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REVEL and BayesDel outperform 
other in silico meta-predictors for 
clinical variant classification
Yuan Tian1, Tina Pesaran1, Adam Chamberlin1, R. Bryn Fenwick   1, Shuwei Li1, Chia-Ling Gau1, 
Elizabeth C. Chao1,2, Hsiao-Mei Lu1, Mary Helen Black1 & Dajun Qian1

Many in silico predictors of genetic variant pathogenicity have been previously developed, but there 
is currently no standard application of these algorithms for variant assessment. Using 4,094 ClinVar-
curated missense variants in clinically actionable genes, we evaluated the accuracy and yield of benign 
and deleterious evidence in 5 in silico meta-predictors, as well as agreement of SIFT and PolyPhen2, and 
report the derived thresholds for the best performing predictor(s). REVEL and BayesDel outperformed 
all other meta-predictors (CADD, MetaSVM, Eigen), with higher positive predictive value, comparable 
negative predictive value, higher yield, and greater overall prediction performance. Agreement of SIFT 
and PolyPhen2 resulted in slightly higher yield but lower overall prediction performance than REVEL 
or BayesDel. Our results support the use of gene-level rather than generalized thresholds, when gene-
level thresholds can be estimated. Our results also support the use of 2-sided thresholds, which allow 
for uncertainty, rather than a single, binary cut-point for assigning benign and deleterious evidence. The 
gene-level 2-sided thresholds we derived for REVEL or BayesDel can be used to assess in silico evidence 
for missense variants in accordance with current classification guidelines.

In silico prediction of variant pathogenicity is one of the eight evidence categories recommended by the American 
College of Medical Genetics and American College of Pathologist (ACMG/AMP) guidelines1. Many in silico 
algorithms have been developed to predict the degree of sequence conservation and functional impact of mis-
sense variants, each of which generates a score based on tolerance to variation. Assessment of in silico evidence 
based on the observed concordance of multiple scores yields a high rate of discordant predictions, even among 
well-classified variants, suggesting that such an approach is not ideal2,3. Recently, several in silico meta-predictors 
have been developed from analyses of multiple individual scores, and have demonstrated superior performance 
to that of individual predictors, although robust, systematic comparison of these approaches is lacking4–6.

Furthermore, in silico meta-predictors have primarily been trained on large numbers of variants selected from 
genome-wide data. Yet, variants from same gene share common features and gene-level transcription facilitates 
the events that drive the development and progression of disease, as well as response to therapy7. Global appli-
cations of in silico scores may result in a large number of false predictions as a one-size-fits-all approach8,9, but 
gene-level thresholds for assessing benign and deleterious evidence are unavailable, in practice. In addition, while 
many algorithms recommend binary thresholds for assessing in silico evidence, clinical recommendations based 
on thresholds for “likely benign” and “likely pathogenic” are 2-sided10.

Given the wide variety of in silico algorithms and approaches available, there is currently no standard appli-
cation of these tools for variant assessment; many laboratories use different tools and thresholds for evidence 
of pathogenic or benign classification11,12. As such, the 2015 ACMG/AMP guidelines assign only a supporting 
level of evidence to in silico predictions1. In this study, we aimed to assess in silico evidence for pathogenicity of 
missense variants using gene-level and generalized (all genes combined) 2-sided thresholds, compare predic-
tion performance among 5 commonly used meta-predictors, and identify the thresholds corresponding to the 
meta-predictor(s) with the best overall prediction performance that can be used to assess in silico evidence in 
accordance with the ACMG/AMP guidelines.
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Methods
Data.  To evaluate the prediction performance of various in silico scores, we compiled a dataset of 4,094 classified 
missense variants in 66 clinically relevant genes from ClinVar. Variants were included if reviewed by expert panel 
or classified by any of 6 submitters that consistently provide assertion criteria: Ambry Genetics, Emory Genetics 
Laboratory, GeneDx, InSiGHT, InVitae and Sharing Clinical Reports Project. For each variant, we defined its  
consensus class as the most supported category among benign/likely benign (B/LB), pathogenic/likely pathogenic 
(P/LP) and variants of uncertain significance (VUS), i.e. pathogenic/likely pathogenic if NP/LP ≥ max(NVUS, 1) 
and NB/LB = 0 or benign/likely benign if NB/LB ≥ max(NVUS, 1) and NP/LP = 0. Variants with conflicting classes (i.e., 
NP/LP ≥ 1 and NB/LB ≥ 1) or classified as VUS by the majority of submitters (i.e., NVUS > max(NB/LB, NP/LP)) were 
excluded from analysis.

In silico scores were obtained for 5 meta-predictors (CADD4, MetaSVM5, Eigen13, REVEL14 and BayesDel6) and 
2 individual predictors (SIFT15 and PolyPhen216) from the dbNSFP v3.5c database (August 6, 2017)17 and related 
websites (Supplementary Table S1). Datasets included classified variants in 66 genes (Supplementary Table S2) 
and a subset of variants in 20 genes, each containing at least 10 B/LB and 10 P/LP variants. Approximately 5.1%, 
0.6%, 0.1%, and 2.1% of SIFT, PolyPhen2, MetaSVM, and Eigen values, respectively, were missing across the 4,094 
variants. CADD, REVEL, and BayesDel had no missing values (Supplementary Table S3).

Gene-level and generalized thresholds.  To derive gene-level thresholds for the 20 genes with ≥10 B/LB  
and ≥10 P/LP variants, we fit models using Firth logistic regression18 for variants within each gene. Firth logistic  
regression was used to ensure model robustness under the scenarios of separation or sparse benign/likely benign 
and pathogenic/likely pathogenic outcomes19,20. Gene-level 2-sided thresholds for in silico evidence were derived 
at the predicted probabilities 0.2 and 0.8, respectively. These predicted probabilities were projected from the 
regression model, depend in part on the proportion of pathogenic variants in the dataset constructed, and were 
not based on estimation in any patient population; the probabilities were chosen to achieve ≥90% overall predic-
tive accuracy for most meta-predictors. Thus, in silico data was assessed for benign evidence, deleterious evidence 
or no evidence using gene-level thresholds for the 20 genes. For comparison of gene-level thresholds to those esti-
mated with a broader approach aggregating variation across all genes, we further estimated generalized thresh-
olds for the 20 genes using Firth logistic regression and predicted probabilities, as outlined above. Moreover, 
there were 46 genes for which gene-level thresholds were not estimable, primarily due to lack of sufficient num-
bers of B/LB or P/LP classified variants for analysis. As an exploratory analysis, we further derived generalized 
thresholds for the combined set of 66 genes, using the methods described above. For all analyses, variants with 
missing scores were assigned no evidence for the corresponding in silico predictor. To assess the robustness of the 
gene-level thresholds we derived for benign and deleterious evidence, we estimated 90% confidence intervals (CI) 
from 10,000 bootstrapping replicates stratified by classification status.

Cross-validation and sensitivity analysis.  To account for potential overfitting, the predictive perfor-
mance of each meta-predictor was evaluated using leave-one-out cross-validation, in which the assigned evidence 
was compared to the B/LB and P/LP status from ClinVar consensus classification. Performance statistics were 
evaluated using positive predictive value (PPV), negative predictive value (NPV) and yield rate (YR). YR was 
defined as the proportion of variants received benign or deleterious evidence among all evaluated variants. To 
assess the joint performance of accuracy and yield, we computed overall prediction performance (OPP), defined 
as the root mean square of PPV, NPV and YR, i.e., OPP =  + +PPV NPV YR( )/32 2 2 . Differences in PPV, NPV, 
or YR between predictors were each tested by Fisher’s exact test. Differences in OPP were tested by a Monte Carlo 
permutation test with 10,000 permutations that each randomly exchanged all assigned evidence among compar-
ator predictors. Performance statistics for gene-level and generalized thresholds using 20 genes are shown in 
Table 1. For the meta-predictor demonstrating the highest OPP statistic, we report the optimized gene-level 
thresholds in Table 2. As an exploratory analysis, performance statistics for generalized thresholds using all 66 
genes were also compared to those obtained using a combination of gene-level and generalized thresholds, and 
are provided in Supplementary Table S5.

In an effort to minimize the overlap of variants included in this analysis and those used to train any of the 5 
meta-predictor models, we also performed a sensitivity analysis in 20 genes to assess meta-predictor performance 
among only those variants evaluated by all submitters in ClinVar during the period from September 2015 to 
August 2017.

Alternative methods.  For comparison, we evaluated the performance of in silico prediction using gener-
alized thresholds from a combination of 20 genes and that of SIFT/PolyPhen2 agreement (Table 1). Evidence 
for SIFT/PolyPhen2 agreement was assessed as deleterious if SIFT < 0.05 and PolyPhen2 = “possibly/probably 
damaging”, or benign if SIFT ≥ 0.05 and PolyPhen2 = “benign”. All analyses were conducted with R for Statistical 
Computing version 3.3.3.

Results
Evidence assignment using gene-level and generalized thresholds.  Using gene-level thresholds, 
REVEL and BayesDel achieved the highest OPP, 0.907 and 0.908, respectively (Table 1). Compared to CADD, 
MetaSVM, and Eigen, predictions using REVEL had equivalent NPV (−0.6% to 1.1% relative change, all p > 0.33) 
and improved PPV (1.3% to 3.2% higher, all p < 0.28), YR (1.5% to 10.6% higher, all p < 0.37) and OPP (0.6% to 
4.1% higher, all p < 0.60) (Table 1; Fig. 1). Like REVEL, BayesDel outperformed CADD, MetaSVM, and Eigen. 
REVEL and BayesDel had nearly equivalent PPV, NPV, YR and OPP (all p > 0.44 for differences between the 
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two). For each of 5 meta-predictors in 20 genes, evidence assignment using gene-level thresholds consistently 
outperformed that of generalized thresholds (2.2% to 5.9% higher OPP, all p < 0.09) (Table 1). While REVEL 
and BayesDel were concordant for 86.4% of variants and similarly outperformed the other meta-predictors, they 
did not agree on assigned evidence for 13.6% of variants; 6.6% were better predicted with REVEL and 7.0% with 
BayesDel (Supplementary Table S4).

Method

Performance statistic (Rank)a

TP TN FP FN NE PPV NPV YR OPP

SIFT/PolyPhen2 agreement 888 649 177 54 385 0.834 (11) 0.923 (9) 0.821 (1) 0.861 (10)

Gene-level thresholds

     CADD 746 707 60 38 602 0.926 (7) 0.949 (7) 0.720 (9) 0.871 (8)

     MetaSVM 848 746 57 39 463 0.937 (5) 0.950 (6) 0.785 (4) 0.894 (4)

     Eigen 850 761 51 27 464 0.943 (3) 0.966 (2) 0.784 (5) 0.901 (3)

     REVEL 858 784 40 33 438 0.955 (2) 0.960 (3) 0.797 (3) 0.907 (2)

     BayesDel 859 798 39 40 417 0.957 (1) 0.952 (5) 0.806 (2) 0.908 (1)

Generalized thresholds

     CADD 563 525 75 18 972 0.882 (10) 0.967 (1) 0.549 (11) 0.819 (11)

     MetaSVM 848 697 75 64 469 0.919 (8) 0.916 (11) 0.782 (6) 0.875 (6)

     Eigen 747 684 80 31 611 0.903 (9) 0.957 (4) 0.716 (10) 0.865 (9)

     REVEL 846 673 52 60 522 0.942 (4) 0.918 (10) 0.758 (7) 0.876 (5)

     BayesDel 825 672 58 52 546 0.934 (6) 0.928 (8) 0.746 (8) 0.874 (7)

Table 1.  Prediction performance of in silico evidence assignment (2,153 variants in 20 genes). aAll performance 
statistics, except those for SIFT/PolyPhen2 agreement, were evaluated by leave-one-out cross-validation. Ranks 
in parentheses were the descending orders of performance statistics among comparison methods. The p-values 
of Monte Carlo permutation tests for differences of OPP statistics between evidence of gene-level versus 
generalized thresholds were 0.0005, 0.09, 0.002, 0.006 and 0.003 for CADD (OPP: 0.871 vs. 0.819), MetaSVM 
(OPP: 0.894 vs. 0.875), Eigen (OPP: 0.901 vs. 0.865), REVEL (OPP: 0.907 vs. 0.876) and BayesDel (OPP: 
0.908 vs. 0.874), respectively. TN, true negative; FN, false negative; TP, true positive; FP, false positive; NE, no 
evidence; PPV, positive predictive value; NPV, negative predictive value; YR, yield rate; OPP, overall prediction 
performance.

Gene

Thresholds of REVEL 
scores

Thresholds of BayesDel 
scores

TBE TDE TBE TDE

ATM 0.359 0.689 −0.180 0.216

ATP7B 0.514 0.731 −0.076 0.248

BRCA1 0.628 0.824 0.147 0.425

BRCA2 0.581 0.974 0.080 0.500

CFTR 0.438 0.727 −0.032 0.277

COL3A1 0.515 0.762 0.026 0.329

FBN1 0.326 0.597 −0.328 0.047

KCNH2 0.417 0.649 −0.176 0.127

MLH1 0.109 0.815 0.107 0.423

MSH2 0.562 0.862 0.085 0.426

MSH6 0.556 0.881 0.095 0.419

MUTYH 0.214 0.661 −0.078 0.263

MYBPC3 0.013 0.511 −0.531 0.012

NF1 0.261 0.605 −0.191 0.077

NSD1 0.400 0.705 −0.082 0.268

RET 0.481 0.732 −0.122 0.300

RYR2 0.349 0.597 −0.233 0.038

SCN5A 0.425 0.704 −0.108 0.180

TP53 0.536 0.667 −0.003 0.132

TSC2 0.703 0.970 0.244 0.561

Table 2.  Gene-level thresholds for assigning benign and deleterious in silico evidence in missense variantsa. 
aThe 2-sided thresholds, denoted as TBE and TDE, are the lower and upper limits of REVEL or BayesDel scores 
for assigning BE and DE, respectively. Gene-level thresholds for BE and DE were estimated at probabilities of 
pathogenicity 0.2 and 0.8, respectively. BE, benign evidence; DE, deleterious evidence.
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Similar trends in prediction performance were observed for thresholds estimated across 66 genes com-
pared to the 20-gene analysis. Using a combination of gene-level and generalized thresholds, REVEL and 
BayesDel achieved higher OPP than those of CADD, MetaSVM and Eigen (0.8% to 9.7% higher, all p < 0.32) 
(Supplementary Table S5). REVEL and BayesDel were discordant on assigned evidence for 14.5% of variants, 
roughly half of which were better predicted with REVEL and half with BayesDel (Supplementary Table S6).

Evidence assignment by alternative methods.  Our 20-gene analysis also demonstrated that evidence 
assigned using REVEL or BayesDel gene-level and generalized thresholds each had consistently better prediction 
performance than those derived using SIFT/PolyPhen2 agreement (Table 1). Evidence assigned using REVEL vs. 
SIFT/PolyPhen2 agreement was concordant for 1,463 (68.0%) variants (Supplementary Table S7). Among the 690 
variants for which evidence assignment was discordant, use of thresholds based on SIFT/PolyPhen2 agreement 
resulted in 27.5% false positives/negatives, in contrast to REVEL’s 4.6% false positives/negatives. Proportions of 
true and false predictions similarly favored BayesDel over SIFT/PolyPhen2 agreement (Supplementary Table S8). 
Using REVEL or BayesDel thresholds achieved 4.9% or 5.6% more correct predictions than SIFT/PolyPhen2, 
respectively (Supplementary Tables S7 and S8). Comparisons of REVEL or BayesDel with SIFT/PolyPhen2 agree-
ment for all 66 genes yielded similar results (Supplemental Tables S9 and S10). Using REVEL or BayesDel thresh-
olds yielded 12.4% or 11.7% more correct predictions than SIFT/PolyPhen2, respectively.

Sensitivity analysis.  To assess the impact of classified variants that may overlap between meta-predictor training 
datasets and our evaluation dataset, we validated the prediction performance of 5 meta-predictors in a subset of 870 
missense variants in 20 genes that were unlikely to have been previously used in the training datasets of meta-predictors. 
Similar to the results observed in the full dataset, REVEL and BayesDel had nearly identical performance statistics, and 
both had higher OPP than CADD, MetaSVM and Eigen (0.8% to 5.6% higher, all p < 0.68) (Supplementary Table S11).

Thresholds for assigning in silico evidence.  Gene-level 2-sided thresholds of REVEL and BayesDel 
scores for assessment of benign and deleterious in silico evidence in missense variants are provided in Table 2. A 
single, binary cut-point of 0.5 and 0 is often used for REVEL and BayesDel, respectively, to distinguish pathogenic 
evidence from benign2. However, our derived thresholds for benign evidence were above these cut-points for 
several genes (Fig. 2). For both REVEL and BayesDel, there was substantial variation among thresholds across 
genes, highlighting the importance of using gene-level thresholds whenever possible. In addition, the 90% CI for 
gene-level benign and deleterious thresholds were non-overlapping in all except one gene (NSD1, REVEL-based 
thresholds only), supporting the robustness of gene-level thresholds (Supplementary Table S12; Fig. 2).

While these findings support the use of gene-level thresholds for in silico evidence, many clinically actionable 
genes currently lack a sufficient number of classified variants for gene-level analysis. Given the NPV, PPV, and 
OPP for generalized thresholds are high (all >90%; Supplementary Table S5), and their prediction performance 
is superior to that of SIFT/PolyPhen2 agreement, generalized thresholds derived from the full set of 66 genes and 
their 90% CI are also presented (Supplementary Table S12). For REVEL, the 90% CI estimated for generalized 
thresholds for benign and deleterious evidence overlap with those estimated at the gene-level for 7/20 and 8/20 
genes, respectively. For BayesDel, overlapping 90% CI for generalized and gene-level thresholds indicating benign 
or deleterious evidence were observed for 9/20 and 7/20 genes, respectively. We note that for REVEL, the gener-
alized threshold’s 90% CI estimated for benign evidence overlaps with that estimated for gene-level pathogenic 

Figure 1.  Assessment of in silico evidence in missense variants. The OPP statistics were reported in each of the 
20 genes using gene-level thresholds. The OPP in 20 genes combined were 0.871, 0.894, 0.901, 0.907 and 0.908 
for CADD, MetaSVM, Eigen, REVEL and BayesDel, respectively. P-values for pairwise comparisons were each 
estimated from Monte Carlo permutation test with 10,000 permutations. OPP, overall prediction performance.
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evidence for 2 genes (MYBPC3 and NSD1); likewise, the 90% CI around the generalized threshold estimated for 
pathogenic evidence overlapped with that estimated for gene-level benign evidence for 1 gene (TSC2). No over-
lap between the generalized threshold’s 90% CI for benign evidence and CIs estimated for gene-level pathogenic 
evidence was observed for any genes using BayesDel, however, the 90% CI around the generalized threshold for 
pathogenic evidence overlapped with that for gene-level benign evidence for TSC2.

Discussion
In this study, we evaluated and compared the performance of 5 well known meta-predictors often used for in 
silico assessment in variant classification. Our results were consistent with studies that found meta-predictors 
better assessed variant pathogenicity than concordance of individual predictors2,4–6. Our findings suggest that 
REVEL and BayesDel outperform the other 3 meta-predictors (Fig. 1). We also observed superior performance 
of gene-level thresholds compared to generalized thresholds. When evaluated on a gene-by-gene basis, REVEL 
and BayesDel achieved the highest OPP. In addition, sensitivity analysis in a subset of missense variants unlikely 
to have been included in the training datasets of the meta-predictors yielded similar results.

The strengths of our approach include generation of gene-level thresholds for variant assessment in 20 clinically 
actionable genes, and comparison to generalized thresholds estimated from a broader set of 66 such genes. Both 
gene-level and generalized thresholds yielded NPV, PPV and overall performance statistics ≥90%, and whether 
estimated from REVEL or BayesDel, both outperformed SIFT/PolyPhen2 agreement. However, our results also 
demonstrated improved prediction performance when assigning in silico evidence using gene-level thresholds 
compared to generalized thresholds, which highlights the importance of gene-specific assessment of variant patho-
genicity21. We further observed wide variation in gene-level thresholds, and that the 90% CI around the generalized 
thresholds overlapped with those of the gene-level thresholds for <50% of the 20 genes examined in this study. 
Taken together, our findings support the use of gene-level thresholds for clinical variant assessment, when available.

An additional strength of our approach is the use of 2-sided thresholds for evidence assignment, as opposed 
to the current binary thresholds recommended for meta-predictors such as REVEL and BayesDel2. The use of 
2-sided thresholds for evidence assignment is a data-driven solution to the problem of uncertainty; a single 
threshold necessarily assigns evidence to all variants but at the cost of high false positive or false negative rates. 
However, we acknowledge the trade-off between accuracy and yield, as thresholds quantified from Firth logistic 
regression models may be overly conservative in protecting against false predictions at the expense of the pro-
portion of variants for which benign or pathogenic evidence can be assigned. Future methods development may 
include non-linear models or a weighted mechanism for adaptive balance between accuracy and yield designed 
to improve the overall performance of evidence assignment.

Our findings are based on the use of ClinVar-curated variants, a rapidly growing database with confidently 
annotated disease-causing alterations, as a training set to calibrate in silico scores on a gene-by-gene basis. In 
view of potential circularity issues arising from the testing of variants available in ClinVar that may have been 
previously used to train the meta-predictors we analyzed in the present study, we performed a sensitivity analysis 
to assess the impact of these variants. However, we were precluded from fully accounting for all such variants due 
to the fact that some of the variants included in our sensitivity analysis may have been deposited in ClinVar prior 
to 2015 and/or included in HGMD or ExAC at the time the models were developed. Nonetheless, our sensitivity 
analysis results were consistent with those of the larger analysis based on the full set of variants.

Figure 2.  Variation in thresholds for assigning benign and deleterious in silico evidence across 20 genes.  
(a) Gene-level 2-sided thresholds and their 90% confidence intervals (CI) for REVEL. (b) Gene-level 2-sided 
thresholds and their 90% confidence intervals (CI) for BayesDel. Thresholds for BE and DE were represented by 
green and red dots, respectively. BE, benign evidence; DE, deleterious evidence.
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Conclusions
Assigning in silico evidence using gene-level 2-sided thresholds from REVEL or BayesDel scores achieved higher 
predictive accuracy and yield compared to the use of other in silico predictors. The REVEL and BayesDel thresh-
olds we report can serve as a viable resource for assigning in silico evidence to missense variants in the genes 
examined herein, to be used in conjunction with other lines of evidence in variant assessment as recommended 
in ACMG/AMP guidelines.

Data Availability
All the data necessary to produce the results of this article is included in Supplementary data.
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