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Cerebrovascular blood oxygenation
level dependent pulsatility at baseline
and following acute exercise among
healthy adolescents

Athena E Theyers1,2,3, Benjamin I Goldstein1,2,4,5,
Arron WS Metcalfe1,2,4, Andrew D Robertson1,2

and Bradley J MacIntosh1,2,3

Abstract

Arterial stiffness is linked to cerebral small vessel damage and neurodegeneration, but barriers to accessing deep cere-

brovascular anatomy limit our ability to assess the brain. This study describes an adaptation of a cardiac-related scrubbing

method as a means of generating blood oxygenation level-dependent pulsatility maps based on the cardiac cycle. We

examine BOLD pulsatility at rest, based on the non-parametric deviation from null metric, as well as changes following

acute physiological stress from 20 min of moderate-intensity cycling in 45 healthy adolescents. We evaluate the influence of

repetition time (TR) and echo time (TE) using simulated and multi-echo empirical data, respectively. There were tissue-

specific and voxel-wise BOLD pulsatility decreases 20 min following exercise cessation. BOLD pulsatility detection was

comparable over a range of TR and TE values when scan volumes were kept constant; however, short TRs (�500 ms) and

TEs (�14 ms) acquisitions would yield the most efficient detection. Results suggest cardiac-related BOLD pulsatility may

represent a robust and easily adopted method of mapping cerebrovascular pulsatility with voxel-wise resolution.
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Introduction

Characterizing brain pulsatility has broad clinical
appeal, as it may provide new avenues for advancing
our understanding of cerebrovascular and cognitive
health. The heart circulates blood in a pulsatile
manner and the elastic properties of large arteries
serve to dampen pulsatile energy prior to reaching the
brain’s microvasculature.1 Aging and vascular risk fac-
tors increase arterial stiffness, resulting in the propaga-
tion of pulsatile stress further down the arterial
network, which is thought to contribute to target
organ damage.2 Elevated haemodynamic pulsatility in
the brain is associated with white matter hyperintensi-
ties, which in turn are predictors of cognitive impair-
ment and the development of dementia and stroke.3–10

Several non-invasive methods quantify hemodynamic
pulsatility. Pulse wave velocity, for instance, is a gold

standard that measures the pulse arrival time at two
locations, typically the femoral and carotid arteries.11,12

Although pulse wave velocity is low-cost and reliable, it
indexes central arterial stiffness only, and thus provides
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limited insight on downstream cerebrovascular beds.1

Cerebral hemodynamic pulsatility can be acquired with
transcranial Doppler ultrasound13,14 and time-of-flight
or phase contrast MRI,15,16 although these techniques
are limited to the large cerebral arteries. Conversely,
MRI elastography can map stiffness of tissue,17,18 but
this does not appear to reflect vascular aging.18,19

Blood oxygenation level dependent (BOLD) contrast
functional MRI (fMRI) is ideal for measuring pulsatility
because of its whole brain coverage and capacity for high
temporal resolution.20,21 BOLD is commonly used as an
indirect measure of neuronal activity due to co-localized
changes in blood oxygenation. Importantly, cardiac and
respiratory sources of physiological variability are known
to influence the BOLD signal. In 1999, Dagli et al.22 pro-
vided empirical evidence of a pulse waveform in the
BOLD signal with voxels proximal to major arteries.
Cardiac sources are generally a nuisance for fMRI acti-
vation and there are a plethora of methods that remove
this signal through cardiac gating,23,24 bandpass filtering25

and retrospective image correction (RETROICOR).25,26

The latter is widely used software that regresses cardiac
and respiratory traces to correct for physiological noise.
An alternative perspective, however, views the cardiac-
related fluctuations as a source of information that
reflects brain pulsatility. Recently, Tong et al.27,28 assessed
the direction of blood flow via the temporal shift of the
pulse trace in different brain locations.

The goal of the current study is to further develop
BOLD pulsatility mapping and investigate whether
acute aerobic exercise will produce a measurable pre-
vs. post-exercise differences. Healthy adolescents partici-
pated in this study by undergoing a series of BOLD
scans before and 20min after a single bout of aerobic
exercise. We hypothesized that cardiac cycle-related
regional BOLD pulsatility would decrease after exercise,
based on the established phenomena of reduced vascular
tension29–33 and tone33–35 subsequent to exercise. To test
this hypothesis, we performed tissue-based and voxel-
wise analyses. Post hoc, we characterize the first pair
and second pair in separate pre versus post-exercise
BOLD scan comparisons. We explore a potential order
effect brought on by an experimental design that has
resting BOLD scans that precede task BOLD, both
pre- and post-exercise. Due to numerous sources that
can contribute to BOLD pulsatility contrast, we investi-
gated the influence of repetition time (TR) and echo time
(TE) by simulation and empirical data, respectively.

Methods

Experiments and participants

Forty-five English-speaking participants between 13
and 19 years of age (Table 1) were recruited to this

open-label study using community advertising. The
adolescent age range is motivated by the need to iden-
tify sensitive cerebrovascular measures that precede
frank cerebrovascular disease. Exclusion criteria
included a previous diagnosis of or treatment for a car-
diovascular, metabolic, neurological, auto-immune or
inflammatory disease; an anxiety disorder, or alcohol
or drug dependence within the past three months; per-
sonal diagnosis or family history of mood disorders,
psychotic disorders, or autism; an intelligence quotient
(IQ) <80; a contraindication to exercise (cardiovascular
disease, motor impairment, bone or joint problems etc.)
or MRI testing (claustrophobia, metal implants, etc.).
IQ was tested using the Wechsler Abbreviated Scale of
Intelligence.36

We conducted two supporting analyses to comple-
ment our main objective of developing a method of
detecting a cerebrovascular pulsatility using BOLD
fMRI. The first simulated the influence of TR and
post-processing methods on the ability to detect car-
diac-related pulsatility in BOLD data. The second
empirically investigated the influence of TE on the abil-
ity to detect cardiac-related pulsatility in BOLD data,
for which 10 additional English-speaking participants
without any major illnesses, psychiatric disorders, or
contraindications to either exercise or MRI testing
were recruited. Written informed consent was obtained

Table 1. Participant characteristics for exercise study.

Characteristic Mean� SD

Comparison

to resting

values

(p-values)

N 45

Sex (female/male) 24/21

Age (years) 16.3� 1.8

Adjusted BMI (kg/m2) 20.3� 2.6

Resting SBP (mm Hg)a 104� 11

Resting DBP (mm Hg)a 65� 8

Exercise SBP (mm Hg)a 122� 17 <0.001

Exercise DBP (mm Hg)a 73� 10 <0.001

HR – pre-exercise scans (bpm)b 70� 9

HR – post-exercise scans (bpm)b 72� 8 <0.001

HR – during exercise (bpm)b 143� 10 <0.001

Work rate (W) 65� 23

Perceived level of exertion

during exercisec
12.4� 2.0

aBlood pressure calculated using 39 participants as data were missing for

6 participants. bHeart rate calculated using 44 participants as data were

missing for 1 participant. cSelf-reported using Borg scale: 6 (no exertion)

– 20 (maximal exertion). SD: standard deviation; BMI: body mass index;

SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart

rate.
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from all participants and from the parents/guardians of
the adolescent participants for the exercise study. This
study was approved by the Sunnybrook Health
Sciences Centre Research Ethics Board, in accordance
with the Declaration of Helsinki ‘Ethical Principles for
Medical Research Involving Human Subjects’.

Experiment 1 – Study of the effect of acute exercise

Aerobic exercise session. Participants exercised on a semi-
recumbent cycle ergometer (ISO 1000R, SciFit, Tulsa
USA) with heart rate recorded every minute. Exercise
involved a 5-min low intensity warm-up, a 20-min
steady state exertion at a target heart rate of 70%
age-predicted maximum (i.e. 220 – age in years),37

and a 2-min cool down. Participants whose heart
rates deviated by more than 5 bpm from their target
were instructed to adjust their exercise intensity.

Data acquisition. Four BOLD scans were acquired for
each participant across two sessions: one resting state
followed by one task-based (previously described by
Metcalfe et al.38) scan was acquired at baseline and
again 20min following the cessation of exercise.
Neuroimaging was performed using a 3-T MRI
system (Achieva, Philips Healthcare, Best NL) with a
body coil transmitter and an 8-channel head coil recei-
ver. Single-echo BOLD acquisition parameters were
identical for all scans (TR¼ 1500ms, TE¼ 30ms, 28
slices, 4mm thickness, 80� 80 matrix, 3� 3mm reso-
lution, flip angle 70�) with the exception of 230 volumes
for resting state and 240 volumes for the task-based
BOLD scans. The resting state scan was acquired first
in both the baseline and post-exercise sessions. T1-
weighted images were collected post-exercise using
fast-field echo imaging (TR¼ 9.5ms, TE¼ 2.3ms,
TI¼ 1400ms, 256� 164� 140 matrix, 0.94� 1.17
� 1.2mm resolution). Cardiac and respiratory traces
were digitized at 500Hz using a fingertip pulse oximeter
and respiratory bellows, respectively.

T1 segmentation. After spatial alignment to the fMRI
volumes, T1-weighted images were used to segment
cerebral spinal fluid (CSF), grey matter and white
matter tissue types using the Oxford Centre for
Functional MRI of the Brain (FMRIB)’s Automated
Segmentation Tool (FAST) from the FMRIB Software
Library (FSL; version 4.1).39 We further classified CSF
into ventricular CSF of interest and sulcal CSF of non-
interest using an in-house MATLAB script.

BOLD preprocessing. We used analysis of functional neu-
roimages’ (AFNIs) RETROICOR40 to remove respira-
tory effects in the BOLD data, then performed skull
stripping, slice timing correction, spatial smoothing of

5mm FWHM, and motion correction. BOLD images
were registered to a T1-weighted template image that
was created from all participants using the advanced
normalization tools (ANTs) software package.41

Spurious cardiac pulse intervals were removed if
they were more than 0.3 s above/below the mean
inter-beat interval. The minimum number of usable vol-
umes, or volumes with a recorded pulse interval that
fell within the accepted range as mentioned in the pre-
vious step, was set to 138, i.e. 60% of the total volumes
per scan, chosen as the best compromise between
number of volumes and number of participants.
Participants were excluded from analysis if any individ-
ual scan had an insufficient number of viable volumes.
To ensure equal amounts of BOLD data were used for
each participant, we randomly sampled 138 volumes to
perform the pulsatility model fitting.

Resorting method

Signal intensities for each volume were sorted accord-
ing to their position in the cardiac cycle on a per-voxel
basis (Figure 1(a)). A 7-term Fourier series model was
fit to the sorted data based on the following rationale:
(1) to replicate the original model in Dagli et al., and (2)
to use seven terms in the model to capture sufficient
finger pulse trace signal variance, which is a temporally
smoothed relative to ECG, without the risk of over-
fitting the pulse trace. Goodness of fit was evaluated
by the coefficient of determination (R2) (Figure 1(b)).
To establish a null goodness of fit distribution, the model
was also fit to 45,000 random permutations of the sorted
data (i.e. roughly matching the number of brain voxels
in a single volume). A deviation from null metric was
calculated as the number of standard deviations between
the actual R2 and the mean null R2; this metric repre-
sents the degree of pulse trace influence in a given voxel,
hence a BOLD pulsatility map (Figure 1(c)). A threshold
was set to five deviations from null, corresponding to a
non-parametric p< 0.001.

Experiment 2 – Simulation study of the effect
of TR and signal filtering

Simulated BOLD time series data comprised cardiac
(target physiological signal), respiratory (non-target
physiological noise), and noise sources. The cardiac sig-
nals were modelled after a normal physiological trace
collected using the pulse oximeter, by the function
sin 2�ftð Þ þ 1

2 cos 4�ftþ 5
4

� �
. Cardiac frequencies (f) of

50, 60, 70, 80, 90 and 100 beats per minute (bpm)
were tested with a �5 bpm beats per minute variance
for each. The respiratory signal was represented by a
series of repeated normal distributions to simulate
respiratory bellow recordings at a frequency of 16� 5
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breaths per minute.42 Periodic noise, representing fluc-
tuations in the cardiac and respiratory cycle, was mod-
elled as low frequency sine waves (range: 0.01–0.1Hz).
Non-periodic white noise, representing various sources
such as head motion and thermal noise, was also added
(amplitude: �10% of signal). One hundred data sets
were randomly generated for each cardiac frequency.

Nine TR values were selected, ranging from 33 ms43

to 3000ms.22 Each value was chosen from previous
fMRI experiments.22,38,43–45 One hundred thirty-eight
points were then collected from the generated signals
with spacing equal to that of each of the chosen TRs,
equivalent to Experiment #1. For comparison, a second
TR simulation was performed whereby the total
number of volumes was made to increase as TR
decreased, effectively maintaining the same acquisition
duration for each of the TR choices.

RETROICOR was implemented to remove respira-
tory signals. A second data cleaning method, for com-
parison, was a first-order Butterworth high-pass filter
using a frequency cut-off of 0.27Hz, implemented in R
(version 3.2.0). Detection of pulsatility was calculated
for each cardiac frequency, TR and data cleaning
method using the resorting method described in
Experiment #1.

Experiment 3 – Empirical study of the effect of TE

Multi-echo fMRI BOLD volumes (TR¼ 2300ms,
TE1¼ 13.8ms, TE2¼ 35.4ms and TE3¼ 57.0ms, 28
slices, 4mm thickness, 80� 80 matrix, 3� 3mm reso-
lution, flip angle 70�, 195 volumes) and T1-weighted
images (TR¼ 9.5ms, TE¼ 2.3ms, TI¼ 1400ms,
256� 164� 140 matrix, 0.94� 1.17� 1.2mm reso-
lution) were acquired on a second sample of 10 healthy
adults (3 female, age: 25� 3 years). Preprocessing and
BOLD pulsatility calculation steps were the same as for
Experiment #1, save that the threshold for acceptable
data was reduced to 129 useable volumes, to reflect the
fewer acquired volumes.

Statistical analysis

Two sets of analyses were conducted for Experiment #1.
The first tested for global session effects by comparing the
pre- versus post-exercise percentage of pulsatile voxels for
grey matter, white matter and ventricular CSF. This two-
way repeated-measures ANOVA accounted for session,
scan condition as well as sex, age and heart rate. We con-
ducted two paired t-tests post hoc to test intra-subject ses-
sion differences and session by scan condition interactions.

Figure 1. Schematic diagram of the resorting method with (a) BOLD temporal volumes matched to the pulse oximeter and sorted

based on cardiac cycle position. (b) Sample time series resorted by cardiac cycle and fit with a 7-term Fourier series. The R2 of this fit

is then (c) compared to a randomly generated distribution of 45,000 null fits. R2 values greater than five standard deviations (green

line) from the null distribution mean were considered pulsatile. The black line indicates the R2 value of cardiac cycle position sorted

example in (b).
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The second analysis investigated voxel-wise differ-
ences based on the degree of pulsatility in a voxel, as
assessed by the deviations from null metric. We com-
pared the amplitude of the BOLD pulsatility maps
between baseline and post-exercise sessions using the
non-parametric FSL Randomise program and treated
resting state and task scans separately. The model also
included sex and age as covariates. We corrected for
family-wise error with 5000 permutations. BOLD pul-
satility maps were spatially blurred by 5mm FWHM to
account for inter-participant differences in feature loca-
tion prior to voxel-wise analysis.

In Experiment #3, we compared the percentage of
pulsatile voxels by tissue type and TE using the
Friedman test. Following a significant Friedman test,
Wilcox signed rank test was performed between each
pair of echoes and adjusted for multiple comparisons
using Holm’s method.46

Results

BOLD pulsatility maps

Pulsatility maps identified the major cerebral arteries,
ventricles and the superior sagittal sinus, as
expected. Visually, inter-subject spatial agreement of
the pulsatility maps was high; all major features were
in close alignment, with small variations likely due
to normative inter-participant neurovascular anatomy
differences. An average BOLD pulsatility map is shown
in Figure 2.

Acute exercise and tissue pulsatility

There was a significant effect of session on the percent-
age of ventricular CSF (F(1,25)¼ 9.53, p¼ 0.0049), grey
matter (F(1,25)¼ 14.0, p¼ 0.00096) and white matter
(F(1,25)¼ 8.92, p¼ 0.0062) voxels exhibiting pulsatility
features. There was also a significant session by scan
condition interaction for this metric, in all three tissues
(ventricular CSF: F(1,25)¼ 9.44, p¼ 0.0051; grey matter:
F(1,25)¼ 5.65, p¼ 0.025; white matter: F(1,25)¼ 5.58,
p¼ 0.026), while none of the tissues had a significant
scan condition effect (ventricular CSF: F(1,25)¼ 0.030,
p¼ 0.86; grey matter: F(1,25)¼ 2.05, p¼ 0.16; white
matter: F(1,25)¼ 3.74, p¼ 0.065). Sex, age and heart
rate did not have a significant effect on the percentage
of pulsatile voxels in ventricular CSF (F(1,25)< 0.77,
p> 0.39), grey (F(1,25)< 1.13, p> 0.30) or white matter
(F(1,25)< 3.75, p> 0.064).

Post hoc, intra-subject analysis showed that 37 out
of 45 participants (87%) had a decreased proportion of
pulsatile grey matter voxels after exercise for the resting
BOLD scan (i.e. # of voxels with pulsatility post-exer-
cise was lower than pre-exercise at p< 0.05). For white
matter and CSF, the significant drop in spatial extent
was seen in 80% and 73% of individuals, respectively.
The number of individuals showing decreased pulsati-
lity extent for the task BOLD scan was 62%, 67% and
56% of individuals for grey, white and CSF masks,
respectively.

There was no difference in the percentage of pulsatile
voxels for the two baseline scans (all tissues: p> 0.10);
however, the resting state scan (19.8� 1.1min post-

Figure 2. Mean pulsatility map from all participants. The scale indicates the number of deviations away from the goodness of fit is for

the null fit distribution.
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exercise) had significantly lower pulsatility than the
task scan (26.7� 1.6min post-exercise) after exercise
cessation in grey (p¼ 0.027) and white matter
(p¼ 0.014) but not in ventricular CSF (p¼ 0.17), after
adjustment (Figure 3). This was a consequence of a
decrease in the percentage of pulsatile voxels in the
post-exercise resting state scan compared to baseline
(all tissues: p< 0.0025), and no change in the post-exer-
cise task scan (ventricular CSF: p¼ 0.17; grey matter:
p¼ 0.12; white matter: p¼ 0.25).

In assessing the temporal evolution of the BOLD
pulsatility, splitting the post-exercise BOLD scans
into first and second half showed no within-scan
order effect for either post-exercise BOLD scans
(p> 0.12; these within-BOLD scan analyses were
based on 40 out 45 participants due to the minimum
number of volumes needed to assess pulsatility).

Acute exercise and voxel-wise pulsatility

For the first set of BOLD pulsatility maps (i.e. derived
from resting state scans), voxel-wise session comparison
revealed widespread decreases in the amplitude of the
BOLD pulsatility effect in the major blood vessels and
ventricles after exercise (Figure 4). For the second set of
BOLD pulsatility maps (i.e. task scans), there was a
single significant cluster showing a post-exercise
decrease in the amplitude of the BOLD pulsatility in
the left insula (Figure 4).

Effect of TR and data cleaning on BOLD pulsatility

Simulations showed that the ability to detect pulsatility
decreases with increasing TR (Figure 5(a)); however,
for TR> 500ms, the detectability is less dependent on
TR. The RETROICOR-corrected and uncorrected
results had similar detection levels, regardless of the
sampling period length. Keeping the acquisition dur-
ation constant across the range of TRs demonstrated
a strong association between the number of acquisition
volumes and detecting a cardiac pulsatility trace
(Figure 5(b)).

Use of a high-pass filter was problematic due to
inconsistent detection of pulsatility at certain TRs,
which depended on the average heart rate (i.e.
TR � Z

HR Hzð Þ
where TR is in seconds, HR is the average

heart rate in Hz and is an integer).

Effect of TE and tissue pulsatility features

Friedman tests found a significant dependence of the
percentage of pulsatile voxels on TE in grey (�2¼ 16.8,
p< 0.001) and white matter (�2¼ 15.2, p< 0.001).
Ventricular CSF showed no TE effect (�2¼ 4.1,
p¼ 0.13). Post hoc tests on grey and white matter
showed that TE1 had higher pulsatility compared
to both TE2 and TE3 (p< 0.006, p< 0.006, respect-
ively). TE2 had higher pulsatility than TE3 in grey
matter (p¼ 0.014), but not white matter (p¼ 0.43)
(Figure 6).

Figure 3. Average percentage of pulsatile voxels in each tissue category with standard error and multiple comparison-corrected

p-values; *p< 0.05, **p< 0.01; RS: resting state.
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Discussion

The current study found that cardiac-related pulsati-
lity features were detectable in BOLD data near the
major cerebral arteries, lateral ventricles and the
superior sagittal sinus. We observed a session depend-
ence, whereby cardiac-related BOLD pulsatility
tended to decrease within 20min after aerobic exer-
cise. Our findings also showed an absence of pulsati-
lity differences when comparing the second pair of
BOLD pulsatility maps, which could be the result

of a normalization effect, an order effect or a com-
bination thereof. The BOLD pulsatility features in
the left insula, however, showed a persisting pulsati-
lity decrease at 27min post-exercise. The current find-
ings support the notion that cardiac-related BOLD
pulsatility reflects dynamic haemodynamic features
in brain. To improve characterization of these
BOLD pulsatility effects, we identified that pulsatility
detection was most achievable with shorter TR and
TE parameters, using simulated and empirical
approaches, respectively.

Figure 4. Permutation-based voxel-wise results comparing of baseline and post-exercise BOLD pulsatility maps, showing a decrease

in pulsatility after exercise, using a corrected p-value <0.05 in (a) resting state and (b) task scans.
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Effect of acute exercise

In support of our primary hypothesis, BOLD pulsa-
tility effects decreased acutely after exercise, as
observed in tissue-based and voxel-wise analyses.
While BOLD pulsatility was lower in both post-exer-
cise scans compared to baseline, the session difference
was only significant for the first post-exercise scan.
No difference in pulsatility was found between the

two baseline scans, while in contrast, the second
(task condition) post-exercise scan showed markedly
higher pulsatility in both grey and white matter com-
pared to the first (rest condition) post-exercise scan.
Between these post-exercise scans, there were 16%
(Hedge’s g¼ 0.36) and 20% ((Hedge’s g¼ 0.42)
more pulsatile voxels for grey and white matter,
respectively. The same post-exercise trend was not
observed in ventricular CSF.

Figure 5. (a) BOLD pulsatility deviations from null for each simulated scenario, plotted according to heart rate, TR and data cleaning

method: uncorrected, high-pass filter and RETROICOR. (b) The simulation results show a dramatic TR dependence when the number

of volumes at each TR is not held constant. Larger markers indicate means for each scenario.
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Vascular tone is reduced during exercise to accommo-
date increased blood flow demands and to modulate
increased pulsatile pressure from the heart, and remains
so for a period after cessation, resulting in reduced arter-
ial stiffness and post-exercise hypotension.31,33,35,47,48

In individuals with impaired vascular endothelial
response, such as hypertensives, post-exercise hypoten-
sion can last for hours after exercise cessation,31,49–52

while this effect is typically less pronounced in normo-
tensives30,33 and is thought to normalize by 30min,50,53

with the most prominent effects between 15 and 30min
post-exercise.52,54

The largest BOLD pulsatility effects at baseline
occurred in proximity to arteries and ventricles, as
expected from the literature.22,27,28 The voxel-wise ses-
sion-effect showed decreased BOLD pulsatility at the
Circle of Willis, the lateral ventricles, the sagittal
sinus and, notably, the superior parietal white matter
along a watershed territory.55 The percentage of grey
matter voxels showing pulsatility was not different for
the baseline task and the corresponding post-exercise
task scans; however, the voxel-wise analysis of the
BOLD pulsatility maps revealed one significant cluster
in the left insula. This brain region is involved in para-
sympathetic and sympathetic systems that influence
heart rate and blood pressure56,57; however, it remains
to be seen whether BOLD pulsatility in the insula has
any bearing to neuronal signal. Nonetheless, it is note-
worthy that the insula regulates vascular tone in
response to cardiovascular stressors.58

Effect of TR and data cleaning on BOLD pulsatility

Simulation results revealed BOLD pulsatility is reliably
detected with longer TRs, despite sampling rates that
are below the Nyquist frequency, by virtue of the peri-
odic nature of our target signal. Additionally, there was
no decrease in the ability to detect this effect with
increasing TR, once we passed the Nyquist frequency
of the cardiac signal, when using either the
RETROICOR-corrected or raw signal. Increasing TR
values beyond 4000ms would, however, be more prob-
lematic for detecting a respiratory trace. This suggests
that there would be no inherent difference between
scans conducted within the normal range of TRs used
in conventional BOLD scans, as long as other imaging
parameters are held constant and furthermore cardiac
and respiratory traces are recorded adequately.

It is important to note that the TR simulations sug-
gest it is possible to detect a cardiac pulsatility with
only a limited amount of acquired time frame volumes
when considering rapid TRs. In the case of TR¼ 33ms,
it would take but a few seconds to acquire >100 vol-
umes and have sufficient data to detect pulsatility.
Naturally, these simulation results would benefit from
empirical characterization to establish the minimum
number of volumes needed to detect pulsatility during
short TR BOLD scans. High-pass filtering produced
better results for detecting cardiac pulsatility than
either RETROICOR or the uncorrected signal, but
this advantage disappeared as soon as we reached the

Figure 6. Mean percentage of pulsatile voxels in each of the tissue categories with standard error and p-values that have been

adjusted for multiple comparisons using Holm’s method; **p< 0.01.
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Nyquist frequency. The cardiac signal was almost
entirely lost after the filter was applied, whenever the
TR was an integer multiple of the average period
between simulated heartbeats, making it an unreliable
post-processing choice for BOLD scans collected at
conventional TRs. This follows from sampling theory
where a signal can only be properly sampled at a lower
frequency if the sampling frequency and the frequency
of interest are not integer multiples.59

Effect of TE on BOLD pulsatility

The proportion of BOLD voxels with a pulsatility influ-
ence was highest for the shortest TE, which suggests
additive T2* and proton density inflow cardiac influ-
ences at shorter TEs. For grey and white matter, the
difference between TE1 and TE2 was larger than the
difference between TE2 and TE3. The opposite was
true for ventricular voxels, with a trend of increased
percentage of pulsatile voxels with longer TE. For
grey and white matter, this trend may be related to
T2* decay in signal intensity which follows an exponen-
tial decay curve, similar to the trend of the average
percentage of pulsatile voxels. This theory seems at
odds with what happens in ventricular CSF but this
could be due to a much longer T2 for CSF,

60,61 resulting
in very little change in the signal intensity over the
period of three echoes.

One of the limitations of this study is the lack of a
direct gold-standard measure of brain pulsatility.
Although our data showed a decrease in pulsatility
post-exercise, we are unable to validate these findings
with other techniques. The changes in pulsatility may
reflect acute cerebral blood flow changes, which we
observed previously and note that white matter
showed more of a time-dependent response compared
to grey matter.62 Therefore, we speculate that the global
grey and white matter pulsatility decreases after exer-
cise could in part be explained by changes in cerebral
blood flow. This study did not include monitoring end-
tidal carbon dioxide, nor continuous blood pressure;
each of the variables would influence cerebral blood
flow as well as pulsatility. Additionally, angiography
scans were not collected, so we are unable to co-localize
vascular anatomy with the BOLD pulsatility maps;
however, previous literature suggests there is good
agreement.28 Another source of variation is heart-rate
variability, which has previously reported to influence
functional connectivity,63 and is not accounted for in
this study. We surmise that variation in the heart rate,
i.e. changes in the RR intervals, could lead to a less
precise localization of the peak in the finger pulse
trace. We estimated a peak width (i.e. 10% from
the peak) in the finger pulse trace to be 79� 19ms,
corresponding to roughly 8.8% of the average

heartbeat interval. Intravascular flow/volume and
extravascular bulk flow can also contribute to
BOLD signal variation so we are unable to isolate
these competing effects. RETROICOR was imple-
mented as the first image-processing step, in line
with accepted use of this technique. BOLD data
were acquired in ascending order; therefore, it is pos-
sible that superior slices could have reduced detection
of pulsatility on account of less effective data clean-
ing. The prominent pulsatility from the sagittal sinus,
however, suggests that our method was capable of
detecting pulsatility features for higher axial slices.
Future work could include fluid nulling approaches
to improve isolation of pulsatility signals64,65 or
extend the pulsatility analysis to investigate whether
parameters in the Fourier model provide additional
insight when compared to the goodness-of-fit metric.
A final limitation is that we did not measure blood
pressure during BOLD scanning, which would have
been useful in interpreting the pulsatility changes
over the course of scanning post-exercise.

Conclusions

Resorting BOLD fMRI volumes according to their
position in the cardiac cycle provides a reliable
method to visualize and quantify cardiac-related
brain pulsatility. BOLD pulsatility was markedly
reduced in grey and white matter, and ventricular
CSF compartments acutely after semi-recumbent
cycling aerobic exercise among healthy adolescents.
The implicated exercise-based physiological alter-
ations likely include changes in cardiac output, vas-
cular tone, arterial stiffness, and blood pressure.
There was a persistent decrease in regional pulsatility
up to 30min after exercise cessation in the left insula,
a region that regulates autonomic signals. The pro-
posed BOLD pulsatility approach is amenable to
retrospective BOLD fMRI, so long as the cardiac
and respiratory traces have been collected. Cardiac-
related BOLD pulsatility appears evident over a
range of TR and TE values. This study helps to
establish the feasibility of mapping BOLD cardiac
pulsatility changes in response to aerobic exercise
among healthy adolescents. This work is amenable
to broader application, such as hypertension or vas-
cular aging, where by comparison cerebral blood flow
is reduced and pulsatility is likely increased; we note
examples of clinical brain pulsatility in the literature
already.3,5,66,67 This study also emphasizes the benefit
of recording cardiac and respiratory signals during
BOLD scans, both as a vital component for measur-
ing cerebrovascular pulsatility and to account for the
strong influence that these sources play in conven-
tional activation studies.
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