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Temporal-specific complexity of 
spiking patterns in spontaneous 
activity induced by a dual complex 
network structure
Sou Nobukawa   1, Haruhiko Nishimura2 & Teruya Yamanishi3

Temporal fluctuation of neural activity in the brain has an important function in optimal information 
processing. Spontaneous activity is a source of such fluctuation. The distribution of excitatory 
postsynaptic potentials (EPSPs) between cortical pyramidal neurons can follow a log-normal 
distribution. Recent studies have shown that networks connected by weak synapses exhibit 
characteristics of a random network, whereas networks connected by strong synapses have small-
world characteristics of small path lengths and large cluster coefficients. To investigate the relationship 
between temporal complexity spontaneous activity and structural network duality in synaptic 
connections, we executed a simulation study using the leaky integrate-and-fire spiking neural network 
with log-normal synaptic weight distribution for the EPSPs and duality of synaptic connectivity, 
depending on synaptic weight. We conducted multiscale entropy analysis of the temporal spiking 
activity. Our simulation demonstrated that, when strong synaptic connections approach a small-
world network, specific spiking patterns arise during irregular spatio-temporal spiking activity, and 
the complexity at the large temporal scale (i.e., slow frequency) is enhanced. Moreover, we confirmed 
through a surrogate data analysis that slow temporal dynamics reflect a deterministic process in the 
spiking neural networks. This modelling approach may improve the understanding of the spatio-
temporal complex neural activity in the brain.

Recent progress in studies using neuroimaging modalities has elucidated the structure of the whole network of 
the brain, which is composed of individual regions and connections, called a connectome1,2. In communications 
among neuronal populations or among brain regions, feedback loops at multiple hierarchical levels of corti-
cal processing can produce spatio-temporal complex behaviours that correspond to brain activity influenced by 
recurrent neural processes3,4. In a recent modelling approach, which utilises network structures such as topolog-
ical features and coupling strength estimated by neuroimaging modalities, whole-brain spiking neural networks 
have been constructed and reproduced complex neural behaviours5,6. While, despite the intra-regional cortical 
networks level without these hierarchical topological structures, the neural network exhibits various types of 
complex spatio-temporal behaviours7–15. To describe these behaviours, randomly connected network models, 
which are approximations for complex cortical networks, were initially proposed, and produced highly irregular 
behaviours through mutual interactions7–10. Moreover, these models, which include physiological cortical net-
work structures such as electrical coupling, excitatory and inhibitory neural populations, spiking neurons, and 
symmetricity in random networks, can reproduce various types of spatio-temporal neural activity with higher 
physiological validations in comparison with random networks11–15.

With regard to the typical behaviour of the neural activity in the cortex, this network represents the sustain-
ing electrical dynamic fluctuation, despite the nonexistence of sensory stimulation, which is called spontaneous 
activity16,17. This neural activity has several major characteristics: irregular low-frequency neural spiking (≈1 Hz) 
with high coherent spike transmission between specific pairs of neurons, and high coherent spiking activity 
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between excitatory/inhibitory neural populations18–20. Furthermore, the membrane potential behaviour under 
the threshold exhibits two particularly different states in spontaneous activity: the ‘upstate’ in which the mem-
brane potential depolarizes near the threshold of spiking, and the ‘downstate’ in which the membrane potential 
hyperpolarizes and spikes cannot arise18–20.

Several studies over the last decade have used spiking neuron models to investigate the genesis of this spon-
taneous activity. Destexhe21 showed that spontaneous activity may be produced by the existence of neurons with 
a low threshold. By using a different approach, investigators in another study showed that the structures of the 
neural network might induce spontaneous activity22–24. For example, Vogles & Abbott and Guo & Li showed that 
spontaneous activity is produced by the small-world property of synaptic connections characterized by small path 
lengths and large cluster coefficients and sparseness of random synaptic connections, respectively22,23. Of note, the 
model—which focuses on the distribution of the strength of cortical excitatory synaptic connections, as devel-
oped by Teramae et al.24 —satisfies the physiological characteristics of spontaneous activity with high relevance.

In practical cerebral cortex, excitatory post-synaptic potentials (EPSPs), which is the increasing membrane 
potential by the pre-synaptic spikes in the excitatory synaptic connections, between cortical pyramidal neurons in 
a large majority of synapses exhibit potentials in the sub-millivolt range, whereas a sliver of synapses exhibit huge 
EPSPs (≳1.0 mV)25,26. In refs25,26, the distribution of EPSPs might follow a log-normal distribution. Regarding 
the mechanism that produce the spontaneous activity model proposed by Terame et al., spikes from most weak 
synapses (as noise) enhance spike transmission generated from a small number of strong synapses. An interpre-
tation of this phenomenon could be that the mechanism of stochastic resonance induces spontaneous activity24. 
Furthermore, the EPSPs log-normal distribution may enhance the ability of associative memory recall27. It can 
also induce burst spiking, which has a vital function during hippocampal memory consolidation28.

Model-based studies of the spiking neural network with small-world properties have revealed that the com-
plexity of neural activity is enhanced by the small-world network structure. Riecke et al.29 demonstrated that com-
plex spiking activity is induced by the small-world characteristics of excitable spiking neural networks through 
the rewiring process illustrated by the Watts and Strogatz model30. Shanahan31 incorporated the physiological 
clustering features of the cortex into the spiking neural network by using the modular small-world network 
method32. Moreover, Watanabe et al. reported that the cerebral cortex exhibits a dual complex network structure, 
depending on the amount of EPSPs33. Weak synaptic networks and strong synaptic networks exhibit random net-
work characteristics and small-world characteristics, respectively33. Under this circumstance, the functionalities 
for the duality of synaptic connectivity and the fluctuation of spontaneous activity have been of recent focus34–36.

In our previous study, the spiking neural network model for spontaneous activity24 was expanded, and 
incorporated the previously described duality of synaptic connectivity, characterized by randomness and by 
small-worldness37. We attempted to demonstrate a tendency of enhancement of the complexity of spiking activity 
on a slow-temporal scale under the existing duality of synaptic connectivity37. However, physiological valida-
tion of the reproduced spontaneous activity remains to be achieved. In addition, the mechanism underlying this 
enhancement of complexity has not been elucidated.

Therefore, in this study, based on the outcome of our preliminary previous study37, we investigated the sponta-
neous activity in spiking neural networks using the duality of complex network structures, regarding these afore-
mentioned points. First, we examined the physiological validity of the reproduced spontaneous activity at each 
duality level with respect to the low firing rate, coherence in spiking activity between excitatory/inhibitory neural 
populations, and coherence in the temporal spike series among neurons. Second, we analysed the multi-scale 
entropy (MSE)38 of the time series of spontaneous activity and evaluated whether the obtained MSE reflected the 
dynamics of the spiking neural network using surrogate data analysis. Third, the mechanism for the enhancement 
of complexity was evaluated with a focus on the structures of spiking neural networks from the local network level 
and the entire topological level.

Methods
Spiking neural network with dual complex network structure.  In this study, based on the spiking 
neural network with a log-normal EPSPs distribution proposed for producing the spontaneous activity24, the 
spiking neural network with a dual complex network structure, depending on synaptic weight, were constructed. 
In this network, we used the conductance-based leaky integrate-and-fire neuron model, to describe the mem-
brane potential v(t):

τ
= − − − − − − +

dv
dt

v V g v V g v V I1 ( ) ( ) ( ) ,
(1)m

L E E I I ex

v V v t Vif mV, then ( ) , (2)rthr≥ →

in which τm is the decay constant of membrane. Also represented were the reversal potentials of the -amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated excitatory synaptic current, VE; 
inhibitory synaptic current, VI; leak current, VL; and after-spike reset value of the v(t), Vr. The Iex is the signal for 
external spikes triggering spontaneous activity, which is followed by Asδ(t − tex) mV. In this case, input time, tex, is 
generated by the Poisson process, with a spiking rate of Λ Hz during [0:100] ms. The As was set to Vthr − VL + 1 to 
generate a spike from the resting state. The conductances for the excitatory synapse and inhibitory (represented 
by gE(t) [ms−1] and gI(t) [ms−1], respectively) are given by
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In this case, τs is the synaptic decay constant. The sj is the spike time of the synaptic input from the j-th 
neuron. This spike has the synaptic delay, dj, and is enhanced by the excitatory synaptic weight, GE,j or dimin-
ished by the inhibitory synaptic weight, GI,j. In our study, parameter sets were used, as follows: VI = −80 mV; 
VL = −70 mV; Vr = −60 mV; Vthr = −50 mV; VE = 0 mV; τm = 20 ms (excitatory neuron); τm = 10 ms (inhibitory 
neuron); and τs = 2 ms). In the numerical simulation, Eq. (3) was solved by the Euler method with a time-step 
size of Δt = 0.1 ms. The period of refractoriness was set to 1 ms. The synaptic delays in excitatory-to-excitatory 
connections were set to uniform random values [1:3] ms, and the synaptic delays for other connections were set to 
[0:2] ms. The sizes of this spiking neural network for excitatory neural population for and for inhibitory neurons 
were set to NE = 10000 and NI = 2000, respectively.

The EPSP amplitudes, VEPSP mV, which are increased membrane potentials resulting from the input spikes of 
excitatory synaptic connections, followed a log-normal distribution (Fig. 1):

μ σ
π σ

=
− −

.p x x
x

( ) exp[ (log ) /2 ]
2 (4)

2 2

In this case, σ and the mode of the distribution were set to 1.0 and 0.2, respectively (μ − σ2 = log0.2). The 
values VEPSP > 15 mV were declined as unrealistic values, and a new value was produced from the distribution.

Regarding the parameter to determine the topology for the excitatory-to-excitatory network, the number of 
synaptic connections was set to N0 1 E

2. . Synaptic connections with VEPSP ≤ 9 mV (i.e., weak synapses) were wired 
by using the Watts-Strogatz model30 with a rewiring probability of 1.0, which corresponds a random network. 
However, synaptic connections with VEPSP > 9 mV (i.e., strong synapses) were wired with rewiring probability β 
from the ring type of topology. Each neuron in other synaptic connections was randomly connected; the coupling 
probability for excitatory connections and for inhibitory connections was 0.1 and 0.5, respectively.

The VEPSP is an observable value; therefore, these values must be converted into synaptic weight GE. In this 
conversion, we considered a simple case in which the spike input from a single excitatory synapse was applied to 
a post-synaptic neuron at t = 0 ms. The behaviour of the membrane potential, v(t), was as follows:

τ
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We numerically solved Eqs (5) and (6). The relationship between VEPSP and GE can be clarified, as follows:

= .G V /100 (7)E EPSP

The other synaptic weights were set to 0.018 (for excitatory-to-inhibitory connections), 0.002 (for 
inhibitory-to-excitatory connections), and 0.0025 (for inhibitory-to-inhibitory connections)24. The synaptic 

Figure 1.  Synaptic weight distribution among excitatory neurons (upper: single logarithmic plot; lower: double 
logarithmic plot). The dotted line represents the threshold dividing the network structures. EPSP: excitatory 
postsynaptic potential. (σ = 1.0, μ − σ2 = log0.2).
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transmissions in the excitatory-to-excitatory synaptic connections failed, based on the failing rate, depending on 
the amplitude of the EPSP: =

+
PE

a
a VEPSP

 (a = 0.1 mV)24,26. In this study, the spiking neural network was simulated 
by using Brian2 (https://brian2.readthedocs.io/en/2.0rc/index.html)39.

Figure 2.  Rewiring probability β dependency of spiking activity in a spiking neural network with small-world 
network for strong synaptic connections and random network for weak synaptic connections (β = 1.0, 0.8, 0.6, 
0.4, 0.2). The left, middle, and right images represent the raster plot, spiking rate time-series for rE (upper) and 
rI (lower), and their power spectrum, respectively. In the β = 1.0, 0.8 case, an irregular spatio-temporal spike 
pattern was observed. With decreasing β values (β = 0.6, 0.4, 0.2), constant spike patterns with a higher spiking 
rate [rE ≈ 5.0 Hz, (rI ≈ 70 Hz) in the β = 0.6 case, rE ≈ 6.0 Hz (rI ≈ 100 Hz) in the β = 0.4 case, and rE ≈ 7.0 Hz 
(rI ≈ 110 Hz) in the β = 0.2 case] were maintained in a specific duration.
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Evaluation indexes.  Index to measure neural activity.  To measure spiking activity, the spiking rates in the 
excitatory neural population, rE Hz, and the inhibitory neural population, rI Hz, were used:

=
Δ

= .r t S t
tN

X E I( ) 10 ( ) ,
(8)X

X

X

3

In this instance, SE indicates the spike frequency in the bin in which the temporal width is 0.1 ms in excitatory 
neural populations, and SI is the spike frequency for inhibitory neural populations. A Gaussian-shaped window 
with temporal width 10 ms was applied to rE(t) and rI(t) to be smoothed in the time series. The period that has 
a high spiking rate rE > θ Hz, termed ‘the activate period’ in this study, was also used to quantify neural activity.

Index for the temporal complexity of neural activity.  In this study, MSE38 was utilised to quantify the complexity 
with time-scale dependency in the time series (rE). A sample entropy for a stochastic variable {x1, x2, … xN} is 
given by the following equation:

= − +h r m
C r
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( , ) log
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in which Cm(r) represents the probability of satisfying the condition with | − | < rx xi
m

j
m  (i, j = 1, 2, …; i ≠ j). In 

this case, x i
m is a vector with m dimension, given by
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To evaluate temporal scale dependencies, a coarse-grained process for {x1, x2, …, xN} with the scale factor τ 
(τ = 1, 2, …) was applied in the MSE analysis:

∑τ
τ= . ≤ ≤τ
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Against the coarse-grained time series, sample entropy hτ(r, m) was measured. For example, in the case of 
τ = 2, 

{ } { }y , , ,j
x x x x x x(2)

2 2 2
N N1 2 3 4 1= + + +− . Owing to the dependency of hτ(r, m) on the scale factor τ, we eval-

uated the characteristics of the complexity in the time series of the excitatory firing rate rE(t) in 500 ≤ t ≤ 9500 
[ms]. In our approach, we set m = 238 and set the width of scale at 1 ms. The value for r was set to 1.0 to fix the 
focusing patterns of rE, regardless of the value range. The MSE analysis was executed against 10 trials.

Indexes for topological features in synaptic connections.  The topology of strong synaptic network (VEPSP > 9 mV), 
which consists of strong synapses as the edges and excitatory neurons as the nodes, were evaluated with regard to 
clustering, path length, and edge distribution. In this evaluation, a binarized adjacency matrix {aij} (i, j = 1, 2, …, 
NE) for strong synaptic connections was used.

The average clustering coefficient (CC) was defined by

∑=
−∈

CC
N

C
k k

1 2
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,
(12)E i N

i
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Figure 3.  The mean spiking rate in excitatory/inhibitory neural populations (upper) and the correlation 
between the time series of the excitatory spiking rate rE and that of the inhibitory spiking rate rI (lower). For all β 
cases, neurons exhibit low firing rates (r 0E   Hz, r 100I  Hz) and high coherent spiking activity between the 
excitatory and inhibitory neural populations.
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in which ki and Ci represent the degree of a node i, given by ∑ ∈k ai j N ijE
, and the number of triangles around node 

i, respectively.
The average characteristic path length (PL) was defined as the average number of edges in the shortest path 

between two nodes in the network, as follows:

PL
N N

d1
( 1)

,
(13)E E i j N j i

ij
, ,E

∑=
− ∈ ≠

in which the matrix for the shortest path length between nodes i and j are represented by {dij}. In the Watts–
Strogatz model, the distribution of the degree of edges changes, depending on β. Therefore, we assessed the degree 
of node i using Di. To observe the dependency of topological changes on rewiring properties β in the Watts–
Strogatz model, the normalized average clustering coefficient was used, based on the β = 0 case [CC(β)/CC(0) 
and PL(β)/PL(0)].

Surrogate data analysis.  We derived surrogate data using the iterative amplitude-adjusted Fourier transformed 
(IAAFT) surrogate data analysis40 for the spiking rate, rE, to examine whether a nonlinear dynamic process was 
involved in the spiking. The iteration number was set to 50, and 10 IAAFT surrogate datasets were generated by 
different random seeds per original rE. These values of sample entropy hτ(r, m) were averaged and compared with 
the value from the original rE. To compare the sample entropies for the original data and those for IAAFT, we used 
the paired-sample t-test. The number of paired samples was set to 10. Two-tailed α levels of 10−2 and 10−3 were 
considered statistically significant.

Results
Characteristics of spontaneous activity and its physiological validation.  The temporal character-
istics of spiking activity was evaluated in the spiking neural network with a coexisting small-world network for 
strong synaptic connections and random network for weak synaptic connections under the conditions of different 
rewiring probabilities in strong synaptic connections: β = 1.0, 0.8, 0.6, 0.4, 0.2. The raster plot, time series of spik-
ing rates of rE and rI, and power spectrum for spiking rates are shown in Fig. 2. In the β = 1.0, 0.8 case in which the 
topologies of a strong synaptic network (VEPSP > 9 mV) exhibits a nearly random network corresponding to the 
topologies of a weak synaptic network (VEPSP ≤ 9 mV), an irregular spatio-temporal spike pattern was shown in 

Figure 4.  Neuron pairs satisfying the high correlation among the temporal spike series. The black dots indicate 
neuron pairs with Pearson’s correlation over 0.5. High coherent spike transmission between specific neurons. 
Rates among pairs with Pearson’s correlation over 0.5 in all pairs connected by strong synapses are 2.6 × 10−7 
(β = 1.0), 2.8 × 10−7 (β = 0.8), 4.9 × 10−5 (β = 0.6), 4.2 × 10−4 (β = 0.4), and 2.4 × 10−4 (β = 0.2).
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the raster plot. The time series of spiking rates exhibited irregular oscillations around rE ≈ 4.0 Hz and rI ≈ 40 Hz. 
Moreover, constant spike patterns arose in a specific duration in cases of a smaller β value (β = 0.6, 0.4, 0.2) such 
as [6500:6600] ms for β = 0.6, [6600:7250] ms for β = 0.4, and [6000:8000] for β = 0.2 (see the raster plot). The 
spiking rate was increased for rE, rI, compared with cases in which β = 1.0, 0.8 (rE ≈ 5.0 Hz and rI ≈ 70 Hz for 
β = 0.6; rE ≈ 6.0 Hz and rI ≈ 100 Hz for β = 0.4; and rE ≈ 7.0 Hz and rI ≈ 110 Hz for β = 0.2). In addition, the power 
spectrum of the spiking rates for β = 1.0, 0.8, 0.6, 0.4, 0.2 was mostly distributed in the region 40 Hz (power/
Freq ≳ −40 [dB/Hz]).

To examine whether the spiking activity at each β value was consistent with actual physiological spontaneous 
activity18–20, we evaluated the spiking rates, the correlation of temporal excitatory/inhibitory spiking activity, and 
the correlation among the temporal-spike series. Figures 3 and 4 depict the mean spiking rate, temporal correla-
tion between excitatory/inhibitory neural populations, and the correlation among the temporal-spike series of 
excitatory neurons. Based on these results, we could observe that in all β cases, neurons exhibited low firing rates 
(r 10E   Hz, r 100I   Hz), high coherent spike transmission between specific neurons (the rate between highly 
coherent pairs with Pearson’s correlation over 0.5. In addition, all pairs connected by the strong synapses were less 
than 4.2 × 10−4), and high coherent spiking activity between excitatory/inhibitory neural populations (Pearson’s 
correlation was approximately 0.98). This finding was consistent with the physiological findings18–20. These phys-
iological conditions were primarily determined by lognormal-distribution of EPSPs24, whereas the dual complex 
network structure virtually did not affect them.

The MSE analysis for the time series of spontaneous activity.  The complexity of temporal scale 
dependency for the time series of the spiking rate rE, corresponding to the results in Fig. 2, was analysed by MSE 
(given by Eqs 9 and 10). Figure 5 shows the profile of the sample entropy hτ of rE as function of temporal scale τ 
(corresponding frequency of 1/(10−3τ) Hz) for β = 1.0, 0.8, 0.6, 0.4, 0.2. In the β = 1.0, 0.8 case, dependency of hτ 
on temporal scale had a unimodal maximum peak at τ ≈ 20 (50 Hz). In smaller β cases (e.g., β = 0.6, 0.4, 0.2), the 
hτ increased at larger τ (i.e., small frequency) regions (τ ≳ 200 (5 Hz)). This characteristic was the same with the 
tendency at single trial shown in our previous preliminary results37.

Figure 5.  Profile of multiscale entropy as a function of temporal scale τ for the time series of the excitatory 
spiking rate rE (the width of the temporal scale is 1 ms). The mean and standard deviation between trials are 
represented by the solid and shaded areas, respectively. In the β = 1.0, 0.8 case, hτ exhibits a peak at τ ≈ 20 
(50 Hz). With decreasing β values such as β = 0.6, 0.4, 0.2, the hτ in the larger τ (i.e., small frequency) regions 
increases (τ ≳ 200 (5 Hz)).

Figure 6.  Dependence of the average of the activate period for the excitatory neural population (i.e., satisfies 
rE > θ Hz) on rewiring probability β. The activate period rate decreases with increasing β value.

https://doi.org/10.1038/s41598-019-49286-8
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The mechanism for the enhancement of complexity at a larger temporal scale was then evaluated. Figure 6 
shows the activate period rate during the evaluation period as a function of β. The activate period rate decreased 
with increasing β value. Hence, the enhancement of complexity with the large temporal scale, as presented in 
Fig. 5, arose at a moderate activate period rate because of the intermittent appearance of the active state (see also 
Fig. 2).

Furthermore, we evaluated whether the temporal behaviour in spiking activity reflected a nonlinear dynamic 
process in the spiking neural networks. In the IAAFT process, the power spectrum was maintained, and the phase 
spectrum was randomised in the frequency space40. In comparison with the MSE profile for IAAFT surrogate 
data, a significant difference was observed at τ ≈ 200 (5 Hz) for cases of β = 0.6, 0.4, 0.2; the MSE profile under 
this condition reflected a nonlinear dynamic process (Fig. 7). This finding implied that the MSE profile at a large 
temporal scale reflected the characteristic of structure for the dual complex spiking network.

Relationship between spontaneous activity and network topology.  We investigated the rela-
tionship between the MSE profile and the topology of a strong synaptic network (VEPSP > 9 mV) by clustering 

Figure 7.  Comparison between multiscale entropy profiles of the original rE and those of the IAAFT surrogate 
data. The cases in which differences in hτ are statically significant are represented by blue (+p < 10−2) and red 
(*p < 10−3). A significant difference between the original/IAAFT ones is observed at τ ≈ 200 (5 Hz) in cases of 
β = 0.6, 0.4, 0.2; the MSE profile at large temporal scales reflects a nonlinear dynamic process. Org: original; 
IAFFT: Iterative amplitude-adjusted Fourier transformed.

Figure 8.  In the strong synaptic network, the normalised clustering coefficient CC(β)/CC(0) and the mean 
shortest path length PL(β)/PL(0), as a function of the rewiring probability β. In the range 0.2 ≤ β ≤ 1.0 (which 
corresponds to the β range for changing MSE profiles in Fig. 5), CC(β)/CC(0) decreases from 0.52 to 0, whereas 
PL(β)/PL(0) remains at approximately 0.

https://doi.org/10.1038/s41598-019-49286-8
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coefficient and the mean shortest path length. Figure 8 shows the normalized clustering coefficient CC(β)/CC(0) 
(given by Eq. (12)) and mean shortest path length PL(β)/PL(0) (given by Eq. (13)), as a function of the rewiring 
probability β. Our results suggested that in the range 0.2 ≤ β ≤ 1.0 in which the β range for changing MSE profiles 
in Fig. 5), CC(β)/CC(0) decreased from 0.52 to 0. However, in this range of β, PL(β)/PL(0) was nearly zero37.

Our investigation confirmed that a neuron with high Ci exhibits a tendency toward a high spiking rate in 
comparison with Ci = 0 (see Fig. 9). Park et al.41 reported that the local clustering properties increased the spiking 
rate in their small-world spiking neural network. Our results were congruent with these findings. With increasing 
β values, neurons with high Ci decrease, leading to a decrease in the activate period for enhancing hτ at a large 
temporal scale.

In addition to the local clustering property, we investigated the distributions of the number of degrees Di 
around a node i and the spiking rate at each Di (see Fig. 10). The number of neurons with high Di increased with 
increasing β values, but the spiking rate and the activate period decreased (Figs 3 and 6). Therefore, neurons with 
a high degree of edge did not contribute to the generation of the activate state or the enhancement of hτ at a large 
temporal scale.

Discussion
In this study, we executed a simulation study using the leaky integrate-and-fire spiking neural network with 
log-normal synaptic weight distribution in EPSPs and with the duality of complex network consisting of a weak 
synaptic random network and a strong synaptic small-world network. We found that in cases in which the 
small-worldness of strong synaptic connections was enhanced, specific spiking patterns arose during temporal 
irregular spiking activity. The temporal scale profile of MSE for firing rates in the strong synaptic small-world 
network supported the enhancement of sample entropy at a larger temporal scale (slower frequency) than in 
cases in which strong synaptic connections approached those of random networks. These results were congruent 
with the single trial tendency shown in our previous preliminary results37. Furthermore, our previous work37 
mentioned that the clustering coefficient is a possible factor that produces enhancement at a large temporal scale. 
In this study, by the additional evaluation of local clustering characteristics, we confirmed that this enhance-
ment of the sample entropy at a larger temporal scale was induced by the high spiking frequency of neurons 
with a high degree of clustering in strong synaptic connections. The IAAFT surrogate data analysis revealed that 
the sample entropy at the larger temporal scale reflected the dynamics the deterministic behaviour at the larger 
temporal scale might reflect the structural properties of spiking neural network, typified as the aforementioned 
strong synaptic clustering characteristic. The spiking activity, more importantly, also satisfied the physiological 

Figure 9.  Relationship between spiking activity and clustering structures. Probability distribution of the 
number of triangles around node i: Ci (upper) and dependence of the temporal average spiking rate of the 
excitatory neural population on Ci (lower). A neuron with high Ci exhibits a tendency toward a high spiking 
rate, compared with the case of Ci = 0. Ci: number of triangles around node i. Ave.: average; Prob.: probability; 
Dist.: distribution.
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characteristics of spiking activity such as a low firing rate, high coherence in spiking activity between excitatory/
inhibitory neural populations, and high coherence in the temporal-spike series among a few neurons18–20. Based 
on these results, it can be interpreted that the enhancement of complexity at a large temporal scale with the char-
acteristics of the physiological spontaneous activity can be induced by dynamics in the dual complex network 
structure as a physiological cortical network structure.

With regard to the emergence of various kinds of complex spatio-temporal spiking activity, initial studies7–10 
of spiking neural networks reported that random connections produced rich dynamics with highly irregular 
behaviour. Moreover, several studies applied physiological cortical structures to the random spiking network and 
showed that these expanded random network model can induce various spatio-temporal activities such as the 
intermittent transition between synchronous and asynchronous states11–14. Regarding the phenomena of emerg-
ing slow-temporal scale dynamics, Ostojic et al., Mastrogiuseppe & Ostojic and Wieland et al. reported that in 
a spiking neural network consisting of excitatory and inhibitory neural populations, irregular fluctuating activ-
ity, including slow-temporal scale dynamics, is induced in the strong strength regime of synaptic weight12,13,15. 
Moreover, Mart et al. have recently revealed that increasing symmetricity in random networks induces irregular 
dynamics with the slow-temporal scale14. They reported that, in a network with symmetricity (i.e., a portion of 
neurons have bidirectional connectivity), the neurons easily affect each other, and the neuron’s activity has feed-
back. These interactions may induce the complex temporal behaviour with slow-temporal dynamics14. In our 
spiking neural network, in the regime of the strong clustering characteristic, the spikes of neurons belonging in 
same clusters easily affected each other and had feedback. Therefore, a similar effect in the random network with 
symmetricity14 may arise in our spiking neural network.

Future directions and limitations of this study must be considered. During early development in the prenatal 
period, brain networks undergo enhancement of structural, ordered short-range connectivity. After birth, the 
short-range connectivity decreases, whereas long-range connectivity appears and strengthens, which leads to 
a decline in local clustering42. Furthermore, an increase in the complexity of the neural activity, as measured by 
electroencephalogram (EEG)/magnetoencephalography (MEG), is observed during development43,44. In particu-
lar, Hasegawa et al.44 revealed that slower temporal complexity increases during early development. The changes 
that occur after birth can be interpreted as structural and functional integration. However, in Alzheimer’s disease, 
the degradation of structural connectivity, including the progressive death of neurons, and the development of 
neurofibrillary tangles and senile plaques, induce a decline in the small-worldness property45. This structural deg-
radation induces temporal-specific changes in the complexity of neural activity4,46–52. Our model focused on the 
duality of the cortical neural network structure, and did not consider physiological inter-regional connections. 
However, by considering region-specific subnetworks and inter-regional connections in this modelling approach 
may be a useful tool to reveal the relationships between the complexity of microscopic neural activity observed 
by neuroimaging modalities (e.g. EEG/MEG) and the topology of structural connectivity. Therefore, we plan to 
develop a spiking neural network consisting of region-specific subnetworks and inter-regional connections to 
evaluate the relationship between the complexity of neural activity and the topology of structural connectivity.

In conclusion, we conducted a simulation study by using a leaky integrate-and-fire spiking neural network 
that incorporated the duality of synaptic connectivity of a complex network that follows a log-normal synaptic 
weight distribution. It has been revealed that this duality has the function of generating complex neural activity, 
including complex dynamics on a large temporal scale. The future combination of this modelling approach with 
neuroimaging measures of the brain’s networks and whole-brain network modelling may improve the under-
standing of the functionality of spatio-temporal complex neural activity.

References
	 1.	 Glasser, M. F. et al. The human connectome project’s neuroimaging approach. Nature Neuroscience 19, 1175–1187 (2016).
	 2.	 Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
	 3.	 Fell, J., Kaplan, A., Darkhovsky, B. & Röschke, J. Eeg analysis with nonlinear deterministic and stochastic methods: a combined 

strategy. Acta neurobiologiae experimentalis 60, 87–108 (1999).

Figure 10.  Probability distribution of the number of degrees of node i: Di. The number of neurons with high 
Di increased with increasing β values, but the spiking rate and the activate period decreased. Prob.: probability; 
Dist.: distribution.

https://doi.org/10.1038/s41598-019-49286-8


1 1Scientific Reports |         (2019) 9:12749  | https://doi.org/10.1038/s41598-019-49286-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

	 4.	 Stam, C. J. Nonlinear dynamical analysis of eeg and meg: review of an emerging field. Clinical Neurophysiology 116, 2266–2301 
(2005).

	 5.	 Nakagawa, T. T. et al. How delays matter in an oscillatory whole-brain spiking-neuron network model for meg alpharhythms at rest. 
Neuroimage 87, 383–94 (2014).

	 6.	 Cabral, J., Kringelbach, M. L. & Deco, G. Functional connectivity dynamically evolves on multiple time-scales over a static structural 
connectome: Models and mechanisms. Neuroimage 160, 84–96 (2017).

	 7.	 Amit, D. J. & Brunel, N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral 
cortex. Cerebral cortex (New York, NY: 1991) 7, 237–252 (1997).

	 8.	 Vreeswijk, C. V. & Sompolinsky, H. Chaotic balanced state in a model of cortical circuits. Neural computation 10, 1321–1371 (1998).
	 9.	 Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and 

information coding. Journal of neuroscience 18, 3870–3896 (1998).
	10.	 Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of computational 

neuroscience 8, 183–208 (2000).
	11.	 Ostojic, S., Brunel, N. & Hakim, V. Synchronization properties of networks of electrically coupled neurons in the presence of noise 

and heterogeneities. J Comput Neurosci 26, 369–92 (2009).
	12.	 Ostojic, S. Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nat Neurosci 17, 594–600 

(2014).
	13.	 Wieland, S., Bernardi, D., Schwalger, T. & Lindner, B. Slow fluctuations in recurrent networks of spiking neurons. Physical Review E 

92, 040901 (2015).
	14.	 Martí, D., Brunel, N. & Ostojic, S. Correlations between synapses in pairs of neurons slow down dynamics in randomly connected 

neural networks. Phys Rev E 97, 062314 (2018).
	15.	 Mastrogiuseppe, F. & Ostojic, S. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks. PLoS Comput Biol 13, 

e1005498 (2017).
	16.	 McCormick, D. A. Spontaneous activity: signal or noise? Science 285, 541–543 (1999).
	17.	 Fiser, J., Chiu, C. & Weliky, M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431, 

573–578 (2004).
	18.	 Softky, W. R. & Koch, C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsps. 

Journal of Neuroscience 13, 334–350 (1993).
	19.	 Hromádka, T., DeWeese, M. R. & Zador, A. M. Sparse representation of sounds in the unanesthetized auditory cortex. PLoS biology 

6, e16 (2008).
	20.	 Sakata, S. & Harris, K. D. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64, 

404–418 (2009).
	21.	 Destexhe, A. Self-sustained asynchronous irregular states and up–down states in thalamic, cortical and thalamocortical networks of 

nonlinear integrate-and-fire neurons. Journal of computational neuroscience 27, 493 (2009).
	22.	 Vogels, T. P. & Abbott, L. F. Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of neuroscience 25, 

10786–10795 (2005).
	23.	 Guo, D. & Li, C. Self-sustained irregular activity in 2-d small-world networks of excitatory and inhibitory neurons. IEEE 

Transactions on Neural Networks 21, 895–905 (2010).
	24.	 Teramae, J.-N., Tsubo, Y. & Fukai, T. Optimal spike-based communication in excitable networks with strong-sparse and weak-dense 

links. Scientific Reports 2 (2012).
	25.	 Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical 

circuits. PLoS biology 3, e68 (2005).
	26.	 Lefort, S., Tomm, C., Sarria, J.-C. F. & Petersen, C. C. The excitatory neuronal network of the c2 barrel column in mouse primary 

somatosensory cortex. Neuron 61, 301–316 (2009).
	27.	 Hiratani, N., Teramae, J.-N. & Fukai, T. Associative memory model with long-tail-distributed hebbian synaptic connections. 

Frontiers in computational neuroscience 6, 102 (2013).
	28.	 Omura, Y., Carvalho, M. M., Inokuchi, K. & Fukai, T. A lognormal recurrent network model for burst generation during 

hippocampal sharp waves. Journal of Neuroscience 35, 14585–14601 (2015).
	29.	 Riecke, H., Roxin, A., Madruga, S. & Solla, S. A. Multiple attractors, long chaotic transients, and failure in small-world networks of 

excitable neurons. Chaos: An Interdisciplinary Journal of Nonlinear Science 17, 026110 (2007).
	30.	 Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. nature 393, 440 (1998).
	31.	 Shanahan, M. Dynamical complexity in small-world networks of spiking neurons. Physical Review E 78, 041924 (2008).
	32.	 Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proceedings of the national academy of sciences 

99, 7821–7826 (2002).
	33.	 Watanabe, K., Teramae, J.-N. & Wakamiya, N. Inferred duality of synaptic connectivity in local cortical circuit with receptive field 

correlation. In International Conference on Neural Information Processing, 115–122 (Springer, 2016).
	34.	 Jonke, Z., Habenschuss, S. & Maass, W. Solving constraint satisfaction problems with networks of spiking neurons. Frontiers in 

neuroscience 10 (2016).
	35.	 Koren, V. & Den’eve, S. Computational account of spontaneous activity as a signature of predictive coding. PLoS computational 

biology 13, e1005355 (2017).
	36.	 Den’eve, S., Alemi, A. & Bourdoukan, R. The brain as an efficient and robust adaptive learner. Neuron 94, 969–977 (2017).
	37.	 Nobukawa, S., Yamanishi, T. & Nishimura, H. Emergent patterns and spontaneous activity in spiking neural networks with dual 

complex network structure. In Proceedings of The 17th IEEE International Conference on Cognitive & Cognitive Computing (ICC*CC), 
159–166 (IEEE, 2018).

	38.	 Costa, M., Goldberger, A. L. & Peng, C.-K. Multiscale entropy analysis of complex physiologic time series. Physical review letters 89, 
068102 (2002).

	39.	 Goodman, D. F., Stimberg, M., Yger, P. & Brette, R. Brian 2: neural simulations on a variety of computational hardware. BMC 
neuroscience 15, P199 (2014).

	40.	 Schreiber, T. & Schmitz, A. Improved surrogate data for nonlinearity tests. Physical Review Letters 77, 635 (1996).
	41.	 Park, J. et al. Macroscopic cluster organizations change the complexity of neural activity. Entropy 21, 214 (2019).
	42.	 Cao, M., Huang, H. & He, Y. Developmental connectomics from infancy through early childhood. Trends in neurosciences 40, 

494–506 (2017).
	43.	 Lippé, S., Kovacevic, N. & McIntosh, R. Differential maturation of brain signal complexity in the human auditory and visual system. 

Frontiers in Human Neuroscience 3, 48 (2009).
	44.	 Hasegawa, C. et al. Developmental trajectory of infant brain signal variability: a longitudinal pilot study. Frontiers in Neuroscience 

12, 566 (2018).
	45.	 Xie, T. & He, Y. Mapping the Alzheimer’s brain with connectomics. Frontiers in psychiatry 2, 77 (2012).
	46.	 Delbeuck, X., Van der Linden, M. & Collette, F. Alzheimer’ disease as a disconnection syndrome? Neuropsychology review 13, 79–92 

(2003).
	47.	 Adeli, H., Ghosh-Dastidar, S. & Dadmehr, N. Alzheimer’s disease: models of computation and analysis of eegs. Clinical EEG and 

Neuroscience 36, 131–140 (2005).

https://doi.org/10.1038/s41598-019-49286-8


1 2Scientific Reports |         (2019) 9:12749  | https://doi.org/10.1038/s41598-019-49286-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

	48.	 Mizuno, T. et al. Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clinical Neurophysiology 
121, 1438–1446 (2010).

	49.	 Yang, A. C. & Tsai, S.-J. Is mental illness complex? from behavior to brain. Progress in Neuro-Psychopharmacology and Biological 
Psychiatry 45, 253–257 (2013).

	50.	 Takahashi, T. Complexity of spontaneous brain activity in mental disorders. Progress in Neuro-Psychopharmacology and Biological 
Psychiatry 45, 258–266 (2013).

	51.	 Bhat, S., Acharya, U. R., Dadmehr, N. & Adeli, H. Clinical neurophysiological and automated EEG-based diagnosis of the alzheimer’s 
disease. European neurology 74, 202–210 (2015).

	52.	 Mammone, N. et al. Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in MCI and AD 
patients. International Journal of Neural Systems 27, 1750020 (2017).

Acknowledgements
This work was supported by JSPS KAKENHI for Early-Career Scientists (Tokyo, Japan; Grant Number 18K18124) 
(S.N) and for Scientific Research (C) (Grant Number 18K11450) (T.Y).

Author Contributions
S.N., T.Y. and H.N. conceived the methods. S.N. conducted the experiments, and S.N. and H.N. analysed the 
results. S.N wrote the main manuscript text and prepared Figs 1–10. All authors have reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-49286-8
http://creativecommons.org/licenses/by/4.0/

	Temporal-specific complexity of spiking patterns in spontaneous activity induced by a dual complex network structure

	Methods

	Spiking neural network with dual complex network structure. 
	Evaluation indexes. 
	Index to measure neural activity. 
	Index for the temporal complexity of neural activity. 
	Indexes for topological features in synaptic connections. 
	Surrogate data analysis. 


	Results

	Characteristics of spontaneous activity and its physiological validation. 
	The MSE analysis for the time series of spontaneous activity. 
	Relationship between spontaneous activity and network topology. 

	Discussion

	Acknowledgements

	Figure 1 Synaptic weight distribution among excitatory neurons (upper: single logarithmic plot lower: double logarithmic plot).
	Figure 2 Rewiring probability β dependency of spiking activity in a spiking neural network with small-world network for strong synaptic connections and random network for weak synaptic connections (β = 1.
	Figure 3 The mean spiking rate in excitatory/inhibitory neural populations (upper) and the correlation between the time series of the excitatory spiking rate rE and that of the inhibitory spiking rate rI (lower).
	Figure 4 Neuron pairs satisfying the high correlation among the temporal spike series.
	Figure 5 Profile of multiscale entropy as a function of temporal scale τ for the time series of the excitatory spiking rate rE (the width of the temporal scale is 1 ms).
	Figure 6 Dependence of the average of the activate period for the excitatory neural population (i.
	Figure 7 Comparison between multiscale entropy profiles of the original rE and those of the IAAFT surrogate data.
	Figure 8 In the strong synaptic network, the normalised clustering coefficient CC(β)/CC(0) and the mean shortest path length PL(β)/PL(0), as a function of the rewiring probability β.
	Figure 9 Relationship between spiking activity and clustering structures.
	Figure 10 Probability distribution of the number of degrees of node i: Di.




