.

DISCUSSION

Despite major advances in clinico-genomic risk classification tools, there is still substantial 

variation in breast cancer relapse and survival rates in subgroups with similar risk profiles. 

New biomarkers are needed to improve risk stratification and inform treatment options, 

especially for women who are currently classified as having an intermediate-to-high risk of 

relapse. In this work, we identified two miRNAs, miRNA 210 and miRNA 29c, that were 

associated with breast cancer outcomes, after adjusting for tumor characteristics and the 

PAM50 molecular subtypes, in a large breast cancer cohort with > 15-years of follow-up.

MiRNA 210–3p has been extensively studied and is involved in breast cancer cell migration, 

proliferation and invasion (39). Concordant with our findings, miRNA 210 over-expression 

was associated with worse prognosis in multiple studies and systematic reviews (4, 5, 40–

42) and likely characterizes an aggressive phenotype. The miRNA 29 family is reported to 

exhibit both tumor suppressing and promoting roles in breast cancer (43–46). In our study, 

higher levels of miRNA 29c were associated with worse prognosis, in contrast to published 

findings in triple negative breast cancer, where higher miRNA 29c levels were associated 

with better prognosis (47–50). However, it is notable that < 16% of our sample had triple 

negative tumors which could explain discrepancies. Importantly, we found that both miRNA 

210 and miRNA 29c were able to improve risk stratification within ROR-PT categories, with 

miRNA 210 identifying a very high risk subgroup within the ROR-PT high risk stratum, and 

miRNA 29c delineating a low risk group in the ROR-PT medium risk category. These 

findings could inform treatment guidelines and research, e.g., developing new and targeted 

therapies for women with high miRNA 210-high ROR-PT disease, while possibly sparing 

aggressive therapies for women with low miRNA 29c-medium ROR-PT disease.

We also implemented an unbiased approach to discover novel markers. To maintain rigor 

and reduce overfitting, we used internally cross-validated, penalized regression in which all 
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clinical variables, miRNAs, and PAM50 subtypes were included as predictors. This analysis 

identified a robust, parsimonious prognostic set that included three additional miRNAs: 

miRNA 187–3p, miRNA 143–3p, and miRNA 205–5p. Higher levels of miRNAs 187–3p 

and 143–3p, and lower levels of 205–5p were associated with shorter survival times. 

MiRNA 205, an oncosuppressor, was previously reported to reduce invasion and was 

associated with better prognosis (5, 10). This is consistent with the marginally significant 

protective effect (HR=0.94) for breast cancer survival observed in our study. Also, similar to 

our results, miRNA 187 has been associated with breast cancer progression and worse 

survival (5, 51). Reports on the role of miRNA 143 in breast cancer are mixed (52), with 

several laboratory studies indicating a tumor suppressive effect (53–57), while others 

suggest tumorigenic effects (58). To our knowledge, our finding that miRNA 143 is 

associated with worse prognosis in long-term breast cancer survival after adjusting for 

clinical factors and PAM50 subtypes is novel and has not been reported previously.

We note that miRNA-outcome associations were not consistently statistically significant 

across the three outcomes in our WHEL analysis: e.g., miRNA 150 was significantly 

associated with breast-cancer and overall mortality, but not disease-free survival, whereas 

miRNA 27b was significantly associated with disease-free and breast-cancer survival but not 

overall survival. While determining reasons for these discrepancies is beyond our scope, we 

note that the estimated hazard ratios for all three outcomes were in the same direction, with 

similar effect-sizes in most cases. Also, there were discrepancies between the lists of 

prognostic miRNAs in the WHEL and TCGA samples. We conjecture that these could be 

due to different cohort characteristics (although we tried to match on key variables), and 

assay methodologies. More importantly, by focusing only on features that were prognostic in 

both cohorts, we required a higher level of replication, which should reduce spurious cohort-

specific findings. On the other hand, the penalized regression approach allowed us to 

discover new features in the WHEL cohort, which would need to be validated in the future. 

Given that there are not many studies with long-term follow-up that have evaluated miRNAs, 

we believe that both approaches provide useful and important information and add to the 

body of literature in this emerging field.

Our study has many strengths. The study sample comprised a large well-characterized 

clinical cohort with over 15 years follow-up. We obtained high-quality assays using the 

validated Nanostring platform. In addition, we used rigorous statistical approaches for 

identifying miRNA hits, model development and comparison. First, rather than using 

multiple testing correction, we used stringent external validation, and only considered 

miRNAs significant if they were also prognostic in the TCGA dataset. This should enhance 

reproducibility of our results, and reduce the chance of spurious findings. Second, we used 

cross-validated penalized regression methods for unbiased variable selection in our 

statistical models, which allows discovery of new features while at the same time reducing 

overfitting.

There are also limitations in our study. Our study cohort was diagnosed with breast cancer 

between 1991 and 2000, and did not receive current standard of care: women with Her2+ 

tumors did not receive adjuvant trastuzumab, and few postmenopausal women received 

adjuvant aromatase inhibitors. Additionally, the average interval from diagnosis to entry into 
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the WHEL Study was two years suggesting that women susceptible to early relapse, e.g., 

those with basal tumors, may have been under-represented in the WHEL sample. Selection 

against the basal subtype, which comprise primarily triple negative breast cancer, could 

partially explain why we did not observe a protective effect for miRNA 29c, a finding 

reported primarily for triple negative breast cancer (47).

In summary, using a large breast cancer cohort with > 15 years of follow-up, we identified 

five miRNAs that might be prognostic for breast cancer survival. In addition, our results 

suggest that miRNAs might identify high (or low) risk groups within PAM50-clinical risk 

score categories. If replicated in future studies, adding these miRNA targets to existing 

prognostic tools could lead to improved risk stratification, and ultimately, to better informed 

treatment decisions and clinical management for breast cancer patients.
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Figure 1: 
Kaplan-Meier survival plots of miRNA*ROR-PT categories by nodal status: miRNA 210 

(top), miRNA 29c (bottom)
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Table 1.

Demographic and clinical characteristics at study entry of the WHEL-genomics breast cancer substudy (N = 

1253)

Age at breast cancer diagnosis

 Median (range) 50 (27–70)

Race/Ethnicity N (%)

 White 1060 (84.6%)

 Black 45 (3.6%)

 Hispanic 85 (6.8%)

 Asian 31 (2.5%)

 Other 32 (2.6%)

Stage N (%)

 I 453 (36.2%)

 IIA 432 (34.5%)

 IIB 144 (11.5%)

 IIIA 166 (13.2%)

 IIIC 58 (4.6%)

Nodal status N (%)

 Negative 702 (56%)

 Positive 551 (44%)

Tumor size (cm)

 Mean (SD) 2.3 (1.44)

Grade N (%)

 Poorly differentiated 497 (39.7%)

 Moderately differentiated 496 (39.6%)

 Well differentiated 159 (12.7%)

 Unspecified 101 (8.1%)

Histopathology N (%)

 ER+ 909 (73.7%)

 PR+ 809 (66.4%)

 Her2+ 217 (17.3%)

 Triple negative 199 (15.9%)

Years diagnosis to study entry

 Median (25th, 75th%-iles) 1.8 (1.03, 2.8)

Chemotherapy and Anti-estrogen therapy N (%)

 Yes, Yes 590 (47.1%)

 Yes, No 314 (25.1%)

 No, Yes 258 (20.6%)

 No, No 76 (6.1%)
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 Yes, Unknown 5 (0.4%)

 No, Unknown 9 (0.7%)

Outcomes

 Breast cancer events (N) 303

 Disease-free survival (yrs)
 Median (25th, 75th)%-iles

9.5 (6.7, 11.3)

 Breast cancer deaths (N) 219

 Breast-cancer survival (yrs)
 Median (25th, 75th)%-iles

16.8 (15.3, 18.2)
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Table 2

Associations between individual miRNA and breast cancer outcomes
+
 in the WHEL-genomics breast cancer 

study (N = 1253)

Disease-free survival (# of events 303) Breast cancer survival (# of events 219) Overall survival (# of events 316)

miRNA HR (95% CI) P Value
a HR (95% CI) P Value

a HR (95% CI) P Value
a

93.5p 1.07 (0.96, 1.19) 0.202 1.1 (0.96, 1.25) 0.169 1.04 (0.95, 1.15) 0.381

150.5p 0.94 (0.87, 1.01) 0.072 0.91 (0.84, 0.99) 0.025 0.93 (0.87, 0.99) 0.033

128.3p 1 (0.94, 1.08) 0.903 1.03 (0.94, 1.13) 0.531 1.01 (0.94, 1.08) 0.850

141.3p 1.07 (0.97, 1.19) 0.160 1.11 (0.99, 1.26) 0.079 1.08 (0.98, 1.19) 0.127

21.5p 1.04 (0.93, 1.17) 0.486 1.14 (0.98, 1.31) 0.083 1.06 (0.94, 1.18) 0.336

1246 1.12 (0.98, 1.28) 0.101 1.03 (0.88, 1.2) 0.722 1.06 (0.93, 1.22) 0.353

16.5p 1.11 (0.99, 1.25) 0.082 1.18 (1.02, 1.37) 0.028 1.12 (1, 1.26) 0.057

205.5p 0.96 (0.91, 1.02) 0.173 0.93 (0.88, 0.99) 0.021 0.95 (0.9, 1) 0.056

342.3p 0.98 (0.89, 1.07) 0.649 1 (0.89, 1.12) 0.949 1.01 (0.92, 1.1) 0.862

29c.3p 1.09 (0.97, 1.21) 0.139 1.2 (1.05, 1.37) 0.009 1.19 (1.07, 1.33) 0.002
b

27b.3p 1.13 (1.01, 1.27) 0.037 1.2 (1.04, 1.38) 0.012 1.05 (0.95, 1.17) 0.326

187.3p 1.03 (0.96, 1.11) 0.348 1.08 (0.99, 1.17) 0.085 1.09 (1.01, 1.17) 0.021

26b.5p 1.03 (0.89, 1.2) 0.695 1.08 (0.9, 1.3) 0.393 1.05 (0.91, 1.22) 0.508

15a.5p 1.06 (0.92, 1.22) 0.449 1.08 (0.9, 1.29) 0.423 1.08 (0.93, 1.24) 0.301

221.3p 1.09 (1, 1.19) 0.062 1.1 (0.99, 1.23) 0.071 1.01 (0.93, 1.09) 0.809

494.3p 0.95 (0.84, 1.09) 0.497 0.93 (0.8, 1.09) 0.390 0.99 (0.87, 1.12) 0.845

30c.5p 1.05 (0.95, 1.16) 0.374 1.01 (0.9, 1.14) 0.868 0.99 (0.9, 1.08) 0.743

769.5p 0.97 (0.88, 1.06) 0.489 1.01 (0.9, 1.13) 0.873 1.01 (0.92, 1.11) 0.830

210.3p 1.1 (1.01, 1.2) 0.027 1.06 (0.96, 1.18) 0.226 1.04 (0.96, 1.13) 0.375

10b.5p 1.07 (0.98, 1.16) 0.138 1.1 (0.99, 1.23) 0.065 1.05 (0.96, 1.14) 0.286

143.3p 1.23 (1.08, 1.41) 0.002
b 1.28 (1.1, 1.51) 0.002

b 1.14 (1, 1.3) 0.046

7.5p 1.03 (0.96, 1.11) 0.392 0.99 (0.91, 1.08) 0.772 1.02 (0.96, 1.1) 0.490

200b.3p 1.04 (0.94, 1.15) 0.426 1.08 (0.95, 1.22) 0.250 1.08 (0.97, 1.2) 0.142

135a.5p 0.98 (0.94, 1.02) 0.315 0.99 (0.94, 1.04) 0.595 0.98 (0.94, 1.03) 0.480

126.3p 1.06 (0.95, 1.2) 0.307 1.11 (0.96, 1.3) 0.166 1.01 (0.9, 1.12) 0.922

+
adjusted for tumor stage, tumor grade, age at diagnosis

a
p-values are not adjusted for multiple comparisons

b
statistically significant after Bonferroni adjustment for 25 miRNAs
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Table 3:

Multiple regression analysis of clinical factors, PAM50 subtype, each TCGA-validated miRNA and breast 

cancer outcomes in the WHEL-genomics breast cancer substudy

Predictors Disease free survival
(N=295 relapse events)*

Breast cancer survival
(N=212 breast cancer deaths)*

Overall survival
(N=306 deaths)*

HR (95% CI) HR (95% CI) HR (95% CI)

Model for miRNA-210

Tumor Stage

I (Ref)
IIA
IIB
IIIA
IIIC

1.0
1.72 (1.24, 2.38)
2.47 (1.67, 3.65)
3.52 (2.46, 5.02)
4.00 (2.52, 6.36)

1.0
1.90 (1.25, 2.89)
3.09 (1.92, 4.97)
4.52 (2.92, 7)
6.26 (3.7, 10.6)

1.0
1.26 (0.93, 1.71)
1.83 (1.26, 2.65)
2.36 (1.67, 3.33)
3.75 (2.44, 5.77)

PAM50 Subtype

Luminal A (Ref)
Basal
Her2

Luminal B

1.0
1.14 (0.79, 1.65)
0.91 (0.60, 1.39)
1.55 (1.16, 2.08)

1.0
0.94 (0.6, 1.47)
0.86 (0.52, 1.42)
1.64 (1.17, 2.31)

1.0
0.9 (0.61, 1.32)
0.97 (0.64, 1.45)
1.58 (1.2, 2.09)

MiRNA 210 1.09 (1, 1.2) 1.07 (0.96, 1.19) 1.04 (0.95, 1.13)

Model for miRNA-29c

Tumor Stage

I (Ref)
IIA
IIB
IIIA
IIIC

1.0
1.73 (1.25, 2.4)
2.47 (1.67, 3.65)
3.37 (2.35, 4.82)
3.95 (2.48, 6.3)

1.0
1.87 (1.23, 2.85)
3.05 (1.89, 4.92)
4.27 (2.75, 6.62)
6.05 (3.57, 10.26)

1.0
1.24 (0.92, 1.68)
1.8 (1.24, 2.61)
2.25 (1.59, 3.17)
3.61 (2.35, 5.56)

PAM50 Subtype

Luminal A (Ref)
Basal
Her2

Luminal B

1.0
1.36 (0.92, 2.0)
1.01 (0.66, 1.54)
1.58 (1.18, 2.12)

1.0
1.23 (0.77, 1.97)
0.99 (0.6, 1.62)
1.66 (1.18, 2.32)

1.0
1.13 (0.75, 1.7)
1.08 (0.72, 1.63)
1.58 (1.2, 2.09)

MiRNA 29c 1.08 (0.95, 1.22) 1.17 (1.01, 1.37) 1.16 (1.02, 1.31)

*
Models also adjusted for age at diagnosis, grade; Patients with a Normal PAM50 subtype were excluded.
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