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Protein prenylation restrains innate immunity by
inhibiting Rac1 effector interactions
Murali K. Akula 1,2, Mohamed X. Ibrahim1,10, Emil G. Ivarsson1,10, Omar M. Khan 3,4,10, Israiel T. Kumar1,

Malin Erlandsson5, Christin Karlsson1, Xiufeng Xu6, Mikael Brisslert5, Cord Brakebusch7, Donghai Wang8,

Maria Bokarewa 5, Volkan I. Sayin2,9 & Martin O. Bergo1,6

Rho family proteins are prenylated by geranylgeranyltransferase type I (GGTase-I), which

normally target proteins to membranes for GTP-loading. However, conditional deletion of

GGTase-I in mouse macrophages increases GTP-loading of Rho proteins, leading to enhanced

inflammatory responses and severe rheumatoid arthritis. Here we show that heterozygous

deletion of the Rho family gene Rac1, but not Rhoa and Cdc42, reverses inflammation and

arthritis in GGTase-I-deficient mice. Non-prenylated Rac1 has a high affinity for the adaptor

protein Ras GTPase-activating-like protein 1 (Iqgap1), which facilitates both GTP exchange

and ubiquitination-mediated degradation of Rac1. Consistently, inactivating Iqgap1 normalizes

Rac1 GTP-loading, and reduces inflammation and arthritis in GGTase-I-deficient mice, as well

as prevents statins from increasing Rac1 GTP-loading and cytokine production in macro-

phages. We conclude that blocking prenylation stimulates Rac1 effector interactions and

unleashes proinflammatory signaling. Our results thus suggest that prenylation normally

restrains innate immune responses by preventing Rac1 effector interactions.
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Protein geranylgeranyltransferase type I (GGTase-I) transfers
a 20-carbon geranylgeranyl lipid to a cysteine residue of
proteins harboring a carboxyl-terminal CAAX motif,

including the Rho family proteins Rac1, RhoA, and Cdc421.
Geranylgeranylation, also called prenylation, enhances hydro-
phobicity and facilitates membrane anchoring of Rho proteins
and is believed to be essential for correct subcellular targeting,
effector binding, GTP loading, and activation2,3.

Geranylgeranylation is an evolutionarily conserved modifica-
tion that has generated a broad interest for several reasons. First,
Rho family proteins contribute to tumor growth and metastasis,
which prompted the development of GGTase-I inhibitors
(GGTIs)4. Several GGTIs exhibit anti-tumor effects in preclinical
studies and the rationale for using GGTIs in cancer therapy is
supported by mouse gene-targeting experiments5,6. Second, Rho
proteins regulate phagocytosis, migration, reactive oxygen species
(ROS) production, and signaling in inflammatory cells7. Thus,
targeting GGTase-I has been proposed as a strategy to treat
inflammatory and autoimmune disorders, including rheumatoid
arthritis and multiple sclerosis8–10. And third, reduced ger-
anylgeranylation of Rho proteins is frequently suggested to
underlie anti-inflammatory properties and other pleiotropic
effects of statins11,12. Statins lower cholesterol levels by blocking
mevalonate synthesis but this also leads to reduced synthesis of
geranylgeranylpyrophosphate (GGPP), the lipid substrate of
GGTase-I13.

The idea that blocking Rho protein geranylgeranylation would
inhibit inflammation was challenged by studies into GGTase-I-
deficient mice14,15. Knockout of GGTase-I’s catalytic subunit in
macrophages eliminated Rho protein geranylgeranylation, but
surprisingly, Rac1, RhoA, and Cdc42 accumulated in their GTP-
bound active form, and Rac1 remained associated with mem-
branes14. Moreover, p38 and NFκB activities were high in
GGTase-I-deficient macrophages, which increased pro-
inflammatory cytokine production after lipopolysaccharide
(LPS) stimulation; and the mice developed chronic erosive
rheumatoid arthritis14. Thus, targeting macrophage GGTase-I
activates Rho proteins and causes inflammation.

These results dispute the general understanding of the bio-
chemical and medical importance of CAAX protein geranylger-
anylation and raise a range of new questions16. For example,
GGTase-I has more than 60 predicted substrates17, and it is not
yet known whether one or more of these proteins mediate
inflammatory signaling and erosive arthritis development in mice
lacking GGTase-I in macrophages. It would also be important to
define mechanisms underlying the increased GTP loading of
nonprenylated Rho proteins. One potential explanation is that
they interact more avidly than prenylated Rho proteins with a
guanine-nucleotide exchange factor (GEF) or an adaptor protein
such as Ras GTPase-activating-like protein (Iqgap1)18–20. Alter-
natively, nonprenylated Rho proteins interact less avidly with a
GTPase-activating protein (GAP)18 or guanine nucleotide dis-
sociation inhibitor (RhoGDI1)21. Interestingly, knockdown of
Rhogdi1 increases GTP loading of Rho family proteins22, and it is
possible that a reduced interaction with RhoGDI1 underlies Rho-
protein activation and inflammation in GGTase-I-deficient
macrophages. Moreover, it would be important to establish
whether statins, by reducing GGPP levels, produce similar effects
in macrophages as the knockout of GGTase-I. Statin adminis-
tration is frequently associated with increased Rho-GTP loading
and sometimes with increased LPS-induced cytokine production,
including interleukin (Il) 1β, but the underlying mechanism is
unknown23. In the current study, we used genetic, pharmacologic,
and proteomic strategies to address those issues and identify a
new potential explanation for the role of prenylation for Rac1
effector interactions and proinflammatory signaling.

Results
Rac1 knockout prevents arthritis in GGTase-I-deficient mice.
Mice lacking GGTase-I in macrophages (Pggt1bfl/flLysM-Cre+/0,
hereafter designated Pggt1bΔ/Δ) develop erosive arthritis, and
nonprenylated Rac1, RhoA, and Cdc42 accumulate in the GTP-
bound state14. In TX-114 phase-separation assays Rac1, RhoA,
and Cdc42 exhibited a substantial shift from the detergent to
aqueous phase in Pggt1bΔ/Δ macrophages; and click-chemistry
experiments revealed that Rac1 is not geranylgeranylated—thus
confirming the previous conclusion that these proteins are not
prenylated (Supplementary Fig. 1A and B)14. We hypothesized
that the increased activity of one of these nonprenylated proteins
mediates arthritis development and the proinflammatory phe-
notypes of Pggt1bΔ/Δ mice. To test this hypothesis, we knocked
out one copy of Rac1, Rhoa, and Cdc42 in macrophages of
Pggt1bΔ/Δ mice (previous studies show that knockout of both
copies of Rac1, Rhoa, and Cdc42 produces multiple in vivo and
cellular phenotypes)24–29. As expected, levels of total Rac1, RhoA,
and Cdc42 were ~50% (47–58%) lower in BM macrophages from
Pggt1bΔ/ΔRac1Δ/+, Pggt1bΔ/ΔRhoaΔ/+, and Pggt1bΔ/ΔCdc42Δ/+

mice, respectively, than in macrophages from littermate Pggt1bΔ/
Δ mice (Supplementary Fig. 1C). Similarly, levels of GTP-bound
Rac1 was ~50% lower in Pggt1bΔ/ΔRac1Δ/+ than in Pggt1bΔ/Δ

macrophages (Fig. 1a). Immunohistochemical analyses revealed
that the high synovitis and bone erosion scores in joints of
Pggt1bΔ/Δ mice were markedly lower in Pggt1bΔ/ΔRac1Δ/+ mice,
and were statistically indistinguishable from wild type (Fig. 1b).
The arthritis scores were similar in Pggt1bΔ/ΔRhoaΔ/+ and
Pggt1bΔ/Δ mice whereas they were higher in Pggt1bΔ/ΔCdc42Δ/+

mice (Supplementary Fig. 1D and E).
As in earlier studies, LPS-stimulated Pggt1bΔ/Δ macrophages

produced and secreted Il-1β (which wild-type macrophages do
not); this effect was associated with caspase-1 activation (Fig. 1c,
d). Inactivation of Rac1 reduced caspase-1 and Il-1β production
by 90–100% (Fig. 1c, d). LPS-stimulated Pggt1bΔ/Δ macrophages
also secreted high amounts of ll-6, Tnf, and Mmp13; whereas the
levels in medium of Pggt1bΔ/ΔRac1Δ/+ and wild-type macro-
phages were similar (Fig. 1c, e). In addition, basal expression of
inflammation and extracellular matrix-associated genes were
increased in Pggt1bΔ/Δ macrophages, but similar to wild-type in
Pggt1bΔ/ΔRac1Δ/+ cells (Supplementary Fig. 1F and G). Cytokine
levels in medium of Pggt1bΔ/ΔRhoaΔ/+ and Pggt1bΔ/ΔCdc42Δ/+

macrophages did not differ consistently compared with Pggt1bΔ/Δ

(Supplementary Fig. 2A–D).
Pggt1bΔ/Δ macrophages exhibited increased levels of LPS-

stimulated p38 phosphorylation and phosphorylation of the Nf-
κB-regulator IκB kinase (Ikk); and increased basal and LPS-
stimulated phosphorylation of the tyrosine protein kinase Src and
signal transducer and activator of transcription 3 (Stat3) (Fig. 1f).
Consistent with results in Fig. 1a–e, phosphorylation of p38, Src,
Ikk, and Stat3 was reduced in Pggt1bΔ/ΔRac1Δ/+ macrophages
(Fig. 1f).

Rac1-GTP may activate inflammatory signaling pathways
through multiple effectors including ROS and p38. Pharmacolo-
gical inhibition of ROS-reduced phosphorylation of Stat3, Src,
and Ikk in Pggt1bΔ/Δ macrophages, but did not influence p38
phosphorylation (Supplementary Fig. 2E and F). Moreover, a p38
inhibitor and a ROS inhibitor prevented the increased cytokine
production observed in LPS-stimulated Pggt1bΔ/Δ macrophages
(Fig. 1g and Supplementary Fig. 2G and H).

GGTase-I knockout increases Rac1-GTP, but reduces total
Rac1. Nonprenylated Rac1, RhoA, and Cdc42 in Pggt1bΔ/Δ

macrophages accumulate in their GTP-bound active forms14

(Fig. 2a and Supplementary Fig. 3A and B); gene-expression levels
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were unaffected (Fig. 2b). Further analyses revealed that the total
levels of Rac1 were reduced by ~50% (Fig. 2a). Moreover, the
half-life of Rac1 was 65–70% shorter in Pggt1bΔ/Δ than in control
cells (Fig. 2c, d). To determine whether ubiquitin-mediated

proteasomal degradation contributed to the reduced Rac1 levels,
we first immunoprecipitated ubiquitin and performed western
blots for Rac1; and found higher amounts of ubiquitin-associated
Rac1 in Pggt1bΔ/Δ than in control lysates (Fig. 2e). Although we
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Fig. 1 Rac1 haploinsufficiency rescues arthritis and inflammatory signaling in Pggt1bΔ/Δ mice. a Left, Western blots showing steady-state levels of GTP-
bound and total Rac1 in BM macrophages isolated from Pggt1bΔ/+, Pggt1bΔ/Δ, and littermate Rac1Δ/+Pggt1bΔ/Δ mice. Actin was used as a loading control.
Right, Bar graphs showing mean Rac1-GTP levels determined by densitometry (n= 2 per genotype). b Synovitis and erosion score in joints of 12-week-old
Pggt1b+/+ (n= 4), Pggt1bΔ/Δ (n= 12), and Rac1Δ/+Pggt1bΔ/Δ (n= 9) mice. c Cytokine concentrations, 8 h after LPS (10 ng/ml) stimulation, in medium of
primary bone marrow (BM) macrophages isolated from Pggt1b+/+ (n= 3), Pggt1bΔ/Δ (n= 4), and Rac1Δ/+Pggt1bΔ/Δ (n= 3) mice. d Western blots
showing levels of mature Il-1β and caspase-1 in supernatants (Sup), and pro-Il-1β and pro-caspase-1 in lysates (Lys) of LPS (200 ng/ml) stimulated BM
macrophages; tubulin in lysates was used as a loading control. The antibiotic nigericin (28mM) was used as a positive control for inflammasome-mediated
caspase-1 activation and Il-1β production. e Western blot showing levels of Mmp13 in medium of LPS-stimulated BM macrophages; Actin in lysates was
used as a loading control. f Western blots showing phosphorylated (p) and total levels of intracellular signaling mediators in lysates of BM macrophages
isolated 0, 15, and 30min after LPS stimulation. g Concentration of Il-1β in medium of LPS-stimulated BM macrophages (n= 3/genotype) that had been
pre-incubated for 1 h with inhibitors of p38 (SB203580; 1 and 5 µM) and ROS (DPI; 500 nM and 5 µM). For c–e, g, similar results were observed in two to
three independent experiments. Error bars presented as s.e.m. when n is equal to or more than three. Significance between groups were calculated with
two tailed Student’s t test (c, g) and one-way ANOVA with Tukey’s post hoc test (b). n.s. not significant, *P < 0.05, **P < 0.01, ***P < 0.001
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only detected Rac1 conjugated with three Ubiquitins under the
current experimental conditions, we can’t rule out the existence of
mono-, di-, and polyubiquitinated forms. Second, we incubated
macrophages with proteasome inhibitors and found that total
Rac1 levels were restored (Fig. 2f); proteasome inhibition also

increased Rac1-GTP levels (Supplementary Fig. 3C). In contrast
with Rac1, total RhoA, and Cdc42 levels were increased in
Pggt1bΔ/Δ cells (Supplementary Fig. 3A and B). Thus, blocking
prenylation reduces Rac1 stability but appears to increase that of
RhoA and Cdc42.
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RhoGDI1 is not involved in phenotypes of GGTase-I defi-
ciency. The GGTase-I knockout reduces interactions between
RhoGDI1 and Rac1 and Cdc42, but not RhoA14. We hypothe-
sized that a reduced interaction between RhoGDI1 and Rac1
might underlie increased GTP loading and cytokine production
and tested this by inactivating RhoGDI1 expression. Consistent
with a previous study22, suppressing RhoGDI1 expression with
small-interfering (si) RNAs increased Rac1 GTP loading and
reduced total Rac1 levels—a result that was associated with
increased LPS-stimulated Il-6 and Tnf production (Supplemen-
tary Fig. 4A). However, we only observed this result in the
RAW264.7 macrophage cell line; it was neither observed in pri-
mary macrophages incubated with siRNAs, nor in immortalized
macrophages where the Arhgdia1 gene had been inactivated with
CRISPR/CAS9 (Supplementary Fig. 4B and C). Moreover,
RhoGDI1 inactivation never increased Il-1β production, includ-
ing in RAW264.7 cells (Supplementary Fig. 4A–C).

Iqgap1 binds nonprenylated Rac1 and mediates arthritis. To
determine whether blocking Rac1 prenylation influences other
effector interactions, we immunoprecipitated Rac1 from Pggt1bΔ/
Δ and control macrophage lysates and performed isobaric tagging
for relative peptide quantification with mass spectrometry30.
From a list of 717 proteins whose levels differed significantly in
Pggt1bΔ/Δ and control cells, we identified five known Rho family
effector proteins (Table 1). The top hit was GTPase-activating-
like protein 1 (Iqgap1)—an adaptor protein that binds and sta-
bilizes GTP-bound Rho family proteins but lacks GAP and GEF
activity20,31,32. Immunoprecipitation (IP) and western blot ana-
lyses of macrophage lysates revealed that the Rac1-Iqgap1 inter-
action was two to threefold higher in Pggt1bΔ/Δ than control cells
(Fig. 3a). The interaction between Iqgap1 and RhoA and Cdc42 in
Pggt1bΔ/Δ macrophages was also increased (Supplementary
Fig. 5A and B).

To determine whether Iqgap1 contributes to phenotypes of
GGTase-I deficiency, we bred Pggt1bΔ/Δ mice on an Iqgap1−/−

background33. Levels of synovitis and bone erosion
were 60–70% lower in joints of Pggt1bΔ/ΔIqgap1−/− than
Pggt1bΔ/ΔIqgap1+/+ mice, and cytokine production by LPS-
stimulated Pggt1bΔ/ΔIqgap1−/− macrophages was reduced to
control levels (Fig. 3b, c). Importantly, knockout of Iqgap1
alone (e.g., Pggt1b+/+ Iqgap1−/−) did not influence cytokine
production (Supplementary Fig. 5C), although it reduced basal
Rac1-GTP and total Rac1 levels (Supplementary Fig. 5D).
Moreover, the Iqgap1 knockout reduced Rac1-GTP loading and
ubiquitination, and increased total Rac1 to levels observed in
controls; and essentially normalized LPS-induced p38, Src, and
Stat3 phosphorylation (Fig. 3d, e, and Supplementary Fig. 5E).
The Iqgap1 knockout also reduced GTP-bound and total RhoA
and Cdc42 to control levels (Supplementary Fig. 5F and G).
Furthermore, Pggt1bΔ/Δ macrophages have a small adhesive
area and appear small and rounded, and the knockout of Iqgap1
abolished this phenotype (Fig. 3f).

Tiam1 binds nonprenylated Rac1 and stimulates GTP loading.
Iqgap1 has no GEF or GAP activity20,31. Thus, we asked whether an
increased interaction with a known GEF—or a reduced interaction
with RacGAP1—could explain the increased GTP loading of non-
prenylated Rac1. IP-western blot analyses revealed a two to sixfold
higher Rac1-Tiam1 interaction in Pggt1bΔ/Δ than in control mac-
rophages (Fig. 4a). Interactions between Rac1 and the GEFs Vav1,
Vav2, β-Pix, and Dock1, and the GAP RacGAP1 were similar in
Pggt1bΔ/Δ and control macrophages (Supplementary Fig. 6A).
Inhibiting Tiam1 expression with siRNAs reduced GTP-bound and
increased total Rac1 (Fig. 4b). Tiam1 inhibition also reduced
cytokine production of LPS-stimulated Pggt1bΔ/Δ macrophages
(Fig. 4c and Supplementary Fig. 6B and C).

To determine whether Tiam1 interacts with Iqgap1, we
performed IP-western blot analyses and found a low basal
interaction in control Pggt1b+/+ macrophages and a high degree
of interaction in Pggt1bΔ/Δ macrophages (Fig. 4d). These
experiments also revealed consistently higher Tiam1 levels in

Fig. 2 GGTase-I knockout increases Rac1-GTP loading, but reduces Rac1 total levels. a Left, western blots showing steady-state levels of GTP-bound and
total Rac1 in BM macrophages. Nonprenylated RAP1A was used as marker of GGTase-I-deficient cells; actin was used as a loading control. Middle and
right, amount of GTP-bound (n= 5/genotype) and total Rac1 (n= 17/genotype) in BM macrophages determined by densitometry of protein bands.
b Quantitative polymerase chain reaction (QPCR) data showing levels of Rac1, Rhoa, and Cdc42 expression in cDNA of BM macrophages (n= 3 per
genotype). c Left, western blots showing levels of Rac1 and Actin that remain in BM macrophages at various time points after incubation with
cycloheximide (20 µg/ml) to stop protein synthesis. Equal amounts of total proteins were loaded. Right, densitometry of protein bands normalized to time-
point 0 within each genotype. d Similar experiment as in (c) except twice the amount of total proteins from the Pggt1bΔ/Δ lysates were loaded compared to
Pggt1bΔ/+ to obtain similar Rac1 levels at time-point 0. e Left, immunoprecipitation (IP) of Ubiquitin (Ub) followed by western blots for Rac1. Direct western
blots were performed on the same lysates (input) to quantify total levels of Rac1 and Actin. The molecular weight of the main band was ~45 kDa which
corresponds to Rac1 conjugated with three Ubs. Two independent experiments are shown. Right, amount of ubiquitin-bound Rac1 determined by
densitometry of protein bands (n= 4/genotype). f Upper panel, western blots showing total Rac1 levels in lysates of BM macrophages incubated for 10 h
with proteasome inhibitors MG-132 (15 µM) and lactacystin (15 µM). Lower panel, quantification of protein bands normalized to Actin and expressed as
percent of control (Pggt1bΔ/+). Similar results were obtained three times. Error bars represent s.e.m. Significance between groups were calculated with two
tailed Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001

Table 1 Rho family effector proteins identified by mass spectrometry of proteins co-immunoprecipitated with Rac1 in Pggt1bΔ/Δ

and control macrophages

S No. Accession Description PSM Fold change P value

1 Q9JKF1 Ras GTPase-activating-like protein Iqgap1 [Iqgap1] 98 1.16 0.007
2 Q640N3 Rho GTPase-activating protein 30 [RHG30] 5 1.12 0.012
3 Q8BYW1 Rho GTPase-activating protein 25 [RHG25] 2 1.60 0.043
4 A6X8Z5 Rho GTPase-activating protein 31 [RHG31] 9 0.85 0.170
5 Q9WVM1 Rac GTPase-activating protein 1 [RGAP1] 3 0.84 0.227

Fold change represents the relative abundance of a protein in macrophages from the two genotypes.
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Pggt1bΔ/Δ than in control macrophages (Fig. 4a, b, d); the Iqgap1
knockout normalized Tiam1 levels (Fig. 4d).

Editing the Rac1 CAAX sequence increases GTP loading. Levels
of GTP-bound and total Rac1 in GGTase-I-deficient cells could
conceivably be influenced by the accumulation of other non-
prenylated CAAX-proteins. To define biochemical consequences
of blocking Rac1 prenylation in cells expressing normal GGTase-I
activity, we edited the CAAX sequence of endogenous Rac1 in
human embryonic kidney (HEK) cells with a nonintegrating
homologous recombination-based CRISPR/CAS9 approach. We
isolated three CAAX-mutant clones (Rac1CM1–3), sequenced
their DNA and cDNA (Fig. 5a), and found in their lysates that
Rac1 exhibited a reduced electrophoretic mobility indicating that
the protein had not been prenylated by GGTase-I (Fig. 5b). Rac1-
GTP levels were two to fourfold higher in CAAX-mutant than in
control cells; and Rac1 total levels were two to threefold lower
(Fig. 5c). Further analyses revealed that the distribution of Rac1
in cytosol and membrane fractions was similar in CAAX-mutant
and control cells (Fig. 5d). However, nuclear Rac1 levels were
lower in the edited cells (Fig. 5d). Similar to the findings with
Pggt1bΔ/Δ macrophages, Rac1 total levels increased following
lactacystin and MG-132 administration (Fig. 5e, f). Moreover,
Rac1 ubiquitination and Iqgap1 association was higher in Rac1
mutant than control cells (Fig. 5g, h).

Statins mimic effects of GGTase-I deficiency. To determine
whether statins can produce similar cellular effects as GGTase-I
deficiency, we incubated three different macrophage types with
Atorvastatin, Rosuvastatin, and Simvastatin. Statins increased
Rac1-GTP levels and reduced total Rac1; and increased GTP-
bound and total RhoA (Fig. 6a, b). Moreover, statins facilitated Il-
1β maturation and secretion in response to LPS, and potentiated
Il-6 and Tnf production (Fig. 6c, d, and Supplementary
Fig. 7A–C). Pre-incubating the macrophages with GGPP abol-
ished the statin effect on cytokine production in most, but not all
cases (Fig. 6c, d, and Supplementary Fig. 7A and B). To determine
if Iqgap1 underlies the ability of statins to increase cytokine
production, we incubated primary Iqgap1-knockout macrophages
with Simvastatin and found that LPS-stimulated cytokine pro-
duction was either reduced or normalized (Fig. 6e). Inhibiting
Iqgap1 with siRNAs produced similar results (Supplementary
Fig. 7D).

Discussion
In this study, we identified three components of the mechanism
underlying inflammatory phenotypes of mice with macrophage-
specific GGTase-I deficiency. First, GGTase-I prenylates at least
60 substrates17, and our data indicate that one of them, Rac1,
mediates the majority of the robust innate immune responses.
Second, nonprenylated Rac1 becomes hyperactivated through an
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increased interaction with Tiam1 and Iqgap1. And third, hyper-
active Rac1 activates inflammasome-, ROS-, and p38-driven sig-
naling pathways that enhance LPS-induced Il-1β, Il-6, and Tnf
production.

Prenylation is believed to have evolved as a strategy to target
proteins to membranes, promote effector interactions, and
thereby stimulate activation and signaling34. Several results

indicate that this is not the case for Rac1. First, Rac1 membrane/
cytosol partitioning was unaffected in GGTase-I-deficient mac-
rophages14 and in HEK cells engineered to express endogenous
Rac1 with CAAX motif mutations. Second, interactions between
nonprenylated Rac1 and the effectors Tiam1 and Iqgap1 were
substantially increased. And third, GTP-binding was increased
and downstream signaling pathways were activated. The simplest
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explanation for these results is that GGTase-I-mediated pre-
nylation normally acts as a break on innate immune responses in
macrophages by limiting Rac1 effector interactions. Blocking
prenylation releases the break, stimulates Rac1 interactions, and
unleashes wide-spread proinflammatory signaling (Supplemen-
tary Fig. 8).

This reasoning is particularly relevant for the control of Il-1β
production. Due to its potent pleiotropic inflammatory effects, Il-
1β secretion by macrophages is tightly controlled and requires
two different events: a priming step through cell-surface receptors
that leads to Il1b transcription; and a second signal that activates
caspase-1 and leads to pro-Il-1β cleavage and secretion of the
mature protein35,36. Our data suggest that nonprenylated Rac1
can act as the second signal in Il-1β production. This argument is
supported by the finding that the robust caspase-1-mediated Il-1β
production in GGTase-I-deficient macrophages was abolished by
normalizing Rac1-GTP levels—which was accomplished by
knocking out one copy of Rac1 or both copies of Iqgap1.

GGTase-I deficiency increased basal phosphorylation of Src,
Stat3, and Ikkα/β—and to some extent p38—in a Rac1-dependent
fashion; LPS-induced phosphorylation of all four proteins was
also increased. Rac1-induced activation of Src, Stat3, and Ikk was
mediated by ROS, whereas p38 activation was likely a direct
consequence of Rac1/PAK activity. These findings are consistent
with previous reports that Rac1 triggers ROS production by
NADPH oxidases which activates Stat337,38; although other stu-
dies show a physical interaction between Rac1-GTP and Stat339.
Interestingly, Stat3 contributes to the progression of chronic
inflammation and joint destruction in mouse models of rheu-
matoid arthritis40,41. Src and p38 are also involved in Ikk-
dependent activation of NFκB which stimulates transcription of
cytokines including Il-1β, Il-6, and Tnf42–44. Importantly,
knockout of one copy of Rac1 normalized Rac1-GTP levels in
GGTase-I-deficient macrophages and reduced or normalized
signaling of the entire pathway.

Knockout of Iqgap1 normalized Rac1-GTP loading, abolished
proinflammatory signaling and cytokine production, and mark-
edly reduced arthritis in GGTase-I-deficient mice. Although it is
not known whether Iqgap1 encounters nonprenylated Rho pro-
teins in activated wild-type macrophages, it is possible that tar-
geting Iqgap1 might be useful in the therapy of some
inflammatory conditions. One example would be patients with
mevalonate kinase deficiency (MKD)—an autoinflammatory
disease associated with high Il-1β production, fever episodes,
lymph node enlargment, and joint pain. MKD leads to reduced
synthesis of GGPP which reduces prenylation23,45–47, and could
therefore enhance cytokine production through an increased
Rac1-Iqgap1 interaction. Targeting Iqgap1 would likely be asso-
ciated with few side-effects as Iqgap1-deficient mice are viable and

exhibit only mild phenotypes late in life33; and their macrophages
responded normally to LPS. Targeting Rac1 might be an alter-
native strategy and has been proposed earlier23,46; but Rac1
deficiency is lethal in mice and produces a range of cellular and
tissue phenotypes.

The knockout of Iqgap1 rescued most of the robust proin-
flammatory phenotypes of GGTase-I-deficient macrophages but
did not influence LPS-induced cytokine production of GGTase-I
wild-type macrophages—despite reducing Rac1-GTP levels. The
simplest explanation for these observations is that both the levels
of Rac1-GTP and the affinity of Rac1 for Iqgap1 were markedly
higher in GGTase-deficient than wild-type macrophages; thus
Iqgap1’s role in controlling Rac1-GTP levels and its downstream
signaling could simply be comparatively more important in the
GGTase-I-deficient cells. Whether or not Iqgap1 influences Rac1-
GTP signaling and cytokine production in arthritis and other
inflammatory diseases in the setting of wild-type GGTase-I
remains to be determined.

Statin administration produced similar effects as the knockout
of GGTase-I: Rac1-GTP levels increased, as did LPS-induced
cytokine production, in a GGPP-dependent fashion. Part of
those results are in line with previous studies23,48, but here we
also provide evidence that the proinflammatory statin effect
requires Iqgap1. It, therefore, seems reasonable to speculate that
statins’ pro-inflammatory effects on macrophages stem from
reduced Rac1 prenylation and increased interaction with Iqgap1.
However, statin therapy is more often associated with anti-
inflammatory than pro-inflammatory effects. A potential expla-
nation is that anti-inflammatory statin effects are the result of the
drug’s action on lymphocytes rather than macrophages. For
example, statins inhibit T-cell proliferation and differentiation,
and immune synapse formation12. Another speculation would be
that some side-effects of statin therapy, such as myositis and
rhabdomyolysis, are caused by hyperactivation of a non-
prenylated Rho protein. However, these speculations should be
interpreted with caution because there is little evidence that
statins inhibit prenylation in vivo. Daily statin doses used by
patients range from 5 to 80 mg/day, resulting in plasma con-
centrations of 1–15 nM49. The doses used in vitro in the present
study (i.e., 1–5 μM) are lower than those of many other stu-
dies50–52, but they are likely higher than those that cells in vivo
are exposed to.

Our results show clearly that prenylation is not required for
GTP loading and activation of Rho proteins. Prenylation actually
inhibits GTP loading. Why then are Rho proteins prenylated?
One potential role of prenylation is to fine-tune the targeting of
Rho proteins to specific subcellular membrane domains. Another
possibility is that prenylation is required for rapid cycling
between GTP and GDP-bound states during specific functions of

Fig. 5 Editing the endogenous Rac1 CAAX-motif increases GTP loading and reduces total Rac1 levels. a Predicted amino acid sequence from sanger
sequence results of PCR-amplified Rac1 DNA and cDNA fragments. The DNA/cDNA was from HEK-293 clones whose Rac1 gene had been edited at the
CAAX sequence by CRISPR/Cas9-facilitated homologous recombination to prevent geranylgeranylation by GGTase-I. CM1–3, CAAX mutant clones; Ctr, un-
edited control clone. b Left, western blot showing electrophoretic mobility of wild-type Rac1 in Rac1Ctr lysates, and nonprenylated (np) Rac1 in CM1–3
lysates. c Left, western blots showing amounts of GTP-bound Rac1, total Rac1, and the loading control Actin in lysates of the gene-edited cells. Middle and
right, levels of GTP-bound and total Rac1 determined by densitometry; data are mean of three independent experiments for each cell line. d Left, western
blots showing the distribution of Rac1 in cytosol, membrane, and nuclear fractions (designated C, M, and N, respectively) of the gene-edited cells. Rho-
GDI1, integrin-α5, and histone H3 were used as markers for cytosol, membrane, and nuclear fractions, respectively. Right, levels of nuclear Rac1 determined
by densitometry data of three independent experiments and expressed as percent of Rac1Ctr. e, fWestern blots showing levels of total Rac1 and the loading
control Actin in lysates of gene-edited cells isolated after incubation with 15 µM lactacystin for 12 h (e); and 50 µM MG-132 at different time points (f).
g Left, immunoprecipitation (IP) of Rac1 in gene-edited cells followed by western blot for Ubiquitin. Direct western blots were performed on the same
lysates (Input) to quantify total Rac1 levels. Actin was used as a loading control. Right, Bar graphs showing levels of Rac1-Ub3. h Immunoprecipitation (IP)
of Rac1 in gene-edited cells followed by western blot for Iqgap1. Direct western blots were performed on the same lysates (Input) to quantify Iqgap1 and
Rac1 levels. Actin was used as a loading control. Error bars represent s.e.m
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Fig. 6 Statins increase Rac1-GTP and cytokine production in a GGPP- and Iqgap1-dependent fashion. a Left, western blots showing levels of GTP-bound and
total Rac1 in lysates of RAW 264.7 macrophages incubated for 3 weeks with Atorvastatin (5 µM), Rosuvastatin (2.5 µM), and Simvastatin (1 µM). Np-
Rap1A was used as a marker of GGTase-I-deficient cells and Actin as a loading control. Middle and right, amounts of GTP-bound and total Rac1 determined
by densitometry. b Left, western blots showing levels of GTP-bound and total RhoA in the same cells as in (a). Middle and right, amounts of GTP-bound
and total RhoA determined by densitometry. c Il-1β concentration, before and 8 h after LPS stimulation, in medium of RAW 264.7 macrophages incubated
with Atorvastatin (5 µM) and Rosuvastatin (2.5 µM) for 21 days. GGPP (10 µM) was added to the cells 3 days before LPS stimulation. d Similar experiment
as in c performed with J774 macrophages. e Cytokine concentration in medium of LPS-stimulated Iqgap1+/+ and Iqgap1−/− macrophages incubated with
Simvastatin (5 µM) for 60 h. Error bars represent s.e.m. Significance between groups were calculated with two tailed Student’s t test. *P < 0.05, **P < 0.01,
***P < 0.001
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the cell such as during proliferation or certain types of cell
movement. These issues will be possible to address in the future.

But based on the current study, we conclude that a major role
of GGTase-I-mediated prenylation in macrophages is to limit
Rac1 activation and pro-inflammatory signaling, prevent Rac1-
dependent Il-1β maturation, and thereby restrain innate immune
responses.

Methods
Mouse breeding and genotyping. Mice harboring conditional knockout alleles of
the beta subunit of GGTase-I (Pggt1bfl/fl) were bred with lysozyme M-Cre (LC)
knock-in mice to produce offspring lacking GGTase-I in macrophages as descri-
bed6; these mice were designated Pggt1bΔ/Δ (Δ= delta, deleted allele). Pggt1bΔ/Δ

mice were bred with mice harboring conditional knockout alleles of Rac1, Rhoa,
and Cdc42, and conventional knockout alleles for Iqgap133,53–55. Genotyping was
performed by polymerase chain reaction (PCR) on genomic DNA from ear or tail
biopsies6. Mice were housed in a specific pathogen-free facility monitored by
routine testing of sentinel mice, and were given free access to water and chow. Mice
were on a mixed genetic background (129Ola/Hsd-C57BL/6) and control mice in
all experiments were gender-matched littermates. Animal experiments were
approved by the research animal ethics committee in Gothenburg, Sweden.

Histology and quantification of arthritis in joints. Joints from 12-week-old mice
were fixed in 4% paraformaldehyde and stored in 70% ethanol. The joints were
decalcified, embedded in paraffin, sectioned, and stained with hematoxylin and
eosin. The slides were analyzed in a Zeiss Axioplan 2 microscope (Carl Zeiss AG).
Synovitis and erosion scores were evaluated in sections of knee, ankle, metatarsal,
elbow, wrist, and metacarpal joints by an observer blinded to genotype. An arbi-
trary scale from 0 to 3 was used: 0—is a healthy joint, 1—hypertrophy/mild pro-
liferation of synovia constituting more than two intimal lining cell layers, and
mononuclear cell infiltration is visible; 2—hypercellularity, multiple inflammatory
foci in the sub-lining layer, and proliferation of synovia; and 3—massive influx of
inflammatory cells scattered throughout the synovial tissue, and growth of gran-
ulation tissue (pannus). Cartilage and bone erosion were evaluated with a
separate 0–3 scale: 0 is a healthy joint; 1—reduction or uneven cartilage thickness;
2—compromised cartilage integrity and formation of erosions on the cartilage
surface under the growing pannus; and 3—loss of articular surface, obliteration of
the joint cavity, and loss of joint or bone shape. The cumulative arthritis index for
each mouse was constructed by adding the scores from the fore and hind paws56.

Isolating and culturing bone marrow macrophages. Bone marrow cells were
isolated from femur and tibia and cultured for 7–10 days in DMEM high glucose
medium (61,965,059) supplemented with 10% fetal bovine serum (10270-106,
Thermo Fisher Scientific), 1% HEPES (H0887, Sigma-Aldrich), 1% glutamine
(929070, Thermo Fisher Scientific), 1% gentamycin (11482524, Fischer Scientific),
0.01% β-mercaptoethanol, and 10% CMG14-12 cell supernatant as a source of
macrophage colony-stimulating factor (M-CSF)57.

Protein analyses. Rac1-GTP levels were assessed with the Active Rac1 Pulldown
and Detection kit (16118, Thermo Fisher Scientific); Cdc42-GTP with the Active
Cdc42 Pulldown and Detection kit (16119, Thermo Fisher Scientific); and RhoA-
GTP with the RhoA Activation Assay Biochem Kit (BK036, Cytoskeleton). For IP,
cells were lysed in a buffer containing 25 mM Tris-HCl pH 7.4, 150 mM NaCl, 1
mM EDTA, 1% NP-40, and 5% glycerol; and IP was performed with antibodies
recognizing Rac1 (05-389, Millipore); Cdc42 (sc-87), Iqgap1 (sc-10792), and Tiam1
(sc-376021, Santa Cruz Biotechnology); and RhoA (ARH03, Cytoskeleton), using
the Dynabeads Protein G Immunoprecipitation Kit (10007D, Thermo Fisher Sci-
entific). Ubiquitinated Rac1 was isolated with the Pierce Ubiquitin Enrichment Kit
(89899, Thermo Fisher Scientific). Subcellular fractions were isolated with the
Qproteome Cell Compartment Kit (37502, Qiagen). Detergent and aqueous frac-
tions were isolated with TX-114 assays as described58. To quantify Rac1 turnover
rates, cell lysates were isolated from macrophages after incubation with cyclo-
heximide (15 µg/ml) to stop protein synthesis. Western blots were performed by
loading equal amounts of total proteins from whole-cell lysates or cellular fractions
on Bolt 4–12% Bis–Tris gels (Thermo Fisher Scientific) and 18% sodium dodecyl
sulphate polyacrylamide gel electrophoresis. Proteins were transferred to nitro-
cellulose membranes which were incubated with antibodies to Rac1 (05-389,
Millipore); ACTIN (A1978, Sigma-Aldrich); Mmp13 (sc-30073), nonprenylated
RAP1A (sc-1482), RacGAP1 (sc-98617, Santa Cruz Biotechnology); Iqgap1 (SC-
376021, Santa Cruz Biotechnology), Tiam1 (A300-099A, Bethyl Laboratories);
Histone-H3 (ab18521, Abcam); RhoA (2117S), Cdc42 (2462S), phospho-p38
(9211S), p38 (9212S), phospho-Stat3Y705 (9145S), Stat3 (9132S), phospho-SrcY416

(2101S), Src (2109S), phospho-Ikkα/βS176/180 (2697S), Iqgap1 (2293S), VAV1
(2502S), VAV2 (2848S), DOCK180 (4846S), Integrin-α5 (4705S), and β-PIX
(4515S, Cell Signaling Technology); Il-1β (AF-401-NA, R&D System); and anti-
caspase-1 (p20) (AG-20B-0042-C100, Adipogen). Protein bands were visualized
with infrared dye-conjugated secondary anti-mouse (926–32212), anti-rabbit

(926–32,211), and anti-goat (926–32,214, LI-COR) antibodies and analyzed in a LI-
COR Odyssey Imager. Band densities were analyzed with Image J. Mmp13 in
supernatants of LPS-stimulated macrophages was analyzed by western blots using
Mmp13 antibodies (sc-30073, Santa Cruz Biotechnology) and horseradish-
conjugated anti-rabbit (NA934, GE Healthcare Lifesciences) antibodies and the
ECL western blotting system (RPN2232, GE Healthcare Lifesciences), as descri-
bed59. Primary antibodies were used at 1:500 dilution, except anti-Mmp13 and
-TIAM1 which were used at 1:250 dilution.

In vitro prenylation assay. Rac1 prenylation was detected with a click chemistry
approach60. Macrophages were incubated for 48 h with 30 µM Click-IT Ger-
anylgeranyl Alcohol, Azide, mixed isomers (C10249, Thermo Fisher Scientific).
Cells were then lysed in a buffer containing 25 mM Tris-HCl, 150 mM NaCl, 1 mM
EDTA, 1% NP-40, and 5% glycerol, supplemented with protease and phosphatase
inhibitors. IP was performed with Rac1 antibodies (05-389, Millipore) using the
Dynabeads Protein G Immunoprecipitation Kit (10007D, Thermo Fisher Scien-
tific). The click chemistry reaction was performed on the immunoprecipitate with a
buffer containing 10 μM Alexa Fluor 488-alkyne (A10267, Thermo Fisher Scien-
tific), 1 mM tris(2-carboxyethyl)phosphine (TCEP), 100 μM tris[(1-benzyl-1H-
1,2,3-triazol-4-yl)methyl]amine (TBTA), and 1 mM CuSO4 in PBS for 1 h. The
immunoprecipitates were washed three times with PBS containing 1% NP-40;
eluted in LDS sample buffer; and then the proteins were resolved on 4–12% gels.
Fluorescent (i.e., prenylated) Rac1 in gels was detected by Gel Doc XR+ molecular
imager (BioRad).

Rac1 ubiquitination. Ubiquitinated Rac1 was detected as described61. HEK293
cells were lysed in a buffer containing 2% sodium deoxycholate, 150 mM NaCl, 10
mM Tris-HCl, and supplemented with 10 μM MG132, 10 μM PR619, protease and
phosphatase inhibitors. Lysates were boiled for 10 min; sonicated; diluted ten times
in a buffer containing 10 mM Tris-HCl, 150 mM NaCl, 2 mM EDTA, and 1%
Triton; incubated at +4 °C for 1 h with continuous rotation; and then clarified by
centrifugation at 20,000×g for 30 min. IP was performed with Rac1 antibodies (05-
389, Millipore) using the Dynabeads Protein G Immunoprecipitation Kit (10007D,
Thermo Fisher Scientific). Western blots were performed on Bolt 4–12% Bis–Tris
gels (Thermo Fisher Scientific). Proteins were transferred to nitrocellulose for
western blots with Ubiquitin antibodies (Thermo Fischer Scientific).

Gene-expression analyses. RNA was isolated from macrophages with the RNeasy
Mini kit (74104, Qiagen) 8 h after LPS stimulation (tlrl-eblps, Invivogen). Com-
plementary (c) DNA was synthesized from RNA with the iScript cDNA synthesis
kit (1708890, Biorad). Quantitative real-time PCR was performed with Taqman
assays for mouse Rac1 (Mm01201657_g1), Rhoa (Mm00834507_g1), Cdc42
(Mm01194005_g1), Tiam1 (Mm00437079_m1), and Actb (4352933E, Thermo
Fisher Scientific); and with SYBR-green using primers listed in Supplementary
Table 1; in a 7900HT-fast machine (Applied Biosystems).

Cytokine analyses and inhibitors. Macrophages were cultured overnight in
medium without M-CSF and stimulated with LPS (10 ng/ml) in fresh medium. In
some experiments the macrophages were incubated for 30 min with a p38 inhibitor
(SB203580, Invivogen) and a ROS inhibitor (D2926, Sigma-Aldrich) before LPS
stimulation; in other experiments the macrophages were incubated for 24–48 h
with small-interfering (si) RNAs targeting Arhgdia (AM16706, Thermo Fischer
Scietific), Tiam1 (D-047808-03-0050), Iqgap1 (D-040589-01-0050), or containing a
scrambled sequence (D-001206-14-50, Dharmacon) before LPS stimulation. For
statin experiments, macrophages were treated for 60 h or 18 days with Atorvas-
tatin, (PZ0001, Sigma Aldrich), Rosuvastatin (SML1264, Sigma Aldrich) and
Simvastatin (S6196, Sigma Aldrich). GGPP ammonium salt (G6025, Sigma
Aldrich) was added to the cells 3 days before LPS stimulation. Supernatants were
collected before and 8 h after LPS stimulation and levels of Tnf, Il-6, and Il-1β were
determined by ELISA (88-7324-76, 88-7064-76, and 88-7013-76, respectively,
eBioscience).

Mass spectrometry analysis of Rac1-interacting proteins. Macrophages were
lysed in buffer containing 25 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 5%
glycerin, and 1% CHAPS. Rac1 was immunoprecipitated with the 05-389 antibody
(Millipore) using the Dynabeads Protein G Immunoprecipitation Kit (10007D,
Thermo Fisher Scientific). The protein complex was eluted with 50 mM triethy-
lammonium bicarbonate and 4% SDS, and digested with trypsin using the filter-
aided sample preparation method, as described30. The digested peptides were
labeled with 10-plex isobaric tandem mass tag (TMT) reagents (Thermo Scientific).
The labeled samples were combined into one TMT-set; purified with trifluoroacetic
acid precipitation and HiPPR Detergent Removal Resin (Thermo Scientific). The
purified sample was fractionated into twelve fractions using the Pierce High pH
Reversed-Phase Peptide Fractionation Kit (Thermo Scientific), and the fractions
were dried in a vacuum centrifuge and reconstituted in 20 μl of 3% acetonitrile,
0.1% formic acid for analysis. Peptides were then injected onto an Acclaim Pepmap
100 C18 trap column (2 cm × 100 μm, particle size 5 μm, Thermo Fischer Scientific)
using an Easy-nano-LC 1000 liquid chromatography system and separated with an
acetonitrile gradient on a 75-μm Reprosil-Pur C18-AQ column with a 300 nl/min
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flow rate. Fractions were analyzed on Orbitrap Fusion Tribrid mass spectrometer
(Thermo Fisher Scientific). Precursor ion mass spectra were acquired at 120.000
resolution and mass spectrometry (MS)/MS analysis was performed in a data-
dependent multinotch mode where collision-induced dissociation spectra of the
most intense precursor ions were recorded in ion trap at collision energy setting of
30 for 3 s. Charge states 2–7 were selected for fragmentation, dynamic exclusion
was set to 30 s. MS3 spectra for reporter ion quantitation were recorded at 60,000
resolution with higher energy collisional dissociation fragmentation at collision
energy of 55 using synchronous precursor selection. In a second nano-LCMS
analysis a list containing theoretical peptides from Iqgap1 and Tiam1 were
included in the analysis.

The data files for the set were merged for identification and relative
quantification using Proteome Discoverer version 1.4 (Thermo Fisher Scientific).
The search was against the Mus musculus Swissprot Database version November
2017 (Swiss Institute of Bioinformatics, Switzerland) using Mascot 2.5 (Matrix
Science) as a search engine with precursor mass tolerance of 5 ppm and fragment
mass tolerance of 0.5 Da. Tryptic peptides were accepted with zero missed cleavage
and variable modifications of methionine oxidation, fixed cysteine alkylation, and
TMT-label modifications of N-termini and lysines were selected. The sum of the
control samples was used as denominator and for calculating ratios. The detected
peptide threshold in the software was set to a minimum quantification threshold
value of 1000 and a 1% false discovery rate by searching against a reversed database
and grouping identified proteins by shared sequences to minimize redundancy.
Only peptides unique for a given protein were considered for identification;
peptides common to other isoforms or proteins of the same family were excluded.

F-actin staining. Macrophages were fixed with ice-cold methanol in chamber
slides and stained with Alexa Fluor 488 Phalloidin (A12379, Thermo Fischer
Scientific) for 30 min. The slides were mounted with Prolong Gold Antifade
Mounting reagent with DAPI (P36935, Thermo Fischer Scientific) and analyzed
with confocal microscopy (LSM700, Zeiss).

Generating RhoGDI1-knockout macrophages. Recombinant CAS9 was purified
from BL21 Escherichia coli (C600003, ThermoFisher Scientific) transduced with a
plasmid encoding Streptococcus pyogenes CAS9 (gift from Niels Geijsen, Addgene
plasmid #62731). Synthesized crRNA:tracrRNA (Integrated DNA Technologies)
targeting mouse Arghdia exon 2 (sg1: CAGAUAGCUGCAGAGAAUG, sg2:
CUGCGCAAGCUGCUCAGCAG; retrieved from benchling.com) were pre-
incubated with CAS9 in PBS for 10 min to create readily transfectable ribonucleic
proteins (RNP). Immortalized macrophages45 were transfected with the RNPs
using Lipofectamine RNAiMAX (13778150, ThermoFisher Scientific) during 48 h,
and pools of cells were used for analyses.

Generating Rac1-CAAX mutants with CRISPR/CAS9 editing. We used a single
plasmid approach to edit the CAAX sequence of Rac1. A CRISPR (cr) RNA
template oligonucleotide 5′-GCTGAGACATTTACAACAGC-3′ and its com-
plementary fragment targeting exon 6 of Rac1 were annealed and cloned into the
GeneArt-CRISPR Nuclease vector (Life Technology) downstream of a human U6
promoter. A ∼1-kb DNA fragment for homologous recombination–based editing
was synthesized and cloned into unique MfeI and SpeI restriction sites of the
vector; the fragment was composed of a 15–18-bp sequence encoding the mutant
CAAX-motif (i.e., 5′-CGAAAGAGAAAATCTTTA-3′ for C-L-L-L to S-L-L-L
editing, and 5′-CGAAAGAGAAAATGC-3′ for C-L-L-L to C-L-STOP editing) and
0.5 kb flanking genomic sequences. In the resulting all-in-one gRNA-CAS9-editing
plasmid the U6 promoter drives gRNA transcription; a cytomegalovirus promoter
drives bicistronic expression of CAS9 and orange fluorescent protein linked by the
2A self-cleaving peptide; and the donor DNA sequence can replace the endogenous
sequence by homologous recombination after CAS9 cleavage.

The vector was transiently transfected with jetPRIME (Polyplus) into HEK cells
(HEK293, ATCC CRL-1573), and transfected single cells were sorted by
fluorescence-activated cell sorting and plated in individual wells of 96-well plates.
After 2–4 weeks, clones were expanded for cryopreservation and genomic DNA
extraction (DNeasy blood & tissue kit, Qiagen). Knock-in events were first detected
by mutation-specific PCR with forward primer 5′-CTGTCCCAACACTCCCA
TCAT-3′ (binding genomic DNA upstream of the 5′-homology arm) and reverse
primers 5′-AACAGTAAAGATTTTCTCTTTCG-3′ (to detect the -SLLL editing)
or 5′-TTACAAGCATTTTCTCTTTCG-3′ (to detect -CL editing). Second, another
PCR product from potential targets—amplified with forward oligo 5′-GTGGTCGT
GTTTCCTGTAGGT-3′ and reverse oligo 5′-AGTTCAGTGCTCGGTGTTCTC-3′
—was TA-cloned and the plasmid of 10–12 transformed bacterial colonies for each
potential target cell line was sequenced. And third, total RNA was isolated from the
cells and a cDNA fragment was amplified with forward oligo 5′-CAAGTGTGTG
GTGGTGGGAGA-3′ and reverse oligo 5′-AACGAGGGGCTGAGACATTTA-3′,
and then sequenced using the forward oligo. Subsequently, three CAAX mutant
(CM) cell lines were selected for experiments: Rac1CM1, -2, and -3. Based on the
DNA and cDNA sequencing, Rac1CM1 was predicted to have a Rac1SLLL/CLL

genotype; CM2, Rac1CL/CL; and CM3, Rac1CL/−. A Rac1Ctr clone, was used as a
manipulated Rac1+/+ control.

Statistics. Values are mean and SEM unless stated otherwise. Differences between
groups were determined with Student’s t test or one-way ANOVA with Tukey’s
post hoc test, and were considered significant when P < 0.05.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the Article, supplementary information files and Source data, or are available
upon reasonable requests to the authors.
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