
Abstract. Background/Aim: Epithelioid osteoblastoma is a
rare benign tumor of the bone. Its pathogenesis is unknown
and little is known regarding its genetic features. Materials and
Methods: Cytogenetic, RNA sequencing, reverse transcription
polymerase chain reaction (RT-PCR), genomic PCR, and
Sanger sequencing analyses were performed on an epithelioid
osteoblastoma. Results: G-banding analysis of short-term
cultured tumor cells yielded a normal male karyotype in all
examined metaphases. RNA sequencing detected a fusion of
COL1A1 from 17q21 with FYN from 6q21. Both RT-PCR and
genomic PCR together with Sanger sequencing verified the
presence of a COL1A1-FYN fusion gene. In the COL1A1-FYN
chimeric transcript, exon 43 of COL1A1 was fused to exon 2
of FYN. The genomic junction occurred in introns 43 and 1 of
COL1A1 and FYN, respectively. Conclusion: A COL1A1-FYN
fusion gene was found in an epithelioid osteoblastoma resulting
in deregulation of FYN. Whether COL1A1-FYN represents a
consistent genetic feature of epithelioid osteoblastomas,
remains to be seen.

Osteoblastoma is a rare benign tumor which accounts for about
1% of all bone tumors. It is most often found in the age range
of 10-30 years and is 2.5 more common in males than females
(1). The tumor was first described in 1956 in two different
publications, one by Jaffe and the other by Lichtenstein (2, 3).

In the 1970s, a more aggressive type of osteoblastoma was
described with a higher recurrence rate and, upon microscopy,
many epithelioid osteoblasts; various names were given to this
type of tumor, such as malignant osteoblastoma (4), aggressive
osteoblastoma (5), and epithelioid osteoblastoma (6, 7). The
initial reports emphasized that the aggressive behavior was
associated with an epithelioid morphology (4, 5, 8); however,
studying 306 osteoblastomas, Lucas et al. (9) did not find any
difference in the aggressiveness between epithelioid and
conventional tumors and concluded that “Aggressive behavior
is within the biologic spectrum of osteoblastomas, and
histopathology alone does not appear to be a reliable predictor
of aggressiveness”. Examining 55 cases of osteoblastomas,
Della Rocca et al. (10) also concluded that “clinically
aggressive behavior of osteoblastoma is not related to particular
histological features, but rather to the skeletal location”. 

The cytogenetic information on osteoblastomas is limited.
According to the Mitelman Database of Chromosome
Aberrations and Gene Fusions in Cancer, only three
epithelioid (aggressive) osteoblastomas and four of the so-
called conventional osteoblastomas have been karyotyped
and no consistent cytogenetic pattern has emerged
(http://cgap.nci.nih.gov/Chromosomes/Mitelman, database
last updated on February 19, 2019). Recently, recurrent
rearrangements of FOS and FOSB were found in so-called
conventional osteoblastoma. Examining six tumors by whole
genome and RNA sequencing, Fitall et al. (11) found FOS
and FOSB rearrangements in five and one tumors,
respectively. Extending the investigation to 55 additional
cases using fluorescence in situ hybridization (FISH) and
immunohistochemical methodologies, they found that 51
carried FOS and one FOSB rearrangements, respectively.

In the present study, we used RNA sequencing and other
molecular genetic techniques to find fusion of the collagen
type I alpha 1 (COL1A1) and FYN proto-oncogene, Src
family tyrosine kinase (FYN) genes in an epithelioid
osteoblastoma. 
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Materials and Methods
Ethics statement. The study was approved by the Regional
Committee for Medical and Health Research Ethics, South-East
Norway (REK Sør-Øst; http://helseforskning.etikkom.no) and
written informed consent was obtained from the patient’s parents
for publication of the case details. The ethics committee’s approval
included a review of the consent procedure. All patient information
has been de-identified.

Case description. The patient was a 10-year old boy, who
experienced ongoing pain in his left knee for more than 6 months.
X-ray and CT scan showed an osteolytic lesion in the proximal
fibula, first thought to be osteomyelitis. The local hospital
performed curettage of the lesion. Histologically the lesion was
bone forming, with trabeculae of osteoid, partly calcified, rimmed
by osteoblasts (Figure 1A). In between the trabeculae there was
fibrovascular tissue and sheets of epithelioid osteoblasts and
scattered osteoclasts (Figure 1B). There was no cellular atypia and
there were only few mitotic figures, none of them atypical. In
addition, there were areas with “blue bone”, where the osteoid was
heavily calcified and some areas were cartilage like. 

G-banding and karyotyping. Fresh tissue from a representative area
of the tumor was short-term cultured and analyzed cytogenetically
as previously described (12).

Fluorescence in situ hybridization (FISH). The BAC probes were
purchased from BACPAC Resource Center located at the Children’s
Hospital Oakland Research Institute (Oakland, CA, USA)
(https://bacpacresources.org/). FISH analyses were performed on
interphase nuclei using COL1A1 and FYN (see below) home-made
dual-color single-fusion probes. Detailed information on the FISH
procedure was given elsewhere (12). For the COL1A1 gene on
chromosome band 17q21, the BAC clone used was RP11-93L18
(Position: chr17:50219522-50388834). For the FYN gene on
chromosome band 6q21, the BAC clones used were RP11-75C8
(Position: chr6:111639316-111835441), RP1-66H14 (accession
number Z97989.1; Position: chr6:111582811-111738747), and RP3-
487J7 (accession number AL008730.1, Position: chr6: 111497307-
111613802; Band: 6q21). The probes for COL1A1 and FYN were
labelled with Fluorescein-12-dCTP (PerkinElmer, Boston, MA,
USA) or Texas Red-5-dCTP (PerkinElmer) in order to obtain green
and red signals, respectively. Fluorescent signals were captured and

analyzed using the CytoVision system (Leica Biosystems,
Newcastle, UK). 

RNA sequencing. Total RNA was extracted from frozen (–80˚C) tumor
tissue adjacent to that used for cytogenetic analysis and histologic
examination using miRNeasy Mini Kit (Qiagen Nordic, Oslo,
Norway). One μg of total RNA was sent to the Genomics Core Facility
at the Norwegian Radium Hospital, Oslo University Hospital
(http://genomics.no/oslo/) for high-throughput paired-end RNA-
sequencing using the Illumina TruSeq Stranded mRNA protocol. The
software FusionCatcher was used to find fusion transcripts (13, 14).

Reverse transcription (RT) and genomic PCR analyses. The primers
used for PCR amplifications and Sanger sequencing analyses are
shown in Table I. Genomic DNA was extracted using the Maxwell
RSC Instrument and the Maxwell RSC Tissuel DNA Kit (Promega,
Madison, WI, USA) and the concentration was measured using the
Quantus Fluorometer and the QuantiFluor ONE dsDNA System
(Promega). RT-PCR, genomic PCR, analysis of PCR products, and
Sanger sequencing were performed as previously described (12).

For amplification of the COL1A1-FYN fusion transcript, the primer
combinations were the forward COL1A1-3197F1 together with the
reverse FYN-Intr2R1 and COL1A1-3221F1 together with the reverse
FYN-Intr2R2. For amplification of genomic COL1A1-FYN fragments,
the primer combinations were COL1A1-genF1/FYN-genR1 and
COL1A1-genF2/FYN-genR2. The cycling was at 94˚C for 30 sec
followed by 35 cycles of 7 sec at 98˚C, 30 sec at 60˚C, 30 sec at
72˚C, and a final extension for 5 min at 72˚C. The BLAST software
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used for computer
analysis of sequence data.

Immunohistochemistry. The FYN antibody was a mouse monoclonal
antibody (2A10) purchased from ThermoFisher Scientific
(Catalogue number MA5-15865) applied at 1:100 dilution.
Formalin-fixed, paraffin-embedded sections from the epithelioid
osteoblastoma were analyzed for FYN expression using the Dako
EnVision Flex + System (K8012; Dako, Glostrup, Denmark) as
previously described (15). 

Results
The G-banding analysis of short-term cultured tumor cells
revealed a normal karyotype, 46, XY, in all 25 examined
metaphases (data not shown).
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Table I. Primers used for PCR amplification and Sanger sequencing analyses.

Name                                            Sequence (5’->3’)                                                                             Position                                    Reference number

COL1A1-3197F1                         CTGGACGAGACGGTTCTCCTGG                                            3197-3218                                      NM_000088.3
FYN-Intr2-R1                              CATCCTAGGTTCCAACAGGAAGCC                             111846515-111846538                            NC_000006.12
COL1A1-3221F1                         CCAAGGGTGACCGTGGTGAGAC                                           3221-3242                                      NM_000088.3
FYN-Intr2-R2                              TGCTCTCAGTGCAAAACTTGCCA                                111846560-111846582                            NC_000006.12
COL1A1-genF1                           CTGCTGGCAAGAGTGGTGATCG                                            3302-3323                                      NM_000088.3
FYN-genR1                                 AAGGCAGCCCCCAATAATTCCT                                   111849708-111849729                            NC_000006.12
COL1A1-genF2                           TGAGACTGTAAGTAGCTGGGCTCCA                            50188536-50188512                              NC_000017.11
FYN-genR2                                 GCTATGCCTTGTCATTCCAATCTCA                             111849738-111849762                            NC_000006.12



Using the FusionCatcher software with the fastq files from
the RNA sequencing, four fusion genes were found with 17
fusion transcripts (Table II): a read-through COL1A1-HILS1
fusion gene with eight fusion transcripts, a COL1A1-FYN
fusion gene with seven fusion transcripts, an EBP41L5-
COL5A2 with one fusion transcript, and a read-through CTBS-
GNG5 fusion gene with one fusion transcript. Detailed
information on the fusion genes and transcripts is given in
Table II. Taking into consideration that COL1A1 is fused to
PDGFB in dermatofibrosarcoma protuberans (http://omim.org/
entry/120150) and FYN is a tyrosine kinase protooncogene
related to SRC, FGR, and YES (http://omim.org/entry/137025)
we decided to investigate further with molecular techniques the
presence of COL1A1-FYN fusion gene in the tumor. No other
fusion transcripts were examined. 

RT-PCR with the primer combinations COL1A1-
3197F1/FYN-Intr2R1 and COL1A1-3221F1/FYN-Intr2R2
amplified a 252 bp fragment and a 183 bp fragment,
respectively (Figure 2A). Sanger sequencing of the PCR
fragments showed that they were COL1A1-FYN chimeric
cDNA fragments in which exon 43 of COL1A1 (nucleotide
3333 of the COL1A1 sequence with accession number
NM_000088.3) was fused to the untranslated exon 2 of FYN
(nucleotide 486 of the FYN sequence with accession number
NM_002037.5) (Figure 2B). The fusion point was identical to
one of the 7 fusion points found by FusionCatcher analysis of
the RNA sequencing data: CCCCTGGCCCCGTTGGCCCTGC
T G G C A A G A G T G G T G AT C G T G G T G A G A C T-
TTTTTTTGAAGAAGCAGGATGCTGATCTAAACGTGGA
AAAAGTAAGTTGG.

Genomic PCR with the primer combinations COL1A1-
genF1/FYN-genR1 and COL1A1-genF2/FYN-genR2
amplified a 285 bp fragment and a 230 bp fragment,
respectively (Figure 2C). Direct sequencing showed that they
were genomic COL1A1-FYN chimeric fragments in which a
sequence from intron 43 of COL1A1 was fused to a sequence
of intron 1 from FYN (Figure 2D). The genomic junction
point was identical to one of the fusion points found by
FusionCatcher analysis of the RNA sequencing data:
GGCCAGGGACTCTTCAGGCCTCCTTAGAGGCCTGGG
GATGGGTGTCGGAC-GGAAATCTAGTCCTGCATGGG
GGTGTGGGCAAAGGAAAACAAGAGTGAAA. 

FISH analysis, using COL1A1 and FYN home-made dual-
color single-fusion probe, showed a fusion signal in 9 out of
106 (8%) examined interphase nuclei suggesting a COL1A1-
FYN fusion gene in these cells (Figure 3).

FYN immunohistochemical examination was uninformative
(data not shown) probably due to damage done to the tissue by
the decalcification procedure (16, 17). 

Discussion

Using the RNA sequencing methodology, we identified a
COL1A1-FYN fusion gene in the cells of an epithelioid
osteoblastoma. The fusion gene was further verified at both
transcriptional (RNA) and genomic (DNA) levels using RT-
PCR and genomic PCR together with Sanger sequencing.
Interphase FISH showed that the short-term cultured cells
from tumor biopsy contained a small clone of cells (8%)
carrying the COL1A1-FYN fusion. The cells carrying the
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Figure 1. Microscopic examination of the epithelioid osteoblastoma. A) H&E-stained section showing irregular trabeculae of woven bone with deep
blue, calcified areas and areas with cartilage, ×20. B) H&E-stained section showing irregular trabeculae of woven bone rimmed by osteoblasts. In
the intertrabecular space, fibrovascular tissue and sheets of epithelioid osteoblasts are shown, ×20.



rearrangement most probably were not able to divide in vitro. 
The FYN gene on 6q21 codes for a non-receptor tyrosine

kinase, FYN, which is a member of the SRC family of kinases
(18, 19). The FYN protein is found in the inner layer of the
cell membrane and is involved in signal transduction
pathways. It phosphorylates tyrosine residues of many proteins
regulating numerous functions including control of cell
growth, cell-cell adhesion, and cytoskeletal remodeling (18,
19). FYN is implicated in cancer, too (18, 19). In vitro studies
have shown that overexpression of FYN in NIH-3T3 cells
induced morphologic transformation and anchorage-
independent growth (20). FYN was found to be overexpressed
in prostate, breast, pancreas, and thyroid cancer (2, 21-24). In
neuroblastoma, high expression of FYN and high FYN kinase
activity was found in tumors of stage I, whereas FYN was

down-regulated in stage 4 neuroblastomas (25). In chronic
myeloid leukemia, FYN expression was significantly higher in
blast crisis compared to chronic phase, and overexpression of
FYN was an important determinant for resistance to BCR-
ABL1 inhibitors (26-28). 

The COL1A1 gene codes for the pro-alpha1 chain of type
I collagen, a fibril-forming collagen which is abundant in
bone, cornea, dermis, and tendon (29, 30). Mutations in the
COL1A1 gene are associated with osteogenesis imperfecta
types I-IV, Ehlers-Danlos syndrome type VIIA, Ehlers-
Danlos syndrome Classical type, Caffey Disease, and
idiopathic osteoporosis (http://omim.org/entry/120150).
Simon et al. (31) showed that in dermatofibrosarcoma
protuberans, the t(17;22)(q21;q13) and supernumerary ring
chromosomes characteristic of these tumors, contain a
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Figure 2. Molecular genetic analysis of the epithelioid osteoblastoma. (A) Gel electrophoresis showing the amplified COL1A1-FYN cDNA fragment
using the COL1A1-3197F1/FYN-Intr2R1 (lane 1) and COL1A1-3221F1/FYN-Intr2R2 (lane 2) primer combinations. (B) Partial sequence
chromatogram of the cDNA amplified fragment showing the fusion (arrow) of exon 43 of COL1A1 with exon 2 of FYN. (C) Amplification of genomic
COL1A1-FYN fragments using the primer combinations COL1A1-genF1/FYN-genR1 (lane 1) and COL1A1-genF2/FYN-genR2 (lane 2). (D) Partial
sequence chromatogram of the genomic DNA amplified fragment showing the fusion (arrow) of intron 43 of COL1A1 with intron 1 of FYN. M,
Thermo Scientific GeneRuler 1 kb Plus DNA Ladder.
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Figure 3. FISH analysis of epithelioid osteoblastoma using COL1A1 and FYN home-made dual-color single-fusion probe. (A) Ideogram of chromosome
6 showing the mapping position of the FYN gene (vertical red line). (B) Diagram showing the FISH probes RP3-487J7, RP1-66H14, and RP11-75C8
for FYN. Arrow indicates the genomic breakpoint (GP) in the intron 1 of FYN. The neighbor TRAF3IP2 gene in this region is also shown. (C) Ideogram
of chromosome 17 showing the mapping position of the COL1A1 gene (vertical green light). (D) Diagram showing the FISH probe RP11-93L18 for
COL1A1. The TMEM92, XYLT2, and MRPL27 genes mapped in this region, distal to COL1A1, are also shown. Arrow indicates the genomic breakpoint
(GP) in the intron 43 of COL1A1. (E) FISH results with the FYN (red signal) and COL1A1 (green signal) probes on three interphase nuclei (composite
photo) showing a red signal, a green signal, and one yellow-fusion signal in two nuclei and two green and two red signals in one nucleus. 



COL1A1-PDGFB fusion gene consisting of COL1A1 from
17q21 and PDGFB from 22q13 resulting in deregulation of
PDGFB. In the COL1A1-PDGFB fusion gene, the exact site
of the breakpoint in COL1A1 was shown to be highly
variable from exons 6 to 49, whereas the PDGFB breakpoint
was consistently located in intron 2 so that exon 2 of the
gene was always present in the COL1A1-PDGFB fusion
transcript (31-33). No correlation was found between the
genomic breakpoint in COL1A1 and clinico-histopathologic
dermatofibrosarcoma protuberans features (34, 35).

Fusion of COL1A1 with USP6 (from 17p13) was also
described in a case of aneurysmal bone cyst and in a benign
bone tumor (36, 37). In both instances, exon 1 of COL1A1
was fused to exon 2 of USP6 and the pathogenic
consequence of the fusion gene appeared to be control of
USP6 expression by the COL1A1 promoter (36, 37). 

In the present case of epithelioid osteoblastoma, we
believe that the COL1A1-FYN fusion gene results in
regulation of FYN expression by the COL1A1 promoter
similar to what happens with COL1A1-PDFGB and
COL1A1-USP6.

Both FYN (on chromosome band 6q21) and COL1A1 (on
17q21) are transcribed from telomere to centromere. Hence,
formation of a COL1A1-FYN fusion is possible through a
simple t(6;17)(q21;q21). The COL1A1-FYN is predicted to
lie in the breakpoint of the putative der(6)t(6;17). 

To the best of our knowledge, this is the first time that a
fusion gene is described in epithelioid osteoblastoma.
Whether COL1A1-FYN represents a consistent genetic
feature of these tumors, and whether additional clinico-
pathological features, including the aggressive behavior, may
be associated with this fusion, remains to be seen.
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Table II. Fusion transcripts detected using FusionCatcher.

Fusion transcript              Spanning             Spanning              Fusion sequence
                                             pairs               unique reads

COL1A1-HILS1                    828                        84                    CCCGTGGCCTGCCTGGTGAGAGAGGTCGCCCTGGAGCCCCTGGCCCTGCT-
                                                                                                    CACCTTAACTCTCAGCTTCCCAGACTTTCTCCAATGACAGAGCTGGGTGG
COL1A1-HILS1                    828                         8                     CCTGCCTGGTGAGAGAGGTCGCCCTGGAGCCCCTGGCCCTGCT-
                                                                                                    GTAAAGGTGAGGGCCGGAGCTCAAGAGGAAGCCTCAGCGAGGA
COL1A1-HILS1                    828                         3                     CCCGTGGCCTGCCTGGTGAGAGAGGTCGCCCTGGAGCCCCTGGCCCTGCT-
                                                                                                    AGAATTTGAGAAAACAGCAAAATGCCAAGAGTCCAAAGGGCAGGCCGGCA
COL1A1-HILS1                    828                         3                     CCCCGTGGCCTGCCTGGTGAGAGAGGTCGCCCTGGAGCCCCTGGCCCTGC-
                                                                                                    CACCTTAACTCTCAGCTTCCCAGACTTTCTCCAATGACAGAGCTGGGTGG
COL1A1-HILS1                    828                         2                     CCCGTGGCCTGCCTGGTGAGAGAGGTCGCCCTGGAGCCCCTGGCCCTGCT-
                                                                                                    CCTTAACTCTCAGCTTCCCAGACTTTCTCCAATGACAGAGCTGGGTGGGT
COL1A1-HILS1                    828                         2                     CCCCCGTGGCCTGCCTGGTGAGAGAGGTCGCCCTGGAGCCCCTGGCCCTG-
                                                                                                    CACCTTAACTCTCAGCTTCCCAGACTTTCTCCAATGACAGAGCTGGGTGG
COL1A1-HILS1                    828                         2                     CCCGTGGCCTGCCTGGTGAGAGAGGTCGCCCTGGAGCCCCTGGCCCTGCT-
                                                                                                    GCGTGAGCGTGGGCCGCGTGGGAAAGAATGCGAGGCTGCCGTCAAGCCCA
COL1A1-HILS1                    828                         2                     CAAAGATGGAGAGGCTGGAGCTCAGGGACCCCCTGGCCCTGCT-
                                                                                                    GTAAAGGTGAGGGCCGGAGCTCAAGAGGAAGCCTCAGCGAGGA
COL1A1-FYN                        39                         36                    CCCCTGGCCCCGTTGGCCCTGCTGGCAAGAGTGGTGATCGTGGTGAGACT-
                                                                                                    TTTTTTTGAAGAAGCAGGATGCTGATCTAAACGTGGAAAAAGTAAGTTGG
COL1A1-FYN                        39                         17                    GGCCAGGGACTCTTCAGGCCTCCTTAGAGGCCTGGGGATGGGTGTCGGAC-
                                                                                                    GGAAATCTAGTCCTGCATGGGGGTGTGGGCAAAGGAAAACAAGAGTGAAA
COL1A1-FYN                        39                         14                    GCCCCTGGCCCCGTTGGCCCTGCTGGCAAGAGTGGTGATCGTGGTGAGAC-
                                                                                                    TTTTTTTGAAGAAGCAGGATGCTGATCTAAACGTGGAAAAAGTAAGTTGG
COL1A1-FYN                        39                         10                    CCCCTGGCCCCGTTGGCCCTGCTGGCAAGAGTGGTGATCGTGGTGAGACT-
                                                                                                    GTTTTTTTGAAGAAGCAGGATGCTGATCTAAACGTGGAAAAAGTAAGTTG
COL1A1-FYN                        39                          2                     CCTGGCCCCGTTGGCCCTGCTGGCAAGAGTGGTGATCGTGGTGAGACTGT-
                                                                                                    TTTTTTTGAAGAAGCAGGATGCTGATCTAAACGTGGAAAAAGTAAGTTGG
COL1A1-FYN                        39                          2                     CCCCTGGCCCCGTTGGCCCTGCTGGCAAGAGTGGTGATCGTGGTGAGACT-
                                                                                                    GTGAGAAATCAGAGGCCCGGGGAGAGTACTACTTGTTCAAGACCACCCTG
COL1A1-FYN                        39                          2                     GGCCAGGGACTCTTCAGGCCTCCTTAGAGGCCTGGGGATGGGTGTCGGAC-
                                                                                                    AAATCTAGTCCTGCATGGGGGTGTGGGCAAAGGAAAACAAGAGTGAAAAA
EPB41L5-COL5A2                12                          2                     CTCGGCTCTTCCCCGCTCTGGTCGCCGGGGCTGCGCCGTCCCCAGCTCAG-
                                                                                                    AAGGATATGGTGAAGAAATAGCCTGCACTCAGAATGGCCAGATGTACTTA
CTBS-GNG5                           3                           2                     CCTATGGGATAAAGATCAGCGGGCTCCTTATTATAACTATAAA-
                                                                                                    GTTTCCCAGGCAGCTGCAGACTTGAAACAGTTCTGTCTGCAGA
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